Submitted:
31 May 2025
Posted:
12 June 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
sFLC Biology
Clinical Relevance: Neoplasia versus Inflammation
- Hegen, H., et al., reported on cerebrospinal fluid kappa free light chains as biomarker in multiple sclerosis from diagnosis to prediction of disease activity [17].
- Demortiere, et al. found kappa FLC index in patients with inaugural optic neuritis was useful to sort out multiple sclerosis (MS), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) and neuromyelitis spectrum disorder (NMOSD) [18].
- Bracco et al. found the presence of FLC in cerebrospinal fluid of multiple sclerosis patients implicated a recent immunological stimulation leading to increased synthesis of FLC within the central nervous system [19].
- Matsumori et al. found that sFLCR was a “…more specific and sensitive for the diagnosis of T2D than HbA1c, and thus represents a potentially promising biomarker of inflammation ” [20].
- Basile, et al. found sFLCR > 0.63 was associated with left ventricular ejection fraction improvement in a small series of patients with NSTEMI, STEMI and stable angina at one year follow up [21].
- Nakao, H. reported an increase in IgA nephropathy following COVID-19 mRNA vaccination [22].
- Park and Kwon pointed out the role of monoclonal FLC in producing kidney damage in Monoclonal Gammopathy of Renal Significance (MGRS) without multiple myeloma or other forms of neoplasia [23].
- Martins, et al. reported on 23 cases of non-myeloma light chain cast nephropathy (non MM-LCCN) pointing out that malignancy develops later in 43% of cases [24].
- Lan, et al. presented a case of light chain proximal tubulopathy (LCPT) and light chain cast nephropathy (LCCN) in a 49 year-old patient with acute kidney injury associated with of lambda light chain multiple myeloma (LCMM) [25].
- Cassano, et al. reported on light chain deposition disease (LCDD) in which non-amyloid monoclonal light chains are deposited in different organs particularly kidney where monoclonal immunoglobulins are deposited in vascular basement membranes, glomerular basement membranes and tubular basement membranes in patients with plasma cell dyscrasias but also monoclonal gammopathy of unknown significance (MGUS) [26].
-
Gudowska-Sawczuk, et al. found COVID-19 vaccinated subjects had higher sFLC levels than COVID-19 patients and unvaccinated controls [2].Gudowska-Sawczuk, et al. conclude,… abnormal levels of κ and λ FLCs, as well as the ratio of κ:λ, are usually the result of disturbances in the synthesis of immunoglobulins as an effect of overactive inflammatory reactions. Therefore, it seems that κ and λ FLCs may be significant diagnostic and prognostic biomarkers of selected diseases. Moreover, the inhibition of FLCs appears to be a promising therapeutical target for the treatment of various disorders where inflammation plays an important role in the development or progression of the disease [2].
2. Materials and Methods
| Type | sFLCR | sFLC |
|---|---|---|
| Inflammatory | 0.26–1.65 | κ, λ, κ & λ |
| Neoplastic | <0.26 or >1.65 | κ, λ, κ & λ |
3. Results (See Supplement Tables S1, S2, S3, S4, S5)
Quantitative Cases n = 25 (Supplement Tables S1A-F)
| Condition | Cases | % of Total |
|---|---|---|
| Leukemia | 1 | 4% |
| Plasmacytoma | 1 | 4% |
| Monoclonal Gammopathy | 3 | 13% |
| Multiple Myeloma | 4 | 17% |
| Lymphoma | 4 | 17% |
| Total | 13 | 57% |
| Neoplastic | |
|---|---|
| Normal sFLCR 43% of cases (10/23) | 30% (3/10) |
| Abnormal sFLCR 57% of cases (13/23) | 85% (11/13) |
Combined
| Category | Summary |
|---|---|
| Age | Mean: ~60 years (n=65) Range: 19–87 years Unknown: 10 cases (13.3%) |
| Sex | Male: 57% (39/68) Female: 40% (27/68) Prefer Not to Say: 1% (1/75) Unknown: 4% (3/75) |
| Vaccine Type | Pfizer: 60% (39/65) Moderna: 28% (18/65) Pfizer/Moderna (mixed): 9% (6/65) Unknown: 10% (7/75) Janssen: 0% |
| Severity | Severe: 67% (50/75) - Hospitalization: 57% (43/75) - Life-Threatening: 13% (10/75) - Permanent Disability: 11% (8/75) - Death: 5% (3/75) Non-Severe: 33% (25/75) |
| Presence of Neoplasia | Yes: 53.3% (40/75) No: 46.7% (35/75) |
| Category | Renal | Hematological | Neurological | Cardiac | ||
|---|---|---|---|---|---|---|
| Summary Statistics | 28/75 (37%); 24/50 Severe (47%) | 13/75 (17%); 10/50 Severe (20%) | 12/75 (16%); 10/50 Severe (20%) | 2/75 (3%); 2/50 Severe (4%) | ||
| Diagnoses | Nephrotic syndrome, anti-GBM nephritis, amyloidosis | Multiple Myeloma (MM), Monoclonal Gammopathy of Undetermined Significance (MGUS) | Guillain-Barré | Myocarditis, Cerebrovascular Accident (CVA) | ||
| Symptoms | Proteinuria (15), hematuria (11), AKI (8) | Anemia (10), thrombocytopenia (3) | Gait disturbance (5), neuropathy (3) | Myocarditis, CVA | ||
| Metric | Statistical Test Results [29] | Significant Pairwise Comparisons (Adjusted p < 0.05) | ||||
| Number of Doses | Kruskal-Wallis p=0.0198, indicating significant differences among renal, hematologic, and neurologic systems. | Neurologic (median=3, mean=2.92) vs. Renal (median=2, mean=1.86), p=0.015. No significant differences for Renal vs. Hematologic (median=2, mean=2.46) or Hematologic vs. Neurologic (p>0.05). | ||||
| Time to Onset | Kruskal-Wallis p=0.0403, indicating significant differences among renal, hematologic, and neurologic systems. | Neurologic (median=127.5 days, mean=140.90) vs. Renal (median=12.5 days, mean=43.55), p=0.033. No significant differences for Renal vs. Hematologic (median=36 days, mean=99.67) or Hematologic vs. Neurologic (p>0.05). | ||||
| Category | Summary |
|---|---|
| Biopsy Site | Renal (Kidney): 13 cases (62%) – IgA nephropathy (5), glomerulonephritis (4), nephrotic syndrome (2), light chain nephropathy (1). Hematologic (Bone Marrow/Bone): 10 cases (48%) – myeloma (3), MGUS (2), light chain disease (1), lymphoma (1). Other: 1 case (4.8%, UGI, negative). Multi-Site: 4 cases (20% kidney + bone marrow). |
| Vaccine Type | Pfizer: 14 cases (67%) – 8 renal (e.g., IgA nephropathy), 3 neoplastic (e.g., myeloma, MGUS), 1 autoimmune. Moderna: 7 cases (33%) – 5 neoplastic (e.g., myeloma, MGUS), 2 renal (e.g., IgA nephropathy). |
| Severity Level | Hospitalization: 7 cases (33%) – renal (e.g., IgA nephropathy), systemic complications. Life-Threatening: 4 cases (19%) – myeloma, lymphoma, light chain nephropathy. Permanent Disability: 4 cases (19%) – myeloma, nephrotic syndrome, MGUS. Unspecified: 5 cases (24%). Emergency Room: 1 case (4.8%). Note: >71% severe outcomes. |
| Presence of Neoplasm | Present: 8 cases (38%) – plasma cell myeloma (3), MGUS (2), light chain disease (1), lymphoma (1), monoclonal gammopathy (1). FLC Association: All show elevated kappa/lambda or abnormal ratios. Vaccine: Moderna (5/8), Pfizer (3/8) Severity: Includes life-threatening, permanent disability, hospitalization. Note: Tied to bone marrow involvement. |
4. Discussion
COVID-19, COVID-19 Vaccines and sFLC Patterns
Organ Specific Findings
IgA Related Disorders
Implications for Vaccine Safety
Limitations
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Malecka-Gieldowska, M.; Folta, M.; Wisniewska, A.; Czyzewska, E. Cell Population Data and Serum Polyclonal Immunoglobulin Free Light Chains in the Assessment of COVID-19 Severity. Viruses. 2021, 13, 1381. [Google Scholar] [CrossRef] [PubMed]
- Gudowska-Sawczuk, M.; Moniuszko-Malinowska, A.; Pączek, S.; Guziejko, K.; Chorąży, M.; Mroczko, B. Evaluation of Free Light Chains (FLCs) Synthesis in Response to Exposure to SARS-CoV-2. Int. J. Mol. Sci. 2022, 23, 11589. [Google Scholar] [CrossRef]
- Jones, H. B., III. On a New Substance Occurring in the Urine of a Patient with Mollities Ossium. Phil. Trans. R. Soc. 1848, 138, 55–62. [Google Scholar] [CrossRef]
- Jenner, E. Serum Free Light Chains in Clinical Laboratory Diagnostics. Clin. Chim. Acta 2014, 427, 15–20. [Google Scholar] [CrossRef]
- Kyle, R. A.; Rajkumar, S. V. Multiple Myeloma. Blood. 2008, 111, 2962–2972. [Google Scholar] [CrossRef]
- Salama, M.; Hoffman, R. Progress in the Classification of Hematopoietic and Lymphoid Neoplasms: Clinical Implications. In Hematology, Basic Principles and Practice, 8th ed.; Hoffman, R., Ed.; Elsevier: Philadelphia, PA, USA, 2023; pp. 800–812. [Google Scholar]
- Zhu, L.; Hu, Q.; Zhang, L.; Li, A. The Role of Minimal Residual Disease and Serum Free Light Chain Ratio in the Management of Multiple Myeloma. Discov. Oncol. 2024, 15, 229. [Google Scholar] [CrossRef]
- Kyle, R. A.; Larson, D. R.; Therneau, T. M.; Dispenzieri, A.; Kumar, S.; Cerhan, J. R.; Rajkumar, S. V. Long-Term Follow-up of Monoclonal Gammopathy of Undetermined Significance. N. Engl. J. Med. 2018, 378, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Gertz, M. A. Immunoglobulin Light Chain Amyloidosis 2024 Update on Diagnosis, Prognosis, and Treatment. Am. J. Hematol. 2024, 99, 309–324. [Google Scholar] [CrossRef]
- Dispenzieri, A. POEMS Syndrome: 2019 Update on Diagnosis, Risk-Stratification, and Management. Am. J. Hematol. 2019, 94, 812–827. [Google Scholar] [CrossRef]
- Katzman, J. A.; Kyle, R. A.; Benson, J.; Larson, D. R.; Snyder, M. R.; Lust, J. A.; Rajkumar, S. V.; Dispenzieri, A. Screening Panels for Detection of Monoclonal Gammopathies. Clin. Chem. 2009, 55, 1517–1522. [Google Scholar] [CrossRef]
- Kaplan, B.; Livneh, A.; Sela, B.-A. Immunoglobulin Free Light Chain Dimers in Human Diseases. ScientificWorldJournal. 2011, 11, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Aklaghi, K.; Maclachlan, K.; Korde, N.; Mailankody, S.; Lesokhin, A.; Hassoun, H.; Lu, S.; Patel, D.; Shah, U. A.; Tan, C.; Hultcrantz, M.; Iyengar, N.; Shah, G. L.; Scordo, M.; Lahoud, O. B.; Chung, D. J.; Landau, H. J. Evaluating Serum Free Light Chain Ratio as a Biomarker in Multiple Myeloma. Haematologica. 2025, 110, 326–338. [](https://haematologica.org/issue/view/440). [CrossRef]
- Davids, M. S.; Murali, M. R.; Kuter, D. J. Serum Free Light Chain Analysis. Am. J. Hematol. 2010, 85, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Fend, F.; Dogan, A.; Cook, J. R. Plasma Cell Neoplasms and Related Entities—Evolution in Diagnosis and Classification. Virchows Arch. 2023, 482, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Gudowska-Sawczuk, M.; Mroczko, B. Free Light Chains κ and λ as New Biomarkers of Selected Diseases. Int. J. Mol. Sci. 2023, 24, 9531. [Google Scholar] [CrossRef]
- Hegen, H.; Arrambide, G.; Gnanapavan, S.; Kaplan, B.; Khalil, M.; Saadeh, R.; Teunissen, C.; Tumani, H.; Villar, L. M.; Willrich, M. A. V.; Zettl, U. K. Cerebrospinal Fluid Kappa Free Light Chains for the Diagnosis of Multiple Sclerosis: A Consensus Statement. Mult. Scler. J. 2022, 29, 182–195. [Google Scholar] [CrossRef]
- Demortiere, S.; Marignier, R.; Bertheaume, N.; Vukusic, S.; D’Hardivilliers, F.; Lebrun-Frenay, C. Diagnostic Utility of Kappa Free Light Chain Index in Adults with Inaugural Optic Neuritis. Neurol. Neuroimmunol. Neuroinflamm. 2025, 12, e200386. [Google Scholar] [CrossRef]
- Bracco, F.; Gallo, P.; Menna, R.; Battistin, L.; Tavolato, B. Free Light Chains in the CSF in Multiple Sclerosis. J. Neurol. 1987, 234, 303–307. [Google Scholar] [CrossRef]
- Matsumori, A.; Shimada, T.; Shimada, M.; Drayson, M. T. Immunoglobulin Free Light Chains: An Inflammatory Biomarker of Diabetes. Inflamm. Res. 2020, 69, 715–718. [Google Scholar] [CrossRef]
- Basile, U.; La Rosa, G.; Napodano, C.; Pocino, K.; Cappannoli, L.; Gulli, F.; Cianfrocca, C.; Di Stasio, E.; Biasucci, L. M. Free Light Chains: A Novel Biomarker of Cardiovascular Disease. A Pilot Study. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 2563–2569. [Google Scholar] [CrossRef]
- Nakao, H.; Koseki, T.; Kato, K.; Yamada, S.; Tsubo, N.; Takahashi, K.; Mizuno, T. COVID-19 mRNA Vaccination Is Associated with IgA Nephropathy: An Analysis of the Japanese Adverse Drug Report Database. J. Pharm. Pharm. Sci. 2023, 26, 11453. [Google Scholar] [CrossRef]
- Park, K.; Kwon, S. Monoclonal Gammopathy of Renal Significance from the Perspective of Nephrologists. Blood Res. 2024, 59, 28. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.; Gibier, J.; Leroy, X.; Bridoux, F.; Touchard, G.; Joly, D.; Royal, V.; Goujon, J. M.; Sirac, C. Non-Myeloma Light Chain Cast Nephropathy: A Multicenter Retrospective Study on Clinicopathological Characteristics. Haematologica. 2024, 109, 2557–2566. [Google Scholar] [CrossRef] [PubMed]
- Lan, M.; Guo, Y.; Wang, C.; Wang, X.; Li, J.; Wang, Y. Lambda Light Chain–Restricted Non-Crystalline Proximal Tubulopathy with Cast Nephropathy in Multiple Myeloma: A Case Report and Literature Review. BMC Nephrol. 2024, 25, 325. [Google Scholar] [CrossRef]
- Cassano, R.; Ferraro, S.; Stella, A.; Buda, G.; Orciuolo, E.; Petrini, M. Light Chain Deposition Disease: Pathogenesis, Clinical Characteristics, and Treatment Strategies. Ann. Hematol. 2025, 104, 2083–2093. [Google Scholar] [CrossRef]
- Szczepanek, A. Fisher’s Exact Test Calculator. Available online: https://www.omnicalculator.com/statistics/fishers-exact-test (accessed on 25 May 2025).
- Lazarus, R.; Klompas, M.; Campion, F. X.; McNabb, S. J. N.; Hou, X.; Daniel, J.; Haney, G.; DeMaria, A.; Lenert, L.; Platt, R. Electronic Support for Public Health-Vaccine Adverse Event Reporting System (ESP:VAERS). Available online: https://digital.ahrq.gov/sites/default/files/docs/publication/r18hs017045-lazarus-final-report-2011.pdf (accessed on 25 May 2025).
- xAI. 2025. Grok 3. Version 3. Artificial intelligence language model. Accessed May 29, 2025. https://x.ai.
| Classification of Plasma Cell Neoplasms and Paraneoplastic Conditions [7,8,9,10,11,12,13,14,15] |
|---|
| 1. Non-IgM MGUS |
| 2. Smoldering myeloma |
| 3. Multiple myeloma |
| 4. Solitary bone plasmacytoma |
| 5. Solitary extraosseous plasmacytoma |
| 6. Immunoglobulin light chain amyloidosis |
| 7. Localized AL amyloidosis |
| 8. Waldenström macroglobulinemia |
| 9. Light chain deposition disease (LCDD) |
| 10. POEMS syndrome (polyneuropathy, organomegaly, endocrinopathy, M-protein, skin changes) |
| Monoclonal Gammopathies | Diabetes |
| Multiple sclerosis | Cardiovascular disease |
| SARS-CoV-2 infection | Rheumatoid arthritis |
| HCV | Sjogren’s syndrome |
| HBV | SLE |
| HIV | Lung cancer |
| Lyme Disease | Breast cancer |
| Tick-born encephalitis | Bowel Disease |
| κ | λ | sFLCR | |
|---|---|---|---|
| Avg | 94.6 | 330.5 | 9.46 |
| Min | 4.27 | 0.44 | 0.01 |
| Max | 338 | 5975 | 165.61 |
| LC #18 | LC #19 | LC #57 | |
|---|---|---|---|
| Age and Sex | 71-year-old female | 78-year-old female | 62-year-old male |
| Vaccine Type | Pfizer | Pfizer | Pfizer |
| Number of Doses | 2 | 2 | 1 |
| Time to Onset | 215 days | 254 days | 2 days |
| Diagnoses | Plasma cell dyscrasia, ARDS, COVID-19 pneumonia, renal amyloidosis/AKI | AKI, CKD, anemia, Stevens-Johnson syndrome | AKI, found dead, anemia, small M spike (IgM lambda) |
| Light Chain Status | Elevated kappa and lambda chains | Elevated IgG kappa | kappa 68.55 mg/L, Lambda 35.39 mg/L, Ratio 1.94 |
| Pre-existing Illness | None documented | T2DM, CAD (NSTEMI, DES 2015), hypertension, hyperlipidemia, depression | Substance abuse, renal injury |
| Group | κFLC (mg/L) | λFLC (mg/L) | κ/λ Ratio |
| COVID-19 Vaccine N = 25 |
94.6 (7.05–300) | 331 (3.49–7176) | 9.46 (0.09–165.61) |
| COVID-19 ICU1 n = 45 |
47.03 (43.52–64.76) | 34.71 (30.66–47.23) | 1.34 (1.20–1.52) |
| COVID-19 non-ICU1 n = 43 |
24.62 (21.22–36.45) | 25.83 (19.26–28.38) | 1.27 (1.06–1.35) |
| Vaccinated Controls2 n = 20 |
17.83 ± 3.03 (12.10–23.70) | 13.22 ± 3.87 (9.24–22.00) | 1.40 ± 0.24 (0.88–1.77) |
| Mild COVID-192 n = 80, (67 vaccinated) |
16.76 ± 5.51 (5.25-42.50) | 16.38 ± 6.17 (6.32-36.50) | 1.10 ± 0.28 (0.44-1.94) |
| Non-Vaccinated Controls1 n = 20 |
10.25 ± 2.13 (6.28–15.04) | 10.26 ± 2.76 (6.84–18.89) | 1.03 ± 0.22 (0.51–1.41) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
