Preprint
Article

This version is not peer-reviewed.

An Approximation to Riemann Hypothesis

Submitted:

12 June 2025

Posted:

18 June 2025

Read the latest preprint version here

Abstract
In the version, there is an improvement on Theorem 1.1, the error term of (1.2) is reduced to \( O(T^{1/3}(\log T)^{7/3}) \), this is achieved mainly by dividing function \( \omega(s,T_1,T_2) \) into two parts, one is dominant, and other one is minor, and the argument of the dominant one is small, so the final result is improved.
Keywords: 
;  

1. Introduction

Riemann zeta-function ζ ( s ) is originally defined as
ζ ( s ) = n = 1 1 n s , for Re s > 1 .
and it also can be expressed as the product form
ζ ( s ) = p 1 1 1 / p s , for Re s > 1 .
This formula is called Euler’s product formula, which indicates the relation between ζ ( s ) and prime numbers. About ζ ( s ) there is a well-known Riemann hypothesis, states that all the non-trivial zeros of ζ ( s ) are on the critical line Re s = 1 / 2 . The researches on the conjecture are no doubt a most time-consuming one in mathematics, refer to see the survey paper [3].
The so-called trivial zeros of ζ ( s ) are s = 2 , 4 , , and nontrivial zeros of ζ ( s ) are known all in the critical strip 0 Re s 1 .
Denote by N ( T ) the number of zeros of ζ ( σ + i t ) in the region 0 σ 1 , 0 t T , and by N 0 ( T ) the number of zeros on the critical line σ = 1 / 2 , 0 t T . Riemann hypothesis is that
N 0 ( T ) = N ( T ) .
For N ( T ) , it is known that
N ( T ) = T 2 π log T 2 π T 2 π + O ( log T ) .
And for N 0 ( T ) , Hardy firstly shown that there are infinity many zeros on the critical line, and then he and Littlewood [5] and Selberg [8] proved that
κ = N 0 ( T ) N ( T ) > 0 .
Levinson [6] proved
κ 1 3 .
and then this result has been improved successively. Conrey [2], Feng [4] proved respectively
κ 0.407 , κ 0.412 .
In this paper, we will prove that
Theorem 1.1. 
N ( T ) = N 0 ( T ) + E .
where E T 1 / 3 ( log T ) 7 / 3 .
The main arguments in this paper are based the papers [1,6,7], but instead of using Riemann-Siegel formula, it will be applied an auxiliary function ω ( s , T 1 , T 2 ) defined in Lemma 2.1, which will play a role of mollifier and ferry, it firstly used in [7] but here with a small modification.

2. Some Lemmas

Lemma 2.1. 
Suppose that T T 1 T 2 2 T , λ = T 2 / 3 ( log T ) 5 / 3 , s 1 = λ + c + i u , ( c 0 ) , s = v + i t ,define
ω ( s , T 1 , T 2 ) = e λ 2 π i T 1 T 2 Γ ( s 1 s ) λ s s 1 d s 1 .
Let σ = λ + c v , η = min | x t | | x [ T 1 , T 2 ] , there is
| ω ( s , T 1 , T 2 ) | exp ( ( ( c v ) 2 + η 2 ) / 2 σ )
Let Δ = ( 20 λ log T ) 1 / 2 , if t [ T 1 + Δ , T 2 Δ ] , then
| ω ( c + i t , T 1 , T 2 ) 1 | T 10 .
And if t T 1 Δ , or t T 2 + Δ , then
| ω ( c + i t , T 1 , T 2 ) | T 10 .
If | t u | = o ( σ 2 / 3 ) , then
arg ( Γ ( s 1 s ) λ s s 1 ) = t u 2 σ ( t u ) 3 6 σ 2 + ϵ .
Proof. 
By Stirling’s formula, it has
Re ( log Γ ( σ + ( u t ) i ) ) = σ 1 2 log ( σ 2 + ( u t ) 2 ) 2 σ + 1 2 log ( 2 π ) ( u t ) arctan u t σ + O ( 1 / σ )
And
Re ( log ( Γ ( σ + ( u t ) i ) ) ) + Re ( log ( λ ( σ + ( u t ) i ) ) ) + λ = ( c v ) 2 2 σ ( u t ) 2 4 σ 2 ( u t ) 2 2 σ 1 2 log σ + 1 2 log ( 2 π ) + O ( 1 / σ )
Hence,
| ω ( s , T 1 , T 2 ) | e ( c v ) 2 / 2 σ σ 1 / 2 2 π T 1 T 2 e ( u t ) 2 / 2 σ d u e ( ( c v ) 2 + η 2 ) / 2 σ .
Besides, it is familiar that
e λ = 1 2 π i ( c ) Γ ( s 1 s ) λ s s 1 d s .
Hence,
1 ω ( c + i t , T 1 , T 2 ) = R 1 + R 2 ,
where
R 1 = e λ 2 π T 2 Γ ( λ + ( u t ) i ) λ ( λ + ( u t ) i ) d u ,
R 2 = e λ 2 π T 1 Γ ( λ + ( u t ) i ) λ ( λ + ( u t ) i ) d u ,
Hence, if t [ T 1 + Δ , T 2 Δ ] , then
R 1 T 2 e λ Γ ( λ + ( u t ) i ) λ ( λ + ( u t ) i ) d u λ 1 / 2 T 2 exp ( ( u t ) 2 / 2 λ ) d u T 10 .
and similarly
R 2 λ 1 / 2 T 1 exp ( ( u t ) 2 / 2 λ ) d u T 10 .
if t T 1 Δ , or t T 2 + Δ , then
ω ( c + i t , T 1 , T 2 ) λ 1 / 2 T 1 T 2 exp ( ( u t ) 2 / 2 λ ) d u T 10 .
If | t u | = o ( σ 2 / 3 ) , then
Im log Γ ( s 1 s ) λ s s 1 = t u 2 σ + ( t u ) 3 3 σ 2 ( t u ) 3 2 σ 2 ( t u ) 5 5 σ 4 + ( t u ) 5 4 σ 4 + ϵ = t u 2 σ ( t u ) 3 6 σ 2 + ( t u ) 5 20 σ 4 + ϵ .
Corollary 2.1. 
Divide ω ( s , T 1 , T 2 ) into two parts,
ω ( s , T 1 , T 2 ) = ω 1 ( s , T 1 , T 2 ) + ω 2 ( s , T 1 , T 2 ) ,
ω 1 ( s , T 1 , T 2 ) = e λ 2 π i | u t | Δ Γ ( s 1 s ) λ s s 1 d s 1 ,
ω 2 ( s , T 1 , T 2 ) = e λ 2 π i | u t | Δ Γ ( s 1 s ) λ s s 1 d s 1 .
Then
| ω 2 ( s , T 1 , T 2 ) | O ( T 10 ) ,
and
| arg ( ω 1 ( s , T 1 , T 2 ) ) | O ( Δ 3 / λ 2 ) .
This indicates ω 1 ( s , T 1 , T 2 ) is the domination of ω ( s , T 1 , T 2 ) , and its argument is small.
Lemma 2.2. 
Let ζ 1 ( s ) , ζ 2 ( s ) be ζ ( s ) or ζ ( s ) and
ζ 1 ( s ) = n a n n s , f o r Re s > 1 ,
ζ 2 ( s ) = n b n n s , f o r Re s > 1 .
λ same as in Lemma 2.1, 0 a 1 / 2 , s 1 = λ + c + i u , c 0 , define
g ( u ) = e λ 2 π i ( a ) Γ ( s 1 s ) λ s 1 + s ζ 1 ( s ) ζ ¯ 2 ( s ) d s
Then for T u 2 T , 1 < β < λ + c , there is
g ( u ) = e λ h = 1 k = 1 a k b ¯ h h 2 β h k s 1 e λ h / k + O ( T 10 ) .
Proof. 
We move the integral path from ( a ) to ( β ) , the residue at the pole s = 1 is
R e λ Γ ( λ + c 1 + i u ) λ ( λ + c 1 + i u ) T 10
Hence,
g ( u ) = h = 1 k = 1 a k b ¯ h k β h β e λ 2 π i ( β ) Γ ( s 1 s ) λ s 1 + s h k i t d s + O ( T 10 ) = h = 1 k = 1 a k b ¯ h h 2 β e λ 2 π i ( β ) Γ ( s 1 s ) λ s 1 + s h k s d s + O ( T 10 ) = h = 1 k = 1 a k b ¯ h h 2 β e λ 2 π i ( λ + c β ) Γ ( w ) λ w h k s 1 w d w + O ( T 10 )
= e λ h = 1 k = 1 a k b ¯ h h 2 β h k s 1 e λ h / k + O ( T 10 ) .
Lemma 2.3. 
Let θ = ( 20 log T / λ ) 1 / 2 , λ as before, 0 c Δ / 10 , then
J 1 = 1 + θ e λ v λ + c e λ v d v T 8 λ 1 / 2 ,
J 2 = 0 1 θ e λ v λ + c e λ v d v T 10 .
J 3 = 0 1 θ e λ log ( j / v ) v λ + c e λ v d v ( log j + θ ) T 10 , ( j 1 ) .
Proof. 
For (2.11), by the integration by parts
J 1 = e λ v λ + c e λ v λ 1 + θ + λ + c λ 1 + θ e λ v λ + c 1 e λ v d v exp 2 θ 2 λ / 5 λ + ( 1 + θ / 10 ) J 1 1 + θ
That is,
9 10 θ λ 1 + θ J 1 exp ( 2 θ 2 λ / 5 ) T 8
and
J 1 T 8 λ 1 / 2 .
For (2.12),
J 2 e λ ( 1 θ ) λ e λ ( 1 θ ) exp ( θ 2 λ / 2 ) T 10 .
For (2.13),
J 3 e λ log ( j / ( 1 θ ) ) ( 1 θ ) λ + c e λ ( 1 θ ) ( log j + θ ) T 10 .

3. The Proof of Theorem 1.1

Proof. 
Let h ( s ) = π s / 2 Γ ( s / 2 ) , then the functional equation of ζ ( s ) can be written as
h ( s ) ζ ( s ) = h ( 1 s ) ζ ( 1 s )
By Stirling’s formula, it has
log h ( s ) = 1 2 ( s 1 ) log s 2 π s 2 + C 0 + O 1 s
Let f ( s ) = log h ( s ) , then
f ( s ) = h ( s ) h ( s ) = 1 2 log s 2 π + O 1 s
and for larger t
f ( s ) + f ( 1 s ) = log t 2 π + O 1 s
Taking logarithm of equation (3.1), and then derivative, it follows
h ( s ) ζ ( s ) ( f ( s ) + f ( 1 s ) ) = h ( s ) ζ ( s ) h ( 1 s ) ζ ( 1 s )
We note that the right side of (3.5) is a sum of two conjugative complex numbers as s = 1 / 2 + i t , so the zeros of the right side of (3.5) occur if and only if
arg ( h ( s ) ζ ( s ) ) π / 2 mod π
On the left side of (3.5), clearly, h ( s ) is never zero, and by (3.4), so these zeros are just the zeros of ζ ( 1 / 2 + i t ) .
Moreover, let χ ( s ) = h ( 1 s ) / h ( s ) , then ζ ( s ) = χ ( s ) ζ ( 1 s ) , and
ζ ( s ) = χ ( s ) { ( f ( s ) + f ( 1 s ) ) ζ ( 1 s ) + ζ ( 1 s ) }
By (3.6), the zeros of ζ ( 1 / 2 + i t ) are the ones
arg ( h ( 1 s ) { ( f ( s ) + f ( 1 s ) ) ζ ( 1 s ) + ζ ( 1 s ) } ) π / 2 mod π
on σ = 1 / 2 , equivalently,
arg ( h ( s ) { ( f ( s ) + f ( 1 s ) ) ζ ( s ) + ζ ( s ) } ) π / 2 mod π
on σ = 1 / 2 . Write L ( s ) = f ( s ) + f ( 1 s ) , and denote by
G ( s ) = ζ ( s ) + ζ ( s ) / L ( s )
The investigation above means
N 0 ( T ) = 1 π Δ 0 T arg ( h G ( 1 / 2 + i t ) )
By(3.2), it can be known that
Δ 0 T arg ( h ( 1 / 2 + i t ) ) = T 2 log T 2 π T 2 + O ( log T )
So, the main task to determine N 0 ( T ) is to calculate Δ 0 T arg ( G ( 1 / 2 + i t ) ) .
Let L = log ( T / 2 π ) , U T , and let D be the rectangle with the vertices 1 / 2 + i T , c + i T , c + i ( T + U ) , 1 / 2 + i ( T + U ) , ( c 3 ) . First of all, we might as well assume there are no zeros of G ( s ) on the boundary of D, then by the principle of argument, the change of arg G ( s ) around D is equal to 2 π times N G ( D ) , the number of zeros of G ( s ) in D.
On the right side of D
| G ( c + i t ) 1 | n 2 n c + O ( 1 / L ) 1 / 3
so, arg G ( s ) change less than π . On the lower side and the upper side of D, by a known result [9, § 9.4 ], a extension of Jessen’s theorem, taking account on the order of G ( s ) , we can know that arg G ( s ) = O ( L ) as 0 < σ 3 , and arg G ( σ + i t ) = O ( 2 σ ) as σ 3 , hence, for any 0 b c , it has
b c arg G ( σ + i T ) d σ , b c arg G ( σ + i ( T + U ) ) d σ O ( L )
So,
Δ T T + U arg ( G ( 1 / 2 + i t ) ) = 2 π N G ( D ) + O ( log T )
Now the work is turned into to evaluate N G ( D ) .
Take a = 1 / 2 1 / L , and let D be the rectangle with vertices a + i T , c + i T , c + i ( T + U ) , a + i ( T + U ) . Taking the integral D log G ( s ) d s , by the Littlewood’s Lemma [9, § 9.9 ], it has
T T + U log | G ( a + i t ) | d t T T + U log | G ( c + i t ) | d t + a c arg G ( σ + i ( T + U ) ) d σ a c arg G ( σ + i T ) d σ = 2 π dist
where dist is the sum of the distances of the zeros of G ( s ) from the left.
By (3.9), it is easy to know
T T + U log G ( c + i t ) d t = T T + U log ζ ( c + i t ) d t + O ( 1 / L )
and it is familiar that
log ζ ( s ) = n Λ ( n ) n s log n
So
T T + U log | G ( c + i t ) | d t 1 .
With (3.12), the rest is to calculate the first integral of (3.14).
By the concavity of logarithm, it has
T T + U log | G ( a + i t ) | d t = 1 2 T T + U log | G ( a + i t ) | 2 d t 1 2 U log 1 U T T + U | G ( a + i t ) | 2 d t
At first, we simplify G ( s ) as
G 0 ( s ) = ζ ( s ) + ζ ( s ) L .
Then
G ( s ) = G 0 ( s ) + E ( s ) .
E ( s ) = 1 L ( s ) 1 L ζ ( s ) 1 L 3 ζ ( s ) .
And
T 1 T 2 | G ( a + i t ) | 2 d t = T 1 T 2 | G 0 ( a + i t ) | 2 d t + 2 Re T 1 T 2 G 0 ( a + i t ) E ( a i t ) d t + T 1 T 2 | E ( a + i t ) | 2 d t
By Cauchy inequality
T 1 T 2 G 0 ( a + i t ) E ( a i t ) d t T 1 T 2 | G 0 ( a + i t ) | 2 d t T 1 T 2 | E ( a + i t ) | 2 d t 1 / 2
The third integral in the right side of (3.16) is much smaller than the first one, which will be actually calculated later, hence
T 1 T 2 | G ( a + i t ) | 2 d t = ( 1 + ϵ ) T 1 T 2 | G 0 ( a + i t ) | 2 d t .
Moreover, let
ϕ ( s , T 1 Δ , T 2 + Δ ) = ω 1 1 / 2 ( s , T 1 Δ , T 2 + Δ ) .
By (2.8), we can know that on the upper side and the lower side of D , there is
arg ( ϕ ( s , T 1 Δ , T 2 + Δ ) ) O ( Δ 3 / λ 2 )
and
a c arg ( ϕ ( v + T j i , T 1 Δ , T 2 + Δ ) ) d v O ( c Δ 3 / λ 2 ) , ( j = 1 , 2 ) .
It is assumed that c Δ / 10 .
Moreover, by Lemma 2.1, there is
T 1 T 2 log | ϕ ( c + i t , T 1 Δ , T 2 + Δ ) | d t T 9 .
(3.19) and (3.20) indicate that function ϕ ( s , T 1 Δ , T 2 + Δ ) may be used as a mollifier. Let
G ( s ) = G 0 ( s ) ϕ ( s , T 1 Δ , T 2 + Δ ) .
By (2.8), for Re s c , it has
T 1 T 2 | G ( s ) | 2 d t = T 1 T 2 | G 0 ( s ) | 2 | ϕ ( s , T 1 Δ , T 2 + Δ ) | 2 d t = T 1 T 2 | G 0 ( s ) | 2 | ω 1 ( s , T 1 Δ , T 2 + Δ ) | d t ( 1 + O ( L 3 / λ ) ) T 1 T 2 | G 0 ( s ) | 2 ω 1 ( s , T 1 Δ , T 2 + Δ ) d t ( 1 + O ( L 3 / λ ) ) T 1 T 2 | G 0 ( s ) | 2 ω ( s , T 1 Δ , T 2 + Δ ) d t + O ( T 8 )
In the next is mainly to calculate the last integral.
By Lemma 2.1, it has
T 1 T 2 ω ( a + i t , T 1 Δ , T 2 + Δ ) | G 0 ( a + i t ) | 2 d t = e λ 2 π T 1 T 2 T 1 Δ T 2 + Δ Γ ( s 1 ( a + i t ) ) λ ( s 1 ( a + i t ) ) d u | G 0 ( a + i t ) | 2 d t = e λ 2 π T 1 Δ T 2 + Δ T 1 T 2 Γ ( s 1 ( a + i t ) ) λ ( s 1 ( a + i t ) ) | G 0 ( a + i t ) | 2 d t d u e λ 2 π T 1 Δ T 2 + Δ Γ ( s 1 ( a + i t ) ) λ ( s 1 ( a + i t ) ) | G 0 ( a + i t ) | 2 d t d u + ϵ = I 11 + I 12 + I 21 + I 22 + ϵ .
where
I 11 = e λ 2 π T 1 Δ T 2 + Δ Γ ( s 1 ( a + i t ) ) λ ( s 1 ( a + i t ) ) | ζ ( a + i t ) | 2 d t d u I 12 = e λ 2 π L T 1 Δ T 2 + Δ Γ ( s 1 ( a + i t ) ) λ ( s 1 ( a + i t ) ) ζ ( a + i t ) ζ ( a i t ) d t d u I 21 = e λ 2 π L T 1 Δ T 2 + Δ Γ ( s 1 ( a + i t ) ) λ ( s 1 ( a + i t ) ) ζ ( a i t ) ζ ( a + i t ) d t d u I 22 = e λ 2 π L 2 T 1 Δ T 2 + Δ Γ ( s 1 ( a + i t ) ) λ ( s 1 ( a + i t ) ) | ζ ( a + i t ) | 2 d t d u .
In the following specify T 1 = T , T 2 = T + U .
We first calculate I 11 , by Lemma 2.2,
I 11 = e λ T 1 Δ T 2 + Δ j 1 , j 2 1 j 2 2 β ρ s 1 exp ( λ ρ ) d u , ρ = j 2 / j 1 . = I 11 , 0 + I 11 , 1 + I 11 , 2 + I 11 , 3 .
where
I 11 , 0 = j 1 = j 2 e λ j 2 2 β T 1 Δ T 2 + Δ ρ s 1 exp ( λ ρ ) d u , I 11 , 1 = ρ 1 + θ e λ j 2 2 β T 1 Δ T 2 + Δ ρ s 1 exp ( λ ρ ) d u I 11 , 2 = ρ 1 θ e λ j 2 2 β T 1 Δ T 2 + Δ ρ s 1 exp ( λ ρ ) d u I 11 , 3 = 1 θ ρ 1 + θ j 1 j 2 e λ j 2 2 β T 1 Δ T 2 + Δ ρ s 1 exp ( λ ρ ) d u .
Clearly
I 11 , 0 = ( U + 2 Δ ) j 2 1 j 2 2 β = c 11 ( U + 2 Δ ) .
By Lemma 2.3,
I 11 , 1 j 2 θ 1 j 2 2 β j 2 / j 1 1 + θ e λ j 2 j 1 λ + c exp ( λ j 2 / j 1 ) j 2 θ 1 j 2 2 β 1 j 2 / ( 1 + θ ) e λ j 2 x λ + c exp ( λ j 2 / x ) d x j 2 θ 1 j 2 2 β 1 1 + θ j 2 e λ v λ + c 2 exp ( λ v ) d v j 2 θ 1 j 2 2 β 1 T 8 λ 1 / 2 T 8 .
And,
I 11 , 2 j 2 θ 1 j 2 2 β j 2 / j 1 1 θ e λ j 2 j 1 λ + c exp ( λ j 2 / j 1 )
j 2 θ 1 j 2 2 β j 2 / ( 1 θ ) e λ j 2 x λ + c exp ( λ j 2 / x ) d x j 2 θ 1 j 2 2 β 1 0 1 θ e λ v λ + c 2 exp ( λ v ) d v j 2 θ 1 j 2 2 β 1 T 10 T 9
And
I 11 , 3 ( U + 2 Δ ) j 2 1 j 2 2 β 1 θ ρ 1 + θ j 1 j 2 e λ j 2 j 1 λ + c exp ( λ j 2 / j 1 ) ( U + 2 Δ ) j 2 1 / θ 1 j 2 2 β j 2 1 θ j 2 1 + θ T 1 / 10 ( U + 2 Δ ) j 2 1 / θ 2 θ j 2 2 β 1 ( 1 θ 2 ) T 1 / 10 ( U + 2 Δ ) θ 2 β 1 T 1 / 10 T 10 , ( β 10 log T ) .
For I 12 , by Lemma 2.2,
I 12 = 1 L e λ T 1 Δ T 2 + Δ j 1 , j 2 log j 2 j 2 2 β ρ s 1 exp ( λ ρ ) d u = I 12 , 0 + I 12 , 1 + I 12 , 2 + I 12 , 3 .
where
I 12 , 0 = 1 L j 1 = j 2 e λ log j 2 j 2 2 c T 1 Δ T 2 + Δ ρ s 1 exp ( λ ρ ) d u , I 12 , 1 = 1 L ρ 1 + θ e λ log j 2 j 2 2 β T 1 Δ T 2 + Δ ρ s 1 exp ( λ ρ ) d u I 12 , 2 = 1 L ρ 1 θ e λ log j 2 j 2 2 β T 1 Δ T 2 + Δ ρ s 1 exp ( λ ρ ) d u I 12 , 3 = 1 L 1 θ ρ 1 + θ j 1 j 2 e λ log j 2 j 2 2 β T 1 Δ T 2 + Δ ρ s 1 exp ( λ ρ ) d u .
Clearly,
I 12 , 0 = ( U + 2 Δ ) 1 L j 2 log j 2 j 2 2 β = c 12 ( U + 2 Δ ) .
By Lemma 2.3,
I 12 , 1 1 L j 2 θ 1 log j 2 j 2 2 β j 2 / j 1 1 + θ e λ j 2 j 1 λ + c exp ( λ j 2 / j 1 ) 1 L j 2 θ 1 log j 2 j 2 2 β 1 j 2 / ( 1 + θ ) e λ j 2 x λ + c exp ( λ j 2 / x ) d x 1 L j 2 θ 1 log j 2 j 2 2 β 1 1 + θ j 2 e λ v λ + c 2 exp ( λ v ) d v 1 L j 2 θ 1 log j 2 j 2 2 β 1 T 8 λ 1 / 2 T 8 .
and
I 12 , 2 j 2 θ 1 log j 2 j 2 2 β j 2 / j 1 1 θ e λ j 2 j 1 λ + c exp ( λ j 2 / j 1 ) 1 L j 2 θ 1 log j 2 j 2 2 β j 2 / ( 1 θ ) e λ j 2 x λ + c exp ( λ j 2 / x ) d x 1 L j 2 θ 1 log j 2 j 2 2 β 1 0 1 θ e λ v λ + c 2 exp ( λ v ) d v 1 L j 2 θ 1 log j 2 j 2 2 β 1 T 10 T 9 .
and
I 12 , 3 1 L ( U + 2 Δ ) j 2 log j 2 j 2 2 β 1 θ ρ 1 + θ j 1 j 2 e λ j 2 j 1 λ + c exp ( λ j 2 / j 1 ) 1 L ( U + 2 Δ ) j 2 1 / θ log j 2 j 2 2 β j 2 1 θ j 2 1 + θ T 1 / 10 1 L ( U + 2 Δ ) j 2 1 / θ 2 θ log j 2 j 2 2 β 1 ( 1 θ 2 ) T 1 / 10 ( U + 2 Δ ) θ 2 β 1 T 1 / 10 T 10 .
For I 21 , by Lemma 2.2,
I 21 = 1 L e λ T 1 Δ T 2 + Δ j 1 , j 2 log j 1 j 2 2 β ρ s 1 exp ( λ ρ ) d u = I 21 , 0 + I 21 , 1 + I 21 , 2 + I 21 , 3 ,
where
I 21 , 0 = 1 L j 1 = j 2 e λ log j 1 j 2 2 β T 1 Δ T 2 + Δ ρ s 1 exp ( λ ρ ) d u , I 21 , 1 = 1 L ρ 1 + θ e λ log j 1 j 2 2 β T 1 Δ T 2 + Δ ρ s 1 exp ( λ ρ ) d u I 21 , 2 = 1 L ρ 1 θ e λ log j 1 j 2 2 β T 1 Δ T 2 + Δ ρ s 1 exp ( λ ρ ) d u I 21 , 3 = 1 L 1 θ ρ 1 + θ j 1 j 2 e λ log j 1 j 2 2 β T 1 Δ T 2 + Δ ρ s 1 exp ( λ ρ ) d u .
Clearly,
I 21 , 0 = ( U + 2 Δ ) 1 L j 2 log j 2 j 2 2 β = c 21 ( U + 2 Δ )
By Lemma 2.3,
I 21 , 1 1 L j 2 θ 1 j 2 2 β j 2 / j 1 1 + θ e λ log j 1 j 2 j 1 λ + c exp ( λ j 2 / j 1 ) 1 L j 2 θ 1 j 2 2 β 1 j 2 / ( 1 + θ ) e λ log x j 2 x λ + c exp ( λ j 2 / x ) d x 1 L j 2 θ 1 j 2 2 β 1 1 + θ j 2 e λ log ( j 2 / v ) v λ + c 2 exp ( λ v ) d v 1 L j 2 θ 1 log j 2 j 2 2 β 1 T 8 λ 1 / 2 T 8 .
and
I 21 , 2 j 2 θ 1 j 2 2 β j 2 / j 1 1 θ e λ log j 1 j 2 j 1 λ + c exp ( λ j 2 / j 1 ) 1 L j 2 θ 1 j 2 2 β j 2 / ( 1 θ ) e λ log x j 2 x λ + c exp ( λ j 2 / x ) d x 1 L j 2 θ 1 j 2 2 β 1 0 1 θ e λ log ( j 2 / v ) v λ + c 2 exp ( λ v ) d v 1 L j 2 θ 1 ( θ + log j 2 ) j 2 2 β 1 T 10 T 9 .
and
I 21 , 3 1 L ( U + 2 Δ ) j 2 1 j 2 2 β 1 θ ρ 1 + θ j 1 j 2 e λ log j 1 j 2 j 1 λ + c exp ( λ j 2 / j 1 ) 1 L ( U + 2 Δ ) j 2 1 / θ log j 2 j 2 2 β j 2 1 θ j 2 1 + θ T 1 / 10 1 L ( U + 2 Δ ) j 2 1 / θ 2 θ log j 2 j 2 2 β 1 ( 1 θ 2 ) T 1 / 10 ( U + 2 Δ ) θ 2 β 1 T 1 / 10 T 10 .
For I 22 , by Lemma 2.2,
I 22 = 1 L 2 e λ T 1 Δ T 2 + Δ j 1 , j 2 log j 1 log j 2 j 2 2 β ρ s 1 exp ( λ ρ ) d u = I 22 , 0 + I 22 , 1 + I 22 , 2 + I 22 , 3 ,
where
I 22 , 0 = 1 L 2 j 1 = j 2 e λ log j 1 log j 2 j 2 2 β T 1 Δ T 2 + Δ ρ s 1 exp ( λ ρ ) d u , I 22 , 1 = 1 L 2 ρ 1 + θ e λ log j 1 log j 2 j 2 2 β T 1 Δ T 2 + Δ ρ s 1 exp ( λ ρ ) d u I 22 , 2 = 1 L 2 ρ 1 θ e λ log j 1 log j 2 j 2 2 β T 1 Δ T 2 + Δ ρ s 1 exp ( λ ρ ) d u I 22 , 3 = 1 L 2 1 θ ρ 1 + θ j 1 j 2 e λ log j 1 log j 2 j 2 2 β T 1 Δ T 2 + Δ ρ s 1 exp ( λ ρ ) d u .
Clearly,
I 22 , 0 = ( U + 2 Δ ) 1 L 2 j 2 log 2 j 2 j 2 2 β = c 22 ( U + 2 Δ ) .
By Lemma 2.3,
I 22 , 1 1 L 2 j 2 θ 1 log j 2 j 2 2 β j 2 / j 1 1 + θ e λ log j 1 j 2 j 1 λ + c exp ( λ j 2 / j 1 ) 1 L 2 j 2 θ 1 log j 2 j 2 2 β 1 j 2 / ( 1 + θ ) e λ log x j 2 x λ + c exp ( λ j 2 / x ) d x
1 L 2 j 2 θ 1 log j 2 j 2 2 β 1 1 + θ j 2 e λ log ( j 2 / v ) v λ + c 2 exp ( λ v ) d v 1 L 2 j 2 θ 1 log 2 j 2 j 2 2 β 1 T 8 λ 1 / 2 T 8 .
and
I 22 , 2 1 L 2 j 2 θ 1 log j 2 j 2 2 β j 2 / j 1 1 θ e λ log j 1 j 2 j 1 λ + c exp ( λ j 2 / j 1 ) 1 L 2 j 2 θ 1 log j 2 j 2 2 β j 2 / ( 1 θ ) e λ log x j 2 x λ + c exp ( λ j 2 / x ) d x 1 L 2 j 2 θ 1 log j 2 j 2 2 β 1 0 1 θ e λ log ( j 2 / v ) v λ + c 2 exp ( λ v ) d v 1 L 2 j 2 θ 1 ( log j 2 + θ ) log j 2 j 2 2 β 1 T 10 T 9 .
and
I 22 , 3 1 L 2 ( U + 2 Δ ) j 2 log j 2 j 2 2 β 1 θ ρ 1 + θ j 1 j 2 e λ log j 1 j 2 j 1 λ + c exp ( λ j 2 / j 1 ) 1 L 2 ( U + 2 Δ ) j 2 1 / θ log 2 j 2 j 2 2 β j 2 1 θ j 2 1 + θ T 1 / 10 1 L 2 ( U + 2 Δ ) j 2 1 / θ 2 θ log 2 j 2 j 2 2 β 1 ( 1 θ 2 ) T 1 / 10 ( U + 2 Δ ) θ 2 β 1 T 1 / 10 T 10 .
Combining all the evaluations above, and recall (3.22), it has
T T + U | G ( a + i t ) | 2 d t = c 0 ( U + 2 Δ ) ( 1 + O ( L 3 / λ ) ) + ϵ .
where
c 0 = c 11 + c 12 + c 21 + c 22 = 1 + j = 2 ( 1 log j / L ) 2 j 2 β = 1 + O ( T 10 ) . ( β 10 log T )
Let U = T , by (3.15), it follows
T T + U log | G ( a + i t ) | d t T 2 log 1 + 2 Δ T + T 2 log ( 1 + O ( L 3 / λ ) ) + ϵ Δ + O ( T L 3 / λ ) .
With (3.12), (3.14), (3.19),(3.20) and (3.23), and recall that a = 1 / 2 1 / L , it follows
2 π N G ( D ) Δ + O ( T L 3 / λ ) + O ( c Δ 3 / λ 2 ) + O ( L ) 1 / 2 a T 1 / 3 L 7 / 3 .
i.e.
Δ 2 T T arg G ( 1 / 2 + i t ) O ( T 1 / 3 L 7 / 3 ) .
and
( N ( 2 T ) N ( T ) ) ( N 0 ( 2 T ) N 0 ( T ) ) O ( T 1 / 3 L 7 / 3 ) .
Then let T be T / 2 k , 1 k log 2 ( T ) , and summing. This proves Theorem 1.1 in the case that there are no zeros of G ( s ) on the boundary of D.
For the rest case, let N 1 and N 2 be the numbers of zeros of G ( s ) on the left side of D, σ = 1 / 2 , and in D with σ > 1 / 2 , respectively. Indent the left side of D with small semicircles with centers at the zeros and lying in σ 1 / 2 . Let N 1 be the number of distinct zeros in the N 1 zeros. Let V j be the variation in arg G in the jth interval between the successive semicircles. Then by the principle of argument, it has
j V j π N 1 = 2 π N 2 + O ( L ) ,
Let W j be the variation of argument of
h ( s ) ( f ( s ) + f ( 1 s ) ) G ( s )
in the jth interval, where W j is taken for increasing t, while V j is taken for decreasing t. With (3.2) and (3.24), it has
j W j = Im ( f ) | T T + U j V j = Im ( f ) | T T + U ( 2 π N 2 + π N 1 ) + O ( L )
By (3.8), in the jth open interval, the number of zeros of ζ ( 1 / 2 + i t ) is at least
( W j / π ) 1 .
and in all the open intervals, the number of zeros is at least
1 π j W j N 1 1 = 1 π Im ( f ) | T T + U ( 2 N 2 + N 1 ) N 1 1 + O ( L ) = 1 π Im ( f ) | T T + U 2 N G ( D ) + N 1 N 1 + O ( L )
Moreover, by (3.7), we can know that on the side σ = 1 / 2 , a zero of G ( s ) is also a zero of ζ ( s ) , and so a zero of ζ ( s ) , with multiplicity one greater, so there are N 1 + N 1 such zeros of ζ ( 1 / 2 + i t ) , adding to (3.26), in total, it has
N 0 ( T + U ) N 0 ( T ) 1 π Im ( f ) | T T + U 2 N G ( D ) + 2 N 1 + O ( L ) .
By (3.11), we can know
1 π Im ( f ) | T T + U = N ( T + U ) N ( T ) + O ( L ) .
i.e.
( N ( T + U ) N ( T ) ) ( N 0 ( T + U ) N 0 ( T ) ) O ( T 1 / 3 L 7 / 3 ) .
Besides, we know that on the critical line a zero of G ( s ) is also a zero of ζ ( s ) , and so a zero of ζ ( s ) , with multiplicity one greater. Hence
( m 1 ) N G ( D ) .
where sum is over the distinct zeros of ζ ( s ) on the left side of D, m is the multiplicity of a zero.
And so,
m 2 m 2 N G ( D ) O ( T 1 / 3 L 7 / 3 ) .
This means that the non-trivial zeros of ζ ( s ) are all on the critical line, and all are simple, with at most O ( T 1 / 3 ( log T ) 7 / 3 ) ones excepted.

References

  1. R. Balasubramanian, J.B. Conrey and D.R. Heath-Brown, Asymptotic mean square of the product of the Riemann zeta-function and a Dirichlet polynomial. J. reine angew. Math. 1985, 35, 161–181. [Google Scholar]
  2. J. B. Conrey, More than two fifths of the zeros of the Riemann zeta function are on the critical line. J. Reine Angew. Math. 1989, 399, 1–26. [Google Scholar]
  3. J. B. Conrey, Riemann’s Hypothesis.
  4. Shaoji Feng, Zeros of the Riemann zeta function on the critical line. J. Number Theory 2012, 132, 511–542. [CrossRef]
  5. G. H. Hardy and J. E. Littlewood, Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes. Acta Mathematica 1918, 41, 119–196. [Google Scholar]
  6. Norman Levinson, More than one third of zeros of Riemann’s zeta-function are on s=1/2. Advances in Math. 1974, 13, 383–436. [CrossRef]
  7. A. org id 15 5915.
  8. Atle Selberg, On the zeros of Riemann’s zeta-function. Skr. Norske Vid. Akad. Oslo I. 1942, 1942, 1–59.
  9. E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford, 1986.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated