Submitted:
07 June 2025
Posted:
09 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Overview of the Canine Immune System Compared to Human
3. Toll-Like Receptors (TLRs) and Innate Immune Gene Variability
| Diseases | Involved TLRs | Key findings | References |
|---|---|---|---|
| Leptospira spp. infection | TLR-2, TLR-4 | Increase IL-1β production | [37,38] |
| Salmonella enteriditis | TLR-5 | Recognizes flagellin, increase IL-1β and IL-8 production | [39] |
| Canine leishmaniosis | TLR-2, -4, -5, and -9 | Stage-specific expression. TLR-4 increase in early stages and decrease in late stages | [40,41,42] |
| Demodicosis | TLR-2, -4, and -6 | Parasite modulates expression to evade immune response | [45] |
| Inflammatory bowel diseases (IBD) | TLR-4 and -5 | SNPs in TLR-5: G22A increases the risk and C100T and T1844C with protective effect | [23,46] |
| Inflammatory colorectal polyps (ICRP) | TLR-2, -4, and -9 | Increases the cytokine production after ligand exposure | [48] |
| Atopic dermatitis | TLR-1, -2, -4, -6, -9, and -10 | SNP in TLR-2 R753Q, decreases IFN-γ and increases IL-4 levels | [49,50,51,52,53,54,55,60,61,62,63] |
| Canine lupus (DLE) | TLR-4 | Overexpressed in skin; potential therapeutic target | [65] |
| Canine distemper (Lycaon pictus) | Multiple TLRs | Polymorphisms in TLR genes related to stronger immunity | [64] |
4. Cytokine Genes and Immune Modulation
5. Breed-Specific Immune Profiles and Heritable Disorders
6. Epigenetics and Immune Gene Regulation
7. Applications for Veterinary Medicine and Canine Health
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CCL | Chemokine (C-C motif) Ligand |
| CDV | Canine Distemper Virus |
| CD4fh | Follicular helper CD4 T |
| CHV-1 | Canid alphaherpesvirus 1 |
| DLA | Dog Leukocyte Antigen |
| DAMP | Endogenous Damage signal |
| DNMT | DNA Methyltransferase |
| IBD | Inflammatory Bowel Disease |
| ICI | Immune Checkpoints Inhibitor |
| ICRP | Inflammatory Colorectal Polyp |
| IFN | Interferon |
| Ig | Immunoglobulin |
| IL | Interleukin |
| IMRD | Immune-Mediated Rheumatic Disease |
| iNOS | inducible Nitric Oxide Synthase |
| GWAS | Genome-Wide Association Studies |
| mregCD | unique Dendritic Dell |
| miRNA | MicroRNA |
| MHC | Major Histocompatibility Complex |
| MyD88 | Myeloid Differentiation Primary Response 88 |
| NK | Natural Killer |
| PAMP | Pathogen-Associated Molecular Pattern |
| PBMCs | Peripheral Mononuclear Cells |
| SNP | Single Nucleotide Polymorphism |
| SOCS3 | Suppressor of Cytokine Signaling 3 |
| TAM | Tumor-Associated Macrophage |
| TRIF | TIR-domain-containing adapter-inducing interferon-β |
| TLR | Toll-Like Receptor |
| TNF | Tumor Necrosis Factor |
| Tregs | regulatory T cells |
References
- Wagner, J.L. Molecular Organization of the Canine Major Histocompatibility Complex. J Hered 2003, 94, 23–26. [CrossRef]
- Gershony, L.C.; Belanger, J.M.; Short, A.D.; Le, M.; Hytönen, M.K.; Lohi, H.; Famula, T.R.; Kennedy, L.J.; Oberbauer, A.M. DLA Class II Risk Haplotypes for Autoimmune Diseases in the Bearded Collie Offer Insight to Autoimmunity Signatures across Dog Breeds. Canine Genet Epidemiol 2019, 6, 2. [CrossRef]
- Pedersen, N.; Liu, H.; Millon, L.; Greer, K. Dog Leukocyte Antigen Class II-Associated Genetic Risk Testing for Immune Disorders of Dogs: Simplified Approaches Using Pug Dog Necrotizing Meningoencephalitis as a Model. J Vet Diagn Invest 2011, 23, 68–76. [CrossRef]
- House, A.K.; Binns, M.M.; Gregory, S.P.; Catchpole, B. Analysis of NOD1, NOD2, TLR1, TLR2, TLR4, TLR5, TLR6 and TLR9 Genes in Anal Furunculosis of German Shepherd Dogs. Tissue Antigens 2009, 73, 250–254. [CrossRef]
- Wilbe, M.; Jokinen, P.; Truvé, K.; Seppala, E.H.; Karlsson, E.K.; Biagi, T.; Hughes, A.; Bannasch, D.; Andersson, G.; Hansson-Hamlin, H.; et al. Genome-Wide Association Mapping Identifies Multiple Loci for a Canine SLE-Related Disease Complex. Nat Genet 2010, 42, 250–254. [CrossRef]
- Nam, A.-R.; Heo, M.; Lee, K.-H.; Kim, J.-Y.; Won, S.-H.; Cho, J.-Y. The Landscape of PBMC Methylome in Canine Mammary Tumors Reveals the Epigenetic Regulation of Immune Marker Genes and Its Potential Application in Predicting Tumor Malignancy. BMC Genomics 2023, 24, 403. [CrossRef]
- Paris, S.; Chapat, L.; Pasin, M.; Lambiel, M.; Sharrock, T.E.; Shukla, R.; Sigoillot-Claude, C.; Bonnet, J.-M.; Poulet, H.; Freyburger, L.; et al. β-Glucan-Induced Trained Immunity in Dogs. Front. Immunol. 2020, 11. [CrossRef]
- Wang, Z.; Lin, X. Identifying Epigenetic Markers for Disease Resistance in Dogs. Animal Molecular Breeding 2024, 14.
- Charles A Janeway, J.; Travers, P.; Walport, M.; Shlomchik, M.J. The Complement System and Innate Immunity. In Immunobiology: The Immune System in Health and Disease. 5th edition; Garland Science, 2001.
- Germain, R.N. MHC-Dependent Antigen Processing and Peptide Presentation: Providing Ligands for T Lymphocyte Activation. Cell 1994, 76, 287–299. [CrossRef]
- Kennedy, L.J.; Barnes, A.; Short, A.; Brown, J.J.; Lester, S.; Seddon, J.; Happ, G.M.; Ollier, W.E.R. Canine DLA Diversity: 2. Family Studies. Tissue Antigens 2007, 69 Suppl 1, 289–291. [CrossRef]
- Kennedy, L.J.; Barnes, A.; Short, A.; Brown, J.J.; Lester, S.; Seddon, J.; Fleeman, L.; Francino, O.; Brkljacic, M.; Knyazev, S.; et al. Canine DLA Diversity: 1. New Alleles and Haplotypes. Tissue Antigens 2007, 69 Suppl 1, 272–288. [CrossRef]
- Veterinary Immunology; 2024; ISBN 978-0-443-10975-1.
- Turin, L.; Riva, F. Toll-like Receptor Family in Domestic Animal Species. Crit Rev Immunol 2008, 28, 513–538. [CrossRef]
- Werling, D.; Jungi, T.W. TOLL-like Receptors Linking Innate and Adaptive Immune Response. Vet Immunol Immunopathol 2003, 91, 1–12. [CrossRef]
- Angles, J.M.; Kennedy, L.J.; Pedersen, N.C. Frequency and Distribution of Alleles of Canine MHC-II DLA-DQB1, DLA-DQA1 and DLA-DRB1 in 25 Representative American Kennel Club Breeds. Tissue Antigens 2005, 66, 173–184. [CrossRef]
- Kennedy, L.J.; Barnes, A.; Happ, G.M.; Quinnell, R.J.; Bennett, D.; Angles, J.M.; Day, M.J.; Carmichael, N.; Innes, J.F.; Isherwood, D.; et al. Extensive Interbreed, but Minimal Intrabreed, Variation of DLA Class II Alleles and Haplotypes in Dogs. Tissue Antigens 2002, 59, 194–204. [CrossRef]
- Debenham, S.L.; Hart, E.A.; Ashurst, J.L.; Howe, K.L.; Quail, M.A.; Ollier, W.E.R.; Binns, M.M. Genomic Sequence of the Class II Region of the Canine MHC: Comparison with the MHC of Other Mammalian Species. Genomics 2005, 85, 48–59. [CrossRef]
- Roach, J.C.; Glusman, G.; Rowen, L.; Kaur, A.; Purcell, M.K.; Smith, K.D.; Hood, L.E.; Aderem, A. The Evolution of Vertebrate Toll-like Receptors. Proc Natl Acad Sci U S A 2005, 102, 9577–9582. [CrossRef]
- Zaninoni, A.; Fattizzo, B.; Pettine, L.; Vercellati, C.; Marcello, A.P.; Barcellini, W. Cytokine Polymorphisms in Patients with Autoimmune Hemolytic Anemia. Front Immunol 2023, 14, 1221582. [CrossRef]
- Swann, J.W.; Woods, K.; Wu, Y.; Glanemann, B.; Garden, O.A. Characterisation of the Immunophenotype of Dogs with Primary Immune-Mediated Haemolytic Anaemia. PLoS One 2016, 11, e0168296. [CrossRef]
- Denyer, A.L.; Massey, J.P.; Davison, L.J.; Ollier, W.E.R.; Catchpole, B.; Kennedy, L.J. Dog Leucocyte Antigen (DLA) Class II Haplotypes and Risk of Canine Diabetes Mellitus in Specific Dog Breeds. Canine Medicine and Genetics 2020, 7, 15. [CrossRef]
- Kathrani, A.; House, A.; Catchpole, B.; Murphy, A.; Werling, D.; Allenspach, K. Breed-Independent Toll-like Receptor 5 Polymorphisms Show Association with Canine Inflammatory Bowel Disease. Tissue Antigens 2011, 78, 94–101. [CrossRef]
- Álvarez, L.; Marín-García, P.-J.; Rentero-Garrido, P.; Llobat, L. Immune and Genomic Analysis of Boxer Dog Breed and Its Relationship with Leishmania Infantum Infection. Vet Sci 2022, 9, 608. [CrossRef]
- Álvarez, L.; Marín-García, P.-J.; Llobat, L. Genetic Haplotypes Associated with Immune Response to Leishmania Infantum Infection in Dogs. Vet Res Commun 2023, 47, 1675–1685. [CrossRef]
- Álvarez, L.; Marín-García, P.-J.; Llobat, L. Immunological and Genomic Characterization of Ibizan Hound Dogs in an Endemic Leishmania Infantum Region. Parasit Vectors 2022, 15, 445. [CrossRef]
- Sanchez-Robert, E.; Altet, L.; Sanchez, A.; Francino, O. Polymorphism of Slc11a1 (Nramp1) Gene and Canine Leishmaniasis in a Case-Control Study. J. Hered. 2005, 96, 755–758. [CrossRef]
- Ollier, W.E.; Kennedy, L.J.; Thomson, W.; Barnes, A.N.; Bell, S.C.; Bennett, D.; Angles, J.M.; Innes, J.F.; Carter, S.D. Dog MHC Alleles Containing the Human RA Shared Epitope Confer Susceptibility to Canine Rheumatoid Arthritis. Immunogenetics 2001, 53, 669–673. [CrossRef]
- Stromberg, S.J.; Thomasy, S.M.; Marangakis, A.D.; Kim, S.; Cooper, A.E.; Brown, E.A.; Maggs, D.J.; Bannasch, D.L. Evaluation of the Major Histocompatibility Complex (MHC) Class II as a Candidate for Sudden Acquired Retinal Degeneration Syndrome (SARDS) in Dachshunds. Vet Ophthalmol 2019, 22, 751–759. [CrossRef]
- O’Neill, L.A.J.; Golenbock, D.; Bowie, A.G. The History of Toll-like Receptors - Redefining Innate Immunity. Nat. Rev. Immunol. 2013, 13, 453–460. [CrossRef]
- Kawai, T.; Akira, S. The Roles of TLRs, RLRs and NLRs in Pathogen Recognition. Int. Immunol. 2009, 21, 317–337. [CrossRef]
- Federico, S.; Pozzetti, L.; Papa, A.; Carullo, G.; Gemma, S.; Butini, S.; Campiani, G.; Relitti, N. Modulation of the Innate Immune Response by Targeting Toll-like Receptors: A Perspective on Their Agonists and Antagonists. J Med Chem 2020, 63, 13466–13513. [CrossRef]
- Cellular and Molecular Immunology International Edition - Edition 9 - By Abul K. Abbas, MBBS, Andrew H. H. Lichtman, MD, PhD and Shiv Pillai, MBBS, PhDElsevier Health Inspection Copies Available online: https://www.inspectioncopy.elsevier.com/book/details/9780323523240 (accessed on 5 June 2025).
- Akira, S.; Takeda, K. Toll-like Receptor Signalling. Nat Rev Immunol 2004, 4, 499–511. [CrossRef]
- Kawai, T.; Akira, S. Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity. Immunity 2011, 34, 637–650. [CrossRef]
- Balachandran, Y.; Knaus, S.; Caldwell, S.; Singh, B. Toll-like Receptor 10 Expression in Chicken, Cattle, Pig, Dog, and Rat Lungs. Vet Immunol Immunopathol 2015, 168, 184–192. [CrossRef]
- Park, B.S.; Lee, J.-O. Recognition of Lipopolysaccharide Pattern by TLR4 Complexes. Exp Mol Med 2013, 45, e66. [CrossRef]
- Novak, A.; Pupo, E.; Van’t Veld, E.; Rutten, V.P.M.G.; Broere, F.; Sloots, A. Activation of Canine, Mouse and Human TLR2 and TLR4 by Inactivated Leptospira Vaccine Strains. Front Immunol 2022, 13, 823058. [CrossRef]
- Bolat, İ.; Bolat, M.; Kiliçlioğlu, M.; Yıldırım, S.; Sağlam, Y.S.; Çomaklı, S.; Gözegir, B.; Özmen, M.; Warda, M. Differential TLR2 and TLR4 Mediated Inflammatory and Apoptotic Responses in Asymptomatic and Symptomatic Leptospira Interrogans Infections in Canine Uterine Tissue. Microb Pathog 2025, 198, 107186. [CrossRef]
- Zhu, A.; Wei, L.; Hu, S.; Yang, C.; Chen, C.; Zhou, Z.; Pan, Z. Characterisation and Functional Analysis of Canine TLR5. Innate Immun 2020, 26, 451–458. [CrossRef]
- Hosein, S.; Rodríguez-Cortés, A.; Blake, D.P.; Allenspach, K.; Alberola, J.; Solano-Gallego, L. Transcription of Toll-Like Receptors 2, 3, 4 and 9, FoxP3 and Th17 Cytokines in a Susceptible Experimental Model of Canine Leishmania Infantum Infection. PLoS One 2015, 10, e0140325. [CrossRef]
- Ordeix, L.; Montserrat-Sangrà, S.; Martínez-Orellana, P.; Baxarias, M.; Solano-Gallego, L. Toll-like Receptors 2, 4 and 7, Interferon-Gamma and Interleukin 10, and Programmed Death Ligand 1 Transcripts in Skin from Dogs of Different Clinical Stages of Leishmaniosis. Parasit Vectors 2019, 12, 575. [CrossRef]
- Grano, F.G.; Dos S Silva, J.E.; Melo, G.D.; de Souza, M.S.; Lima, V.M.F.; Machado, G.F. Toll-like Receptors and Cytokines in the Brain and in Spleen of Dogs with Visceral Leishmaniosis. Vet Parasitol 2018, 253, 30–38. [CrossRef]
- Carrillo, E.; Moreno, J. Cytokine Profiles in Canine Visceral Leishmaniasis. Vet Immunol Immunopathol 2009, 128, 67–70. [CrossRef]
- Martínez-Orellana, P.; Marí-Martorell, D.; Montserrat-Sangrà, S.; Ordeix, L.; Baneth, G.; Solano-Gallego, L. Leishmania Infantum-Specific IFN-γ Production in Stimulated Blood from Dogs with Clinical Leishmaniosis at Diagnosis and during Treatment. Vet Parasitol 2017, 248, 39–47. [CrossRef]
- Kumari, P.; Nigam, R.; Choudhury, S.; Singh, S.K.; Yadav, B.; Kumar, D.; Garg, S.K. Demodex Canis Targets TLRs to Evade Host Immunity and Induce Canine Demodicosis. Parasite Immunol 2018, 40. [CrossRef]
- Cuscó, A.; Sánchez, A.; Altet, L.; Ferrer, L.; Francino, O. Non-Synonymous Genetic Variation in Exonic Regions of Canine Toll-like Receptors. Canine Genet Epidemiol 2014, 1, 11. [CrossRef]
- Barreiro, L.B.; Ben-Ali, M.; Quach, H.; Laval, G.; Patin, E.; Pickrell, J.K.; Bouchier, C.; Tichit, M.; Neyrolles, O.; Gicquel, B.; et al. Evolutionary Dynamics of Human Toll-like Receptors and Their Different Contributions to Host Defense. PLoS Genet 2009, 5, e1000562. [CrossRef]
- Yokoyama, N.; Ohta, H.; Kagawa, Y.; Nagata, N.; Nisa, K.; Morita, T.; Osuga, T.; Sasaki, N.; Morishita, K.; Nakamura, K.; et al. Stimulation of Colorectal Biopsies from Miniature Dachshunds with Inflammatory Colorectal Polyps with Toll-like Receptor Ligands: A Pilot Study. Vet Immunol Immunopathol 2017, 188, 78–83. [CrossRef]
- Vafaeian, A.; Rajabi, F.; Rezaei, N. Toll-like Receptors in Atopic Dermatitis: Pathogenesis and Therapeutic Implications. Heliyon 2025, 11, e42226. [CrossRef]
- Kaesler, S.; Volz, T.; Skabytska, Y.; Köberle, M.; Hein, U.; Chen, K.-M.; Guenova, E.; Wölbing, F.; Röcken, M.; Biedermann, T. Toll-like Receptor 2 Ligands Promote Chronic Atopic Dermatitis through IL-4-Mediated Suppression of IL-10. J Allergy Clin Immunol 2014, 134, 92–99. [CrossRef]
- Volz, T.; Kaesler, S.; Draing, C.; Hartung, T.; Röcken, M.; Skabytska, Y.; Biedermann, T. Induction of IL-10-Balanced Immune Profiles Following Exposure to LTA from Staphylococcus Epidermidis. Exp Dermatol 2018, 27, 318–326. [CrossRef]
- Tyurin, Y.A.; Shamsutdinov, A.F.; Kalinin, N.N.; Sharifullina, A.A.; Reshetnikova, I.D. Association of Toll-Like Cell Receptors TLR2 (p.Arg753GLN) and TLR4 (p.Asp299GLY) Polymorphisms with Indicators of General and Local Immunity in Patients with Atopic Dermatitis. J Immunol Res 2017, 2017, 8493545. [CrossRef]
- Ahmad-Nejad, P.; Mrabet-Dahbi, S.; Breuer, K.; Klotz, M.; Werfel, T.; Herz, U.; Heeg, K.; Neumaier, M.; Renz, H. The Toll-like Receptor 2 R753Q Polymorphism Defines a Subgroup of Patients with Atopic Dermatitis Having Severe Phenotype. J Allergy Clin Immunol 2004, 113, 565–567. [CrossRef]
- Mrabet-Dahbi, S.; Dalpke, A.H.; Niebuhr, M.; Frey, M.; Draing, C.; Brand, S.; Heeg, K.; Werfel, T.; Renz, H. The Toll-like Receptor 2 R753Q Mutation Modifies Cytokine Production and Toll-like Receptor Expression in Atopic Dermatitis. J Allergy Clin Immunol 2008, 121, 1013–1019. [CrossRef]
- Niebuhr, M.; Langnickel, J.; Draing, C.; Renz, H.; Kapp, A.; Werfel, T. Dysregulation of Toll-like Receptor-2 (TLR-2)-Induced Effects in Monocytes from Patients with Atopic Dermatitis: Impact of the TLR-2 R753Q Polymorphism. Allergy 2008, 63, 728–734. [CrossRef]
- Roduit, C.; Wohlgensinger, J.; Frei, R.; Bitter, S.; Bieli, C.; Loeliger, S.; Büchele, G.; Riedler, J.; Dalphin, J.-C.; Remes, S.; et al. Prenatal Animal Contact and Gene Expression of Innate Immunity Receptors at Birth Are Associated with Atopic Dermatitis. J Allergy Clin Immunol 2011, 127, 179–185, 185.e1. [CrossRef]
- Inoue, J.; Aramaki, Y. Suppression of Skin Lesions by Transdermal Application of CpG-Oligodeoxynucleotides in NC/Nga Mice, a Model of Human Atopic Dermatitis. J Immunol 2007, 178, 584–591. [CrossRef]
- Jassies-van der Lee, A.; Rutten, V.; Spiering, R.; van Kooten, P.; Willemse, T.; Broere, F. The Immunostimulatory Effect of CpG Oligodeoxynucleotides on Peripheral Blood Mononuclear Cells of Healthy Dogs and Dogs with Atopic Dermatitis. Vet J 2014, 200, 103–108. [CrossRef]
- Wagner, I.; Geh, K.J.; Hubert, M.; Winter, G.; Weber, K.; Classen, J.; Klinger, C.; Mueller, R.S. Preliminary Evaluation of Cytosine-Phosphate-Guanine Oligodeoxynucleotides Bound to Gelatine Nanoparticles as Immunotherapy for Canine Atopic Dermatitis. Vet Rec 2017, 181, 118. [CrossRef]
- Novak, N.; Yu, C.-F.; Bussmann, C.; Maintz, L.; Peng, W.-M.; Hart, J.; Hagemann, T.; Diaz-Lacava, A.; Baurecht, H.-J.; Klopp, N.; et al. Putative Association of a TLR9 Promoter Polymorphism with Atopic Eczema. Allergy 2007, 62, 766–772. [CrossRef]
- Zhou, B.; Liang, S.; Shang, S.; Li, L. Association of TLR2 and TLR9 Gene Polymorphisms with Atopic Dermatitis: A Systematic Review and Meta-Analysis with Trial Sequential Analysis. Immunol Med 2023, 46, 32–44. [CrossRef]
- Nagata, N.; Oshida, T.; Yoshida, N.L.; Yuyama, N.; Sugita, Y.; Tsujimoto, G.; Katsunuma, T.; Akasawa, A.; Saito, H. Analysis of Highly Expressed Genes in Monocytes from Atopic Dermatitis Patients. Int Arch Allergy Immunol 2003, 132, 156–167. [CrossRef]
- Santoro, D.; Rodrigues Hoffmann, A. Canine and Human Atopic Dermatitis: Two Faces of the Same Host-Microbe Interaction. J Invest Dermatol 2016, 136, 1087–1089. [CrossRef]
- Loots, A.K.; Cardoso-Vermaak, E.; Venter, E.H.; Mitchell, E.; Kotzé, A.; Dalton, D.L. The Role of Toll-like Receptor Polymorphisms in Susceptibility to Canine Distemper Virus. Mammalian Biology 2018, 88, 94–99. [CrossRef]
- Di Cerbo, A.; Giusti, S.; Mariotti, F.; Spaterna, A.; Rossi, G.; Magi, G.E. Increased Expression of Toll-Like Receptor 4 in Skin of Dogs with Discoid Lupus Erythematous (DLE). Animals (Basel) 2021, 11, 1044. [CrossRef]
- Borish, L.C.; Steinke, J.W. 2. Cytokines and Chemokines. J Allergy Clin Immunol 2003, 111, S460-475. [CrossRef]
- Pereira, A.M.; de Pinheiro, C.G.M.; Dos Santos, L.R.; Teixeira, N.C.; Chang, Y.-F.; Pontes-de-Carvalho, L.C.; de Sá Oliveira, G.G. Requirement of Dual Stimulation by Homologous Recombinant IL-2 and Recombinant IL-12 for the in Vitro Production of Interferon Gamma by Canine Peripheral Blood Mononuclear Cells. BMC Res Notes 2014, 7, 460. [CrossRef]
- Resende, L.A.; Roatt, B.M.; Aguiar-Soares, R.D. de O.; Viana, K.F.; Mendonça, L.Z.; Lanna, M.F.; Silveira-Lemos, D.; Corrêa-Oliveira, R.; Martins-Filho, O.A.; Fujiwara, R.T.; et al. Cytokine and Nitric Oxide Patterns in Dogs Immunized with LBSap Vaccine, before and after Experimental Challenge with Leishmania Chagasi plus Saliva of Lutzomyia Longipalpis. Vet Parasitol 2013, 198, 371–381. [CrossRef]
- Álvarez, L.; Marín-García, P.-J.; Rentero-Garrido, P.; Martinez-Jimenez, C.P.; Llobat, L. Interleukin 6 and Interferon Gamma Haplotypes Are Related to Cytokine Serum Levels in Dogs in an Endemic Leishmania Infantum Region. Infect Dis Poverty 2023, 12, 9. [CrossRef]
- Gonçalves-de-Albuquerque, S. da C.; da Silva, L.G.; Sousa-Paula, L.C. de; Sales, K.G. da S.; Boegel, A.; Dantas-Torres, F. Exploring IL-17 Gene Promoter Polymorphisms in Canine Leishmaniasis. Acta Trop 2022, 232, 106452. [CrossRef]
- Faria, J.L.M.; Munhoz, T.D.; João, C.F.; Vargas-Hernández, G.; André, M.R.; Pereira, W.A.B.; Machado, R.Z.; Tinucci-Costa, M. Ehrlichia Canis (Jaboticabal Strain) Induces the Expression of TNF-α in Leukocytes and Splenocytes of Experimentally Infected Dogs. Rev Bras Parasitol Vet 2011, 20, 71–74. [CrossRef]
- Hu, W.-C. A Framework of All Discovered Immunological Pathways and Their Roles for Four Specific Types of Pathogens and Hypersensitivities. Front Immunol 2020, 11, 1992. [CrossRef]
- Jaramillo-Hernández, D.A.; Salazar Garcés, L.F.; Pacheco, L.G.C.; Pinheiro, C.S.; Alcantara-Neves, N.M. Protective Response Mediated by Immunization with Recombinant Proteins in a Murine Model of Toxocariasis and Canine Infection by Toxocara Canis. Vaccine 2022, 40, 912–923. [CrossRef]
- Louzada-Flores, V.N.; Latrofa, M.S.; Mendoza-Roldan, J.A.; Lucente, M.S.; Epis, S.; Varotto-Boccazzi, I.; Bandi, C.; Otranto, D. Expression of Key Cytokines in Dog Macrophages Infected by Leishmania Tarentolae Opening New Avenues for the Protection against Leishmania Infantum. Sci Rep 2024, 14, 27565. [CrossRef]
- O’Connell, R.M.; Rao, D.S.; Baltimore, D. microRNA Regulation of Inflammatory Responses. Annu Rev Immunol 2012, 30, 295–312. [CrossRef]
- Rebech, G.T.; Bragato, J.P.; Costa, S.F.; de Freitas, J.H.; Dos Santos, M.O.; Soares, M.F.; Eugênio, F. de R.; Dos Santos, P.S.P.; de Lima, V.M.F. miR-148a Regulation Interferes in Inflammatory Cytokine and Parasitic Load in Canine Leishmaniasis. PLoS Negl Trop Dis 2023, 17, e0011039. [CrossRef]
- Cavalcanti, A.S.; Ribeiro-Alves, M.; Pereira, L. de O.R.; Mestre, G.L.; Ferreira, A.B.R.; Morgado, F.N.; Boité, M.C.; Cupolillo, E.; Moraes, M.O.; Porrozzi, R. Parasite Load Induces Progressive Spleen Architecture Breakage and Impairs Cytokine mRNA Expression in Leishmania Infantum-Naturally Infected Dogs. PLoS One 2015, 10, e0123009. [CrossRef]
- Outerbridge, C.A.; Jordan, T.J.M. Current Knowledge on Canine Atopic Dermatitis: Pathogenesis and Treatment. Adv Small Anim Care 2021, 2, 101–115. [CrossRef]
- Schlotter, Y.M.; Rutten, V.P.M.G.; Riemers, F.M.; Knol, E.F.; Willemse, T. Lesional Skin in Atopic Dogs Shows a Mixed Type-1 and Type-2 Immune Responsiveness. Vet Immunol Immunopathol 2011, 143, 20–26. [CrossRef]
- Nishikomori, R.; Usui, T.; Wu, C.-Y.; Morinobu, A.; O’Shea, J.J.; Strober, W. Activated STAT4 Has an Essential Role in Th1 Differentiation and Proliferation That Is Independent of Its Role in the Maintenance of IL-12R Beta 2 Chain Expression and Signaling. J Immunol 2002, 169, 4388–4398. [CrossRef]
- Zhou, M.; Ouyang, W. The Function Role of GATA-3 in Th1 and Th2 Differentiation. Immunol Res 2003, 28, 25–37. [CrossRef]
- Wu, K.; Bi, Y.; Sun, K.; Wang, C. IL-10-Producing Type 1 Regulatory T Cells and Allergy. Cell Mol Immunol 2007, 4, 269–275.
- Toichi, E.; Torres, G.; McCormick, T.S.; Chang, T.; Mascelli, M.A.; Kauffman, C.L.; Aria, N.; Gottlieb, A.B.; Everitt, D.E.; Frederick, B.; et al. An Anti-IL-12p40 Antibody down-Regulates Type 1 Cytokines, Chemokines, and IL-12/IL-23 in Psoriasis. J Immunol 2006, 177, 4917–4926. [CrossRef]
- Yoon, J.-S.; Park, J. Non-Invasive Evaluation of Cytokine Expression Using the Cerumen of Dogs with Otitis Externa. Front Vet Sci 2024, 11, 1355569. [CrossRef]
- McGovern, D.P.B.; Kugathasan, S.; Cho, J.H. Genetics of Inflammatory Bowel Diseases. Gastroenterology 2015, 149, 1163-1176.e2. [CrossRef]
- Jergens, A.E.; Heilmann, R.M. Canine Chronic Enteropathy-Current State-of-the-Art and Emerging Concepts. Front Vet Sci 2022, 9, 923013. [CrossRef]
- Nunes, T.; Bernardazzi, C.; de Souza, H.S. Interleukin-33 and Inflammatory Bowel Diseases: Lessons from Human Studies. Mediators Inflamm 2014, 2014, 423957. [CrossRef]
- Osada, H.; Ogawa, M.; Hasegawa, A.; Nagai, M.; Shirai, J.; Sasaki, K.; Shimoda, M.; Itoh, H.; Kondo, H.; Ohmori, K. Expression of Epithelial Cell-Derived Cytokine Genes in the Duodenal and Colonic Mucosae of Dogs with Chronic Enteropathy. J Vet Med Sci 2017, 79, 393–397. [CrossRef]
- Alvarez, F.; Istomine, R.; Shourian, M.; Pavey, N.; Al-Aubodah, T.A.-F.; Qureshi, S.; Fritz, J.H.; Piccirillo, C.A. The Alarmins IL-1 and IL-33 Differentially Regulate the Functional Specialisation of Foxp3+ Regulatory T Cells during Mucosal Inflammation. Mucosal Immunol 2019, 12, 746–760. [CrossRef]
- Pastille, E.; Wasmer, M.-H.; Adamczyk, A.; Vu, V.P.; Mager, L.F.; Phuong, N.N.T.; Palmieri, V.; Simillion, C.; Hansen, W.; Kasper, S.; et al. The IL-33/ST2 Pathway Shapes the Regulatory T Cell Phenotype to Promote Intestinal Cancer. Mucosal Immunol 2019, 12, 990–1003. [CrossRef]
- O’Garra, A. Cytokines Induce the Development of Functionally Heterogeneous T Helper Cell Subsets. Immunity 1998, 8, 275–283. [CrossRef]
- Peiravan, A.; Bertolini, F.; Rothschild, M.F.; Simpson, K.W.; Jergens, A.E.; Allenspach, K.; Werling, D. Genome-Wide Association Studies of Inflammatory Bowel Disease in German Shepherd Dogs. PLoS One 2018, 13, e0200685. [CrossRef]
- Albuquerque, C.; Morinha, F.; Requicha, J.; Dias, I.; Guedes-Pinto, H.; Viegas, C.; Bastos, E. A Case-Control Study between Interleukin-10 Gene Variants and Periodontal Disease in Dogs. Gene 2014, 539, 75–81. [CrossRef]
- Park, E.-S.; Uchida, K.; Nakayama, H. Th1-, Th2-, and Th17-Related Cytokine and Chemokine Receptor mRNA and Protein Expression in the Brain Tissues, T Cells, and Macrophages of Dogs with Necrotizing and Granulomatous Meningoencephalitis. Vet Pathol 2013, 50, 1127–1134. [CrossRef]
- Bujak, J.K.; Szopa, I.M.; Pingwara, R.; Kruczyk, O.; Krzemińska, N.; Mucha, J.; Majchrzak-Kuligowska, K. The Expression of Selected Factors Related to T Lymphocyte Activity in Canine Mammary Tumors. Int J Mol Sci 2020, 21, 2292. [CrossRef]
- Gu, L.; Tseng, S.; Horner, R.M.; Tam, C.; Loda, M.; Rollins, B.J. Control of TH2 Polarization by the Chemokine Monocyte Chemoattractant Protein-1. Nature 2000, 404, 407–411. [CrossRef]
- Kaim, U.; Moritz, A.; Failing, K.; Baumgärtner, W. The Regression of a Canine Langerhans Cell Tumour Is Associated with Increased Expression of IL-2, TNF-Alpha, IFN-Gamma and iNOS mRNA. Immunology 2006, 118, 472–482. [CrossRef]
- Pedersen, N.C. A Review of Immunologic Diseases of the Dog. Veterinary Immunology and Immunopathology 1999, 69, 251–342. [CrossRef]
- Watson, P.J.; Wotton, P.; Eastwood, J.; Swift, S.T.; Jones, B.; Day, M.J. Immunoglobulin Deficiency in Cavalier King Charles Spaniels with Pneumocystis Pneumonia. J Vet Intern Med 2006, 20, 523–527. [CrossRef]
- Kennedy, L.J.; Huson, H.J.; Leonard, J.; Angles, J.M.; Fox, L.E.; Wojciechowski, J.W.; Yuncker, C.; Happ, G.M. Association of Hypothyroid Disease in Doberman Pinscher Dogs with a Rare Major Histocompatibility Complex DLA Class II Haplotype. Tissue Antigens 2006, 67, 53–56. [CrossRef]
- Wilbe, M.; Sundberg, K.; Hansen, I.R.; Strandberg, E.; Nachreiner, R.F.; Hedhammar, A.; Kennedy, L.J.; Andersson, G.; Björnerfeldt, S. Increased Genetic Risk or Protection for Canine Autoimmune Lymphocytic Thyroiditis in Giant Schnauzers Depends on DLA Class II Genotype. Tissue Antigens 2010, 75, 712–719. [CrossRef]
- Short, A.D.; Catchpole, B.; Kennedy, L.J.; Barnes, A.; Lee, A.C.; Jones, C.A.; Fretwell, N.; Ollier, W.E.R. T Cell Cytokine Gene Polymorphisms in Canine Diabetes Mellitus. Vet Immunol Immunopathol 2009, 128, 137–146. [CrossRef]
- Wilbe, M.; Andersson, G. MHC Class II Is an Important Genetic Risk Factor for Canine Systemic Lupus Erythematosus (SLE)-Related Disease: Implications for Reproductive Success. Reprod Domest Anim 2012, 47 Suppl 1, 27–30. [CrossRef]
- Watson, P.J.; Wotton, P.; Eastwood, J.; Swift, S.T.; Jones, B.; Day, M.J. Immunoglobulin Deficiency in Cavalier King Charles Spaniels with Pneumocystis Pneumonia. Veterinary Internal Medicne 2006, 20, 523–527. [CrossRef]
- Olsson, M.; Frankowiack, M.; Tengvall, K.; Roosje, P.; Fall, T.; Ivansson, E.; Bergvall, K.; Hansson-Hamlin, H.; Sundberg, K.; Hedhammar, Å.; et al. The Dog as a Genetic Model for Immunoglobulin A (IgA) Deficiency: Identification of Several Breeds with Low Serum IgA Concentrations. Veterinary Immunology and Immunopathology 2014, 160, 255–259. [CrossRef]
- Angles, J.M.; Famula, T.R.; Pedersen, N.C. Uveodermatologic (VKH-like) Syndrome in American Akita Dogs Is Associated with an Increased Frequency of DQA1*00201. Tissue Antigens 2005, 66, 656–665. [CrossRef]
- Perryman, L.E. Molecular Pathology of Severe Combined Immunodeficiency in Mice, Horses, and Dogs. Vet Pathol 2004, 41, 95–100. [CrossRef]
- Röthig, A.; Rüfenacht, S.; Welle, M.M.; Thom, N. Dermatomyositis in a Family of Working Kelpies. Tierarztl Prax Ausg K Kleintiere Heimtiere 2015, 43, 331–336. [CrossRef]
- Evans, J.M.; Noorai, R.E.; Tsai, K.L.; Starr-Moss, A.N.; Hill, C.M.; Anderson, K.J.; Famula, T.R.; Clark, L.A. Beyond the MHC: A Canine Model of Dermatomyositis Shows a Complex Pattern of Genetic Risk Involving Novel Loci. PLoS Genet 2017, 13, e1006604. [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [CrossRef]
- Jones, P.A.; Takai, D. The Role of DNA Methylation in Mammalian Epigenetics. Science 2001, 293, 1068–1070. [CrossRef]
- Kouzarides, T. Chromatin Modifications and Their Function. Cell 2007, 128, 693–705. [CrossRef]
- Montaner-Angoiti, E.; Marín-García, P.J.; Llobat, L. Epigenetic Alterations in Canine Malignant Lymphoma: Future and Clinical Outcomes. Animals (Basel) 2023, 13, 468. [CrossRef]
- Basso, K.; Sumazin, P.; Morozov, P.; Schneider, C.; Maute, R.L.; Kitagawa, Y.; Mandelbaum, J.; Haddad, J.; Chen, C.-Z.; Califano, A.; et al. Identification of the Human Mature B Cell miRNome. Immunity 2009, 30, 744–752. [CrossRef]
- Liu, G.; Abraham, E. MicroRNAs in Immune Response and Macrophage Polarization. Arteriosclerosis, Thrombosis, and Vascular Biology 2013, 33, 170–177. [CrossRef]
- Alvar, J.; Cañavate, C.; Molina, R.; Moreno, J.; Nieto, J. Canine Leishmaniasis. In Advances in Parasitology; Academic Press, 2004; Vol. 57, pp. 1–88.
- Barbiéri, C.L. Immunology of Canine Leishmaniasis. Parasite Immunol. 2006, 28, 329–337. [CrossRef]
- Soares, M.F.; Melo, L.M.; Bragato, J.P.; Furlan, A. de O.; Scaramele, N.F.; Lopes, F.L.; Lima, V.M.F. de Differential Expression of miRNAs in Canine Peripheral Blood Mononuclear Cells (PBMC) Exposed to Leishmania Infantum in Vitro. Res Vet Sci 2021, 134, 58–63. [CrossRef]
- Bragato, J.P.; Rebech, G.T.; Freitas, J.H. de; Santos, M.O.D.; Costa, S.F.; Eugênio, F. de R.; Santos, P.S.P.D.; de Lima, V.M.F. miRNA-21 Regulates CD69 and IL-10 Expression in Canine Leishmaniasis. PLoS One 2022, 17, e0265192. [CrossRef]
- Melo, L.M.; Bragato, J.P.; Venturin, G.L.; Rebech, G.T.; Costa, S.F.; Garcia, L.E.; Lopes, F.L.; Eugênio, F. de R.; Patto dos Santos, P.S.; de Lima, V.M.F. Induction of miR 21 Impairs the Anti-Leishmania Response through Inhibition of IL-12 in Canine Splenic Leukocytes. PLoS One 2019, 14, e0226192. [CrossRef]
- Zou, Y.; Zheng, W.-B.; He, J.-J.; Elsheikha, H.M.; Zhu, X.-Q.; Lu, Y.-X. Toxocara Canis Differentially Affects Hepatic MicroRNA Expression in Beagle Dogs at Different Stages of Infection. Front Vet Sci 2020, 7, 587273. [CrossRef]
- Zheng, Y.; Fu, X.; Wang, L.; Zhang, W.; Zhou, P.; Zhang, X.; Zeng, W.; Chen, J.; Cao, Z.; Jia, K.; et al. Comparative Analysis of MicroRNA Expression in Dog Lungs Infected with the H3N2 and H5N1 Canine Influenza Viruses. Microb Pathog 2018, 121, 252–261. [CrossRef]
- Xu, C.; He, X.; Zheng, Z.; Zhang, Z.; Wei, C.; Guan, K.; Hou, L.; Zhang, B.; Zhu, L.; Cao, Y.; et al. Downregulation of microRNA miR-526a by Enterovirus Inhibits RIG-I-Dependent Innate Immune Response. J Virol 2014, 88, 11356–11368. [CrossRef]
- Ben Hamouda, M.; Pearson, A. Small RNA Sequencing Analysis Reveals Regulation of microRNA Expression in Madin-Darby Canine Kidney Epithelial Cells Infected with Canid Alphaherpesvirus 1. Virus Genes 2024, 60, 537–548. [CrossRef]
- Holder, A.; Jones, G.; Soutter, F.; Palmer, D.B.; Aspinall, R.; Catchpole, B. Polymorphisms in the Canine IL7R 3’UTR Are Associated with Thymic Output in Labrador Retriever Dogs and Influence Post-Transcriptional Regulation by microRNA 185. Dev Comp Immunol 2018, 81, 244–251. [CrossRef]
- Vasconcelos, C.R.S.; de Almeida, M.B.; de Oliveira, C.P.; Silva, J.L.; Dias, F.G.G.; Rodrigues, M.A. Nuclear Morphology, Chromatin Compaction, and Epigenetic Changes in Lymphocytes of Dogs Infected with Ehrlichia Canis. Vet Parasitol 2025, 334, 110385. [CrossRef]
- Menachery, V.D.; Schäfer, A.; Burnum-Johnson, K.E.; Mitchell, H.D.; Eisfeld, A.J.; Walters, K.B.; Nicora, C.D.; Purvine, S.O.; Casey, C.P.; Monroe, M.E.; et al. MERS-CoV and H5N1 Influenza Virus Antagonize Antigen Presentation by Altering the Epigenetic Landscape. Proc Natl Acad Sci U S A 2018, 115, E1012–E1021. [CrossRef]
- Liu, S.; Liu, L.; Xu, G.; Cao, Z.; Wang, Q.; Li, S.; Peng, N.; Yin, J.; Yu, H.; Li, M.; et al. Epigenetic Modification Is Regulated by the Interaction of Influenza A Virus Nonstructural Protein 1 with the De Novo DNA Methyltransferase DNMT3B and Subsequent Transport to the Cytoplasm for K48-Linked Polyubiquitination. J Virol 2019, 93, e01587-18. [CrossRef]
- Gong, Y.; Chen, T.; Feng, N.; Meng, X.; Sun, W.; Wang, T.; Zhao, Y.; Yang, S.; Song, X.; Li, W.; et al. A Highly Efficient Recombinant Canarypox Virus-Based Vaccine against Canine Distemper Virus Constructed Using the CRISPR/Cas9 Gene Editing Method. Veterinary Microbiology 2020, 251, 108920. [CrossRef]
- Rendon-Marin, S.; Rincón-Tabares, D.-S.; Tabares-Guevara, J.H.; Arbeláez, N.; Forero-Duarte, J.E.; Díaz, F.J.; Robledo, S.M.; Hernandez, J.C.; Ruiz-Saenz, J. Evaluation of the Safety and Immunogenicity of a Multiple Epitope Polypeptide from Canine Distemper Virus (CDV) in Mice. Vaccines (Basel) 2024, 12, 1140. [CrossRef]
- Kocatürk, M.; Öz, A.D.; Muñoz, A.; Martinez, J.D.; Ceron, J.J.; Yilmaz, Z. Changes in Immuno-Inflammatory and Antioxidant Biomarkers in Serum and Cerebrospinal Fluid of Dogs with Distemper. Microbial Pathogenesis 2025, 198, 107160. [CrossRef]
- Hama, S.; Watanabe-Takahashi, M.; Nishimura, H.; Omi, J.; Tamada, M.; Saitoh, T.; Maenaka, K.; Okuda, Y.; Ikegami, A.; Kitagawa, A.; et al. CaMKII-Dependent Non-Canonical RIG-I Pathway Promotes Influenza Virus Propagation in the Acute-Phase of Infection. mBio 2025, 16, e00087-24. [CrossRef]
- Hama, S.; Watanabe-Takahashi, M.; Nishimura, H.; Omi, J.; Tamada, M.; Saitoh, T.; Maenaka, K.; Okuda, Y.; Ikegami, A.; Kitagawa, A.; et al. CaMKII-Dependent Non-Canonical RIG-I Pathway Promotes Influenza Virus Propagation in the Acute-Phase of Infection. mBio 2025, 16, e0008724. [CrossRef]
- Ariyarathna, H.; Thomson, N.A.; Aberdein, D.; Perrott, M.R.; Munday, J.S. Increased Programmed Death Ligand (PD-L1) and Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4) Expression Is Associated with Metastasis and Poor Prognosis in Malignant Canine Mammary Gland Tumours. Veterinary Immunology and Immunopathology 2020, 230, 110142. [CrossRef]
- Giuliano, A.; Pimentel, P.A.B.; Horta, R.S. Checkpoint Inhibitors in Dogs: Are We There Yet? Cancers 2024, 16, 2003. [CrossRef]
- Lenz, J.A.; Peng, B.; Assenmacher, C.; King, A.; Zhang, P.J.; Maki, R.G.; Blanco, M.A.; Radaelli, E.; Atherton, M.J. Identification of Immune Suppressor Candidates Utilizing Comparative Transcriptional Profiling in Histiocytic Sarcoma. Cancer Immunol Immunother 2025, 74, 61. [CrossRef]
- Ammons, D.T.; Hopkins, L.S.; Cronise, K.E.; Kurihara, J.; Regan, D.P.; Dow, S. Single-Cell RNA Sequencing Reveals the Cellular and Molecular Heterogeneity of Treatment-Naïve Primary Osteosarcoma in Dogs. Commun Biol 2024, 7, 496. [CrossRef]
- Ammons, D.T.; Hopkins, L.S.; Cronise, K.E.; Kurihara, J.; Regan, D.P.; Dow, S. Single-Cell RNA Sequencing Reveals the Cellular and Molecular Heterogeneity of Treatment-Naïve Primary Osteosarcoma in Dogs. Commun Biol 2024, 7, 496. [CrossRef]
- Mucignat, G.; Montanucci, L.; Elgendy, R.; Giantin, M.; Laganga, P.; Pauletto, M.; Mutinelli, F.; Vascellari, M.; Leone, V.; Dacasto, M.; et al. A Whole-Transcriptomic Analysis of Canine Oral Melanoma: A Chance to Disclose the Radiotherapy Effect and Outcome-Associated Gene Signature. Genes 2024, 15, 1065. [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
