Submitted:
17 June 2025
Posted:
18 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Experimental Setup
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mourou, G.; Brocklesby, B.; Tajima, T.; Limpert, J.; Schreiber, T.; Nolte, S.; Zervas, M. The future is fiber accelerators. Nat. Photonics 2013, 7, 258–261. [Google Scholar] [CrossRef]
- Breitkopf, S.; Eidam, T.; Klenke, A.; Limpert, J.; Tünnermann, A. A concept for multiterawatt fiber lasers based on coherent pulse stacking in passive cavities. Light Sci. Appl. 2014, 3, e211. [Google Scholar] [CrossRef]
- Wei, L.; Cleva, F.; Man, C. Coherently combined master oscillator fiber power amplifiers for Advanced Virgo. Opt. Lett. 2016, 41, 5817–5820. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Huang, L.; Xu, J.; Wang, X.; Leng, J. High power linearly polarized fiber laser: generation, manipulation and application. Sci. China Technol. Sci. 2017, 60, 1784–1800. [Google Scholar] [CrossRef]
- Zhou, P.; Jiang, M.; Wu, H.; Deng, Y.; Chang, H.; Huang, L.; Wu, J.; Xu, J.; Wang, X.; Leng, J. Fiber Laser from the Perspective of Interdisciplinarity: Review and Prospect [Invited]. Infrared Laser Eng. 2023, 52, 20230334. [Google Scholar]
- Li, H.; Xie, L.; Zhang, C.; Wang, Y.; Chen, S. Metasurface-generating high purity narrow linewidth cylindrical vector beams: power scaling and its limitation. Front. Phys. 2023, 11, 1195655. [Google Scholar] [CrossRef]
- Tao, R.; Ma, P.; Wang, X.; Zhou, P. 1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities. Photon. Res. 2015, 3, 86–93. [Google Scholar] [CrossRef]
- Platonov, N.; Yagodkin, R.; DeLaCruz, J.; Yusim, A.; Gapontsev, V. Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format. Proc. SPIE, 0512. [Google Scholar]
- Ren, S.; Ma, P.; Li, W.; Tao, R.; Wang, X.; Zhou, P. 3.96 kW all-fiberized linearly polarized and narrow linewidth fiber laser with near-diffraction-limited beam quality. Nanomaterials 2022, 12, 2541. [Google Scholar] [CrossRef]
- Chu, Q.; Shu, Q.; Li, F.; Zhang, H.; Xi, X. Power scaling of high-power linearly polarized fiber lasers with . Front. Phys. 2023, 11, 1198305. [Google Scholar] [CrossRef]
- Liao, S.; Luo, T.; Xiao, R.; Huang, L.; Leng, J. 4.6 kW linearly polarized and narrow-linewidth monolithic fiber amplifier based on a fiber oscillator laser seed. Opt. Lett. 2023, 48, 6533–6536. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, W.; Liu, H.; Chen, Z.; Zhou, P. Linearly polarized fiber amplifier with narrow linewidth of 5 kW exhibiting a record output power and near-diffraction-limited beam quality. Opt. Lett. 2023, 48, 2909–2912. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, D.; Zhang, Y.; Wang, X.; Liu, Y.; Chen, Z. 3 kW narrow-linewidth linearly polarized fiber laser with high-purity single-mode output and high PER enabled by suppressing mode and polarization coupling. Opt. Laser Technol. 2025, 186, 112729. [Google Scholar] [CrossRef]
- Stolen, R. Polarization effects in fiber Raman and Brillouin lasers. IEEE J. Quantum Electron. 1979, 15, 1157–1160. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, C.; Liu, C.; Wang, X.; Zhou, P. SBS mitigation by manipulating the injecting polarization direction in a high-power monolithic PM amplifier. Photonics 2024, 11, 890. [Google Scholar] [CrossRef]
- Alegria, C.; Jeong, Y.; Codemard, C.; Sahu, J.K.; Alvarez-Chavez, J.A.; Fu, L. 83W Single-frequency narrow-linewidth MOPA using large-core erbium-Ytterbium co-doped fiber. IEEE Photon. Technol. Lett. 2004, 16, 1825–1827. [Google Scholar] [CrossRef]
- Lei, X.; Zhang, Y.; Shu, Z.; Cui, S.; Chi, H.; Liu, J.; Jun, Z.; Zhou, Y.; Yan, F. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier. Opt. Express 2013, 21, 23318–23324. [Google Scholar]
- Huang, L.; Wu, H.; Li, R.; Jiang, M.; Xu, J. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier. Opt. Lett. 2016, 42, 1–4. [Google Scholar] [CrossRef]
- Shi, W.; Petersen, E.B.; Yao, Z.; Nguyen, D.T.; Peyghambarian, N. Kilowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm. Opt. Lett. 2010, 35, 2418. [Google Scholar] [CrossRef]
- Zeringue, C.; Dajani, I.; Naderi, S.; Robin, C.; Pulford, B. A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light. Opt. Express 2012, 20, 21196–21213. [Google Scholar] [CrossRef]
- Khitrov, V.; Farley, K.; Leveille, R.; Machewirth, D.; Samson, B. kW level narrow linewidth Yb fiber amplifiers for beam combining. Proc. SPIE 2010, 7686, 46–53. [Google Scholar]
- Anderson, B.; Robin, C.; Flores, A.; Dajani, I. Experimental study of SBS suppression via white noise phase modulation. Proc. SPIE 2014, 8961, 362–368. [Google Scholar]
- Ma, P.; Xiao, H.; Tao, R.; Liu, W.; Meng, D. High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression. High Power Laser Sci. Eng. 2018, 6, e1. [Google Scholar] [CrossRef]
- Li, T.; Zha, C.; Sun, Y.; Wang, J.; Chen, H. 3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser. Laser Phys. 2018, 28, 105101.
- Wang, Y.; Feng, Y.; Ma, Y.; Chang, Z.; Tang, C. 2.5kW narrow linewidth linearly polarized all-fiber MOPA with cascaded phase-modulation to suppress SBS induced self-pulsing. IEEE Photon. J. 2020, 1–1. [Google Scholar]
- Prakash, R.; Vikram, B.S.; Supradeepa, V.R. Enhancing the efficacy of noise modulation for SBS suppression in high power, narrow linewidth fiber lasers by the incorporation of sinusoidal modulation. IEEE Photon. J. 2021, 13, 1–6. [Google Scholar] [CrossRef]
- Chu, Q.; Guo, C.; Shu, Q.; Zhang, H.; Xi, X. 3.22 kW near-diffraction-limited output from 21.7 GHz linewidth polarization-maintained fiber laser. Chin. J. Lasers 2021, 48, 1716001. [Google Scholar]
- Gu, Q.; Zhao, Q.; Yang, C.; Wang, X.; Zhou, P. 2.02 kW and 4.7 GHz linewidth near-diffraction-limited all-fiber MOPA laser. Appl. Phys. Express 2022, 15, 032001. [Google Scholar] [CrossRef]
- Ren, S.; Chen, Y.; Ma, P.; Li, W.; Wang, G.; Liu, W.; Zhou, P. 4.5 kW, 0.33 nm near-single-mode narrow-linewidth bias-preserving fiber laser. High Power Laser Part. Beams 2022, 34, 137. [Google Scholar]
- Ren, S.; Ma, P.; Chen, Y.; Ma, P.; Li, W.; Wang, G.; Liu, W.; Huang, L.; Pan, Z.; Yao, T.; Zhou, P. Narrow linewidth laser output of 5 kW class by domestically produced bias-preserving fiber. Infrared Laser Eng. 2023, 52, 443–444. [Google Scholar]
- Chen, Y.; Yang, H.; Ma, P.; Zhou, P.; Wang, X. 5.85 kW polarization-maintained and all-fiberized amplifier with narrow linewidth and near-diffraction-limited beam quality assisted by low-numerical-aperture active fiber. Opt. Laser Technol. 2024, 5149622. [Google Scholar]
- Bochove, E.J. Theory of spectral beam combining of fiber lasers. IEEE J. Quantum Electron. 2002, 38, 432–445. [Google Scholar] [CrossRef]
- Sprangle, P.; Ting, A.; Penano, J.; Hafizi, B.; Gordon, D.; Fischer, R. Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications. IEEE J. Quantum Electron. 2009, 45, 138–148. [Google Scholar] [CrossRef]
- Goodno, G.D.; Shih, C.C.; Rothenberg, J.E. Perturbative analysis of coherent combining efficiency with mismatched lasers. Opt. Express 2010, 18, 25403–25414. [Google Scholar] [CrossRef] [PubMed]
- McNaught, S.J.; Thielen, P.A.; Adams, L.N.; Ho, J.; McComb, T.S.; Robin, C.A.; Dajani, I. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 174–181. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, P.; Su, R.; Tao, R.; Wang, X.; Zhou, P. High-power coherent beam polarization combination of fiber lasers: progress and prospect. J. Opt. Soc. Am. B 2017, 34, A7–A14. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, Q.; Li, D.; Wang, X.; Zhou, P. 3 kW narrow linewidth high spectral density continuous wave fiber laser based on fiber Bragg grating. Opt. Laser Technol. 2021, 133, 106538. [Google Scholar] [CrossRef]
- Wu, Y.; Xiao, Q.; Li, D.; Wang, Z.; Ma, P.; Zhou, P. Thermal induced polarization coupling in double-cladding linearly polarized fiber lasers. Opt. Commun. 2022, 512, 128036. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, P.; Li, D.; Wang, X.; Gong, M. Polarization extinction ratio promotion in high-power linearly polarized fiber lasers. Opt. Laser Technol. 2025, 181, 111909. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Huang, S.; Zhang, H.; Xi, X. Non-water-cooled fiber cladding light stripper with power handling capability over 500 W. High Power Laser Part. Beams 2021, 33, 021005. [Google Scholar]
- Liu, Y.; Wu, W.; Li, Y.; Li, Y.; Huang, S.; Tao, R.; Lin, H.; Wang, J. Experimental study of chemical-etched high-power cladding mode stripping device toward high attenuation. Opt. Laser Technol. 2023, 162, 109234. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, C.; Zhu, Y.; Wang, X.; Zhou, P. Origin of SBS-induced mode distortion in high power narrow linewidth fiber amplifiers. Photon. Res. 2025, 13, 1631–1636. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Z.; Chen, H.; Wang, Y.; Liu, Y. Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique. Opt. Laser Technol. 2013, 47, 72–75. [Google Scholar] [CrossRef]
- Xiong, F.; Mu, W.; Wang, Y.; Li, J.; Chen, G. High-efficiency mode field adapter for low NA large mode area fibers. Acta Photon. Sin. 2024, 53, 0806001. [Google Scholar]
- Jeong, Y.; Sahu, J.K.; Soh, D.B.S.; Nilsson, J. High-power tunable single-frequency single-mode erbium: ytterbium codoped large-core fiber master-oscillator power amplifier source. Opt. Lett. 2005, 30, 2997–2999. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Su, R.; Ma, P.; Wang, X.; Zhou, P. Suppressing mode instabilities by optimizing the fiber coiling methods. Laser Phys. Lett. 2016, 14, 025101. [Google Scholar] [CrossRef]
- Tao, R.; Wang, X.; Zhou, P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–19. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear fiber optics. In Nonlinear Science at the Dawn of the 21st Century, Springer Berlin Heidelberg, 2000, 195-211.
- Jenkins, R.B.; Sova, R.M.; Joseph, R.I. Steady-state noise analysis of spontaneous and stimulated Brillouin scattering in optical fibers. J. Lightwave Technol. 2007, 25, 763–770. [Google Scholar] [CrossRef]
- Ran, Y.; Wang, X.; Lv, H.; Su, R.; Zhou, P.; Si, L. Novel suppression method for stimulated Brillouin scattering by simultaneous phase and intensity modulation in fiber amplifiers. Chin. J. Lasers 2015, 42, 0805003. [Google Scholar]
- Eznaveh, Z.S.; Lopez-Galmiche, G.; Antonio-Lopez, E.; Sanchez, D.; Schulzgen, A.; Amezcua-Correa, R.; Li, G.; Li, J.; Chen, K.P. Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers. Proc. SPIE 2015, 9344, 407–411. [Google Scholar]
- Wang, G.; Song, J.; Chen, Y.; Ren, S.; Ma, P.; Liu, W.; Yao, T.; Zhou, P. Six kilowatt record all-fiberized and narrow-linewidth fiber amplifier with near-diffraction-limited beam quality. High Power Laser Sci. Eng. 2022, 10, 1–6. [Google Scholar] [CrossRef]
- Tao, R.; Ma, P.; Wang, X.; Zhou, P. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers. Laser Phys. Lett. 2016, 14, 025002. [Google Scholar] [CrossRef]
- Yoda, H.; Polynkin, P.; Mansuripur, M. Beam quality factor of higher order modes in a step-index fiber. J. Lightwave Technol. 2006, 24, 1350–1355. [Google Scholar] [CrossRef]
- Wielandy, S. Implications of higher-order mode content in large mode area fibers with good beam quality. Opt. Express 2007, 15, 15402–15409. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Huang, L.; Li, M.; Shen, B.; Feng, X.; Xie, L.; Weng, J.; Zhi, D. M2 factor for evaluating fiber lasers from large mode area few-mode fibers. Front. Phys. 2023. [Google Scholar] [CrossRef]
- Li, D.; Niu, X.; Ji, X.; Wang, Y.; Ma, Y.; Zhou, Q.; Chen, H. High beam quality 10 kW light source based on thin-film beam combination. High Power Laser Sci. Eng. 2024, 12, e55. [Google Scholar]
- Zhang, C.; Chu, Q.; Feng, X.; Wang, Y.; Li, H.; Zhou, P. Mode evolution of high power monolithic PM fiber amplifiers in the presence of SRS effect. IEEE Photon. Technol. Lett. 2022, 34, 215–218. [Google Scholar] [CrossRef]
- Tao, R.; Ma, P.; Wang, X.; Liu, W.; Zhou, P. Experimental study on mode instabilities in all-fiberized high-power fiber amplifiers. Chin. Opt. Lett. 2014, 12, s20603. [Google Scholar] [CrossRef]
- Bowers, M.S.; Luzod, N.M. Stimulated Brillouin scattering in optical fibers with end reflections excited by broadband pump waves. Opt. Eng. 2019, 58, 102702. [Google Scholar] [CrossRef]
- Li, W.; Deng, Y.; Qi, C.; Tao, R.; Wang, X.; Zhou, P. Evaluation of the impact of weak end feedback on the SBS threshold in high-power narrow-linewidth fiber amplifiers. Opt. Express 2024, 32, 16478–16490. [Google Scholar] [CrossRef]
- Ma, P.; Xiao, H.; Liu, W.; Zhang, H.; Wang, X.; Leng, J.; Zhou, P. All-fiberized and narrow-linewidth 5 kW power-level fiber amplifier based on a bidirectional pumping configuration. High Power Laser Sci. Eng. 2021, 9, e45. [Google Scholar] [CrossRef]
- Lin, H.; Tao, R.; Li, C.; Ma, P.; Wang, X.; Zhou, P. 3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability. Opt. Express 2019, 27, 9716–9724. [Google Scholar] [CrossRef]
- Liu, W.; Song, J.; Ma, P.; Xiao, H.; Zhou, P. Effects of background spectral noise in the phase-modulated single-frequency seed laser on high-power narrow-linewidth fiber amplifiers. Photon. Res. 2021, 9, 424–431. [Google Scholar] [CrossRef]
- Dragic, P.D. Brillouin suppression by fiber design. IEEE Photon. Soc. Summer Top. 2010, 151–152. [Google Scholar]
- Dragic, P.D.; Ballato, J.; Morris, S.; Hawkins, T. The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers. Opt. Mater. 2013, 35, 1627–1632. [Google Scholar] [CrossRef]
- Dragic, P.D. Brillouin gain reduction via B2O3 doping. J. Lightwave Technol. 2011, 29, 967–973. [Google Scholar] [CrossRef]
- Dragic, P.D.; Cavillon, M.; Ballato, A. A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients. Int. J. Appl. Glass Sci. 2018, 9, 307–318. [Google Scholar] [CrossRef]
- Hawkins, T.W.; Dragic, P.D.; Yu, N.; Ballato, J. Kilowatt power scaling of an intrinsically low Brillouin and thermo-optic Yb-doped silica fiber. J. Opt. Soc. Am. B 2021, 38, F38–F49. [Google Scholar] [CrossRef]
- Rosales-García, A.; Jensen, R.; Kristensen, P.; Johansen, M.; Hansen, K.R. 5.2 kW single-mode output power from a Yb 20/400 fiber with reduced thermo-optic coefficient. Proc. SPIE 2024, 12865, 64–67. [Google Scholar]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
