Submitted:
29 May 2025
Posted:
02 June 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Stargardt’s Disease
Retinitis Pigmentosa
Leber’s Congenital Amaurosis
Conclusion
References
- Graw, J. Eye development. Curr Top Dev Biol. 2010, 90, 343–86. [Google Scholar] [PubMed]
- Jiang, Y.; Zhao, N.; Yang, H.; Deng, Z.; Liang, G.; Jiang, H.; Wu, Y.; Wen, H.; Li, P.; Zhou, C.; et al. Visual impairment and blindness caused by retinal diseases: A nationwide register-based study. J. Glob. Heal. 2023, 13, 04126. [Google Scholar] [CrossRef]
- Henderson, R.H. Inherited retinal dystrophies. Paediatr Child Health. 2020, 30, 19–27. [Google Scholar] [CrossRef]
- Redman, M.; King, A.; Watson, C.; King, D. What is CRISPR/Cas9? Arch Dis Child Educ Pract Ed. 2016, 101, 213–5. [Google Scholar] [CrossRef]
- Greely, H.T.; Schmitt-Ulms, G.; Vasiliou, S.K.; Diamandis, E.P.; Church, G.M.; Baylis, F.; Thompson, C. CRISPR-Cas9 System: Opportunities and Concerns. Clin. Chem. 2016, 62, 1304–1311. [Google Scholar] [CrossRef]
- Khalil, A.M. The genome editing revolution: review. J. Genet. Eng. Biotechnol. 2020, 18, 68–16. [Google Scholar] [CrossRef]
- Siles, L.; Martinez-Garcia, M.; Palfi, A.; Alifragis, P.; Irion, S.; Warre-Cornish, K.; et al. Efficient correction of ABCA4 variants by CRISPR-Cas9 in hiPSCs derived from Stargardt disease patients. Mol Ther Nucleic Acids. 2023, 32, 64–79. [Google Scholar] [CrossRef]
- Lambertus, S.; van Huet, R.A.; Bax, N.M.; Hoefsloot, L.H.; Cremers, F.P.; Boon, C.J.; et al. Early-onset Stargardt disease: Phenotypic and genotypic characteristics. Ophthalmol. 2015, 122, 335–44. [Google Scholar] [CrossRef]
- Hoefsloot, L.H.; Cremers, F.P.; Hollander, A.I.D.; Hoyng, C.B.; Boon, C.J.; Haaften, S.C.W.-V. Clinical and Genetic Characteristics of Late-onset Stargardt's Disease. Ophthalmology 2012, 119, 1199–1210. [Google Scholar] [CrossRef]
- Tsang, S.H.; Sharma, T. Stargardt disease. Adv Exp Med Biol. 2018, 1085, 139–51. [Google Scholar]
- Koenekoop, R.K. The gene for Stargardt disease, ABCA4, is a major retinal gene: a mini-review. Ophthalmic Genet. 2003, 24, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Nathans, J.; Sun, H. Mechanistic Studies of ABCR, the ABC Transporter in Photoreceptor Outer Segments Responsible for Autosomal Recessive Stargardt Disease. J. Bioenerg. Biomembr. 2001, 33, 523–530. [Google Scholar] [CrossRef]
- Fujinami, K.; Michaelides, M.; Strauss, R.W.; Tanna, P. Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. Br. J. Ophthalmol. 2016, 101, 25–30. [Google Scholar] [CrossRef]
- Ganti, L.; Urits, I.; Viswanath, O.; Schaaf, A.; Kaye, A.D.; Noor, N.; Poliwoda, S.; Downs, E.; Cantwell, A.; Mosel, L.I.; et al. Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice. Orthop. Rev. 2022, 14, 37498. [Google Scholar] [CrossRef]
- Conforti, P.; Besusso, D.; Cattaneo, E.; Cervo, P.R.d.V. hiPSCs for predictive modelling of neurodegenerative diseases: dreaming the possible. Nat. Rev. Neurol. 2021, 17, 381–392. [Google Scholar] [CrossRef]
- Gaj, T.; Gersbach, C.A.; Barbas CF,, I. I.I. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2014, 31, 397–405. [Google Scholar] [CrossRef]
- McManus, M.T.; Boettcher, M. Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Mol. Cell 2015, 58, 575–585. [Google Scholar] [CrossRef]
- Burés-Jelstrup, A.; Corcostegui, B.; Patel, A.; Pomares, E.; Chang, S.; Corneo, B.; Sparrow, J.R.; Riera, M. Generation of two iPS cell lines (FRIMOi003-A and FRIMOi004-A) derived from Stargardt patients carrying ABCA4 compound heterozygous mutations. Stem Cell Res. 2019, 36, 101389–101389. [Google Scholar] [CrossRef]
- Fawzy, M.; Marsh, J.A. Understanding the heterogeneous performance of variant effect predictors across human protein-coding genes. Sci. Rep. 2024, 14, 1–13. [Google Scholar] [CrossRef]
- Okamoto, S.; Amaishi, Y.; Maki, I.; Enoki, T.; Mineno, J. Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Richardson, C.; Ray, G.; DeWitt, M.A.; Curie, G.L.; Corn, J.E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 2016, 34, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Li, P.; Dan, H.; Zhou, J.; Ge, K.; Zhang, B.; Li, M.; Wei, Y.; Hu, X.; et al. The application and progression of CRISPR/Cas9 technology in ophthalmological diseases. Eye 2022, 37, 607–617. [Google Scholar] [CrossRef]
- Liu, W.; Liu, S.; Li, P.; Yao, K. Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutical Strategies. Int. J. Mol. Sci. 2022, 23, 4883. [Google Scholar] [CrossRef] [PubMed]
- Verbakel, S.K.; van Huet, R.A.C.; Boon, C.J.F.; den Hollander, A.I.; Collin, R.W.J.; Klaver, C.C.W.; Hoyng, C.B.; Roepman, R.; Klevering, B.J. Non-syndromic retinitis pigmentosa. Prog. Retin. Eye Res. 2018, 66, 157–186. [Google Scholar] [CrossRef]
- Fahim, A.T.; Daiger, S.P.; Weleber, R.G.; Adam, M.P.; Feldman, J.; Mirzaa, G. Nonsyndromic retinitis pigmentosa overview. GeneReviews[Internet]. 2023. [Google Scholar]
- Daiger, S.P.; Bowne, S.J.; Sullivan, L.S. Perspective on Genes and Mutations Causing Retinitis Pigmentosa. Arch. Ophthalmol. 2007, 125, 151–158. [Google Scholar] [CrossRef]
- Hu, S.; Liu, X.; Chen, N.; Zhang, J.; Yang, L.; Jia, R.; Du, J. In Vivo CRISPR/Cas9-Mediated Genome Editing Mitigates Photoreceptor Degeneration in a Mouse Model of X-Linked Retinitis Pigmentosa. Investig. Opthalmology Vis. Sci. 2020, 61, 31–31. [Google Scholar] [CrossRef]
- Cleveland Clinic. Atropine eye solution.[Internet]. Cleveland, OH: Cleveland Clinic; 2024[cited 2024 Nov 17]. Available from https://my.clevelandclinic. 2072.
- Mayo Clinic. Neomycin, polymyxin b, and dexamethasone (opthalmic route). [Internet]. Rochester, MN: Mayo Clinic; 2024[cited 2024 Nov 17]. Available from https://www.mayoclinic. 2040.
- Im K, Mareninov S, Diaz MFP, Yong WH. An introduction to performing immunofluorescence staining. Methods Mol Biol. 2019:1897:299-311.
- Angelillo, L.; Satherley, A.; van Steen, C.; Cross, N.; Zegaoui, Y. Current and Future Treatment of Retinitis Pigmentosa. Clin. Ophthalmol. 2022, ume 16, 2909–2921. [Google Scholar] [CrossRef]
- Musarella, M.A.; MacDonald, I.M. Current Concepts in the Treatment of Retinitis Pigmentosa. J. Ophthalmol. 2010, 2011, 1–8. [Google Scholar] [CrossRef]
- Hamel, C. Retinitis pigmentosa. Orphanet J Rare Dis. 2006, 1, 40. [Google Scholar] [CrossRef]
- Bok, D.; Phelan, J.K. A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes. . 2000, 6, 116–24. [Google Scholar]
- Nguyen, Q.D.; Rodrigues, E.B.; Farah, M.E.; Mieler, W.F. Retinal pharmacotherapy. 1st ed. Amsterdam; Elsevier; 15 p.
- AAO American Academy Of Opthalmology [Internet]. Sanfrancisco, CA : AAO; 2020[ cited 2024 Nov 17]. Available from https://www.aao.org/eye-health/anatomy/fundus#:~:text=The%20fundus%20is%20the%20inside,find%2C%20watch%20and%20treat%20disease.
- Russell, S.R.; Drack, A.V.; Cideciyan, A.V.; Jacobson, S.G.; Leroy, B.P.; Van Cauewenbergh, C.; et al. Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: A phase 1b/2 trial. Nat Med. 2022, 28, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-J.; Yang, Y.-P.; Lin, T.-C.; Ma, C.; Lin, T.-Y.; Chien, Y.; Hwang, D.-K.; Hsu, C.-C.; Lai, H.I.-A.M.; Chou, Y.-B.; et al. An Update on Gene Therapy for Inherited Retinal Dystrophy: Experience in Leber Congenital Amaurosis Clinical Trials. Int. J. Mol. Sci. 2021, 22, 4534. [Google Scholar] [CrossRef]
- Solache, I.L.; Koenekoop, R.K.; Coussa, R.G. Leber congenital amaurosis, from darkness to light: An ode to Irene Maumenee. Ophthalmic Genet. 2017, 38, 7–15. [Google Scholar] [CrossRef]
- Hou, Y.-C.; Chen, T.-C.; Huang, C.-H.; Yang, C.-M.; Yang, C.-H. Leber’s Congenital Amaurosis: Current Concepts of Genotype-Phenotype Correlations. Genes 2021, 12, 1261. [Google Scholar] [CrossRef]
- University of Arizona. Leber Congenital Amaurosis. [Internet]. Arizona: University of Arizona; [cited 2024 Nov 21]. Available from: https://disorders.eyes.arizona.
- Biasutto, P.; Dulla, K.; Adamson, P.; Schulkens, I.; Schmidt, I.; Lane, A.; et al. QR-110 treatment for Leber’s congenital amaurosis type 10: Restoration of CEP290 mRNA levels and ciliation in LCA10 iPSC-derived optic cups. Invest Ophthalmol Vis Sci. 2017, 58, 249. [Google Scholar]
- Daich Varela, M.; Cabral de Guimaraes, T.A.; Georgiou, M.; Michaelides, M. Leber congenital amaurosis/early-onset severe retinal dystrophy: Current management and clinical trials. Br J Ophthalmol. 2022, 106, 445–451. [Google Scholar] [CrossRef]
- Maguire, A.M.; Lam, B.L.; Aleman, T.S.; Pierce, E.A.; Pennesi, M.E.; Rashid, A.; Myers, R.L.; Bailey, S.T.; Lauer, A.K.; Ashimatey, B.S.; et al. Gene Editing for CEP290 -Associated Retinal Degeneration. New Engl. J. Med. 2024, 390, 1972–1984. [Google Scholar] [CrossRef]
- Li, G.; Cole, A.J.; Neely, G.G.; Hesselson, D.; Denes, C.E.; Aksoy, Y.A. Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing. Int. J. Mol. Sci. 2021, 22, 8571. [Google Scholar] [CrossRef]
- Ruan, G.-X.; Barry, E.; Yu, D.; Lukason, M.; Cheng, S.H.; Scaria, A. CRISPR/Cas9-Mediated Genome Editing as a Therapeutic Approach for Leber Congenital Amaurosis 10. Mol. Ther. 2017, 25, 331–341. [Google Scholar] [CrossRef]
- Bailey, I.L.; Lovie-Kitchin, J.E. Visual acuity testing. From the laboratory to the clinic. Vision Res. 2013, 90, 2–9. [Google Scholar] [CrossRef]
- Jackson, A.J.; Greer, R.B.; Minto, H.; Bailey, I.L.; Chu, M.A. The Berkeley Rudimentary Vision Test. Optom. Vis. Sci. 2012, 89, 1257–1264. [Google Scholar] [CrossRef]
- Shapiro, A.; Corcoran, P.; Sundstrom, C.; Angjeli, E.; Rodriguez, J.D.; Abelson, M.B.; et al. Development and validation of a portable visual navigation challenge for assessment of retinal disease in multi-centered clinical trials. Invest Ophthalmol Vis Sci. 2017, 58, 3290. [Google Scholar]
- Rosolia, A.; Damiano, L.; Di Iorio, V.; Iodice, C.M.; Iovino, C.; Simonelli, F.; Testa, F. Pars Plana Vitrectomy in Inherited Retinal Diseases: A Comprehensive Review of the Literature. Life 2023, 13, 1241. [Google Scholar] [CrossRef] [PubMed]
- den Hollander, A.I.; Roepman, R.; Koenekoop, R.K.; CremersF. P. Leber congenital amaurosis: Genes, proteins and disease mechanisms. Prog. Retin. Eye Res. 2008, 27, 391–419. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).