Preprint
Article

This version is not peer-reviewed.

On the Generalized Dirichlet Divisor Problem

Runbo Li  *

Submitted:

20 September 2025

Posted:

22 September 2025

You are already at the latest version

Abstract
Using more advanced results on the growth exponent for Riemann zeta--function and accurate numerical estimations, we obtain better upper bounds for $\alpha_k$ ($9 \leqslant k \leqslant 20$) on the generalized Dirichlet divisor problem. This gives a minor improvement upon the recent result of Trudgian and Yang.
Keywords: 
;  ;  

1. Introduction

Let k ⩾ 2 denotes an integer and d k ( n ) is the divisor function that represents the number of ways n may be written as a product of exactly k factors. The generalized Dirichlet divisor problem consists of the estimation of the function
Δ k ( x ) = ∑ n ⩽ x d k ( n ) − x P k − 1 ( log x ) ,
where P k − 1 is an explicit polynomial of degree k − 1 . Clearly we have Δ k ( x ) = o ( x ) . We then define α k as the least exponent for which
Δ k ( x ) ≪ x α k + ε .
In 1916, Hardy [1] first proved a lower bound that α k ⩾ 1 2 − 1 2 k for all k ⩾ 2 . The generalized Dirichlet divisor problem conjecture states that α k = 1 2 − 1 2 k holds for all k ⩾ 2 , and this conjecture implies the Lindelöf hypothesis. Now, the best upper bounds for α k ( k ⩽ 8 ) are
α 2 ⩽ 0.3144831759741 , α 3 ⩽ 43 96 , α k ⩽ 3 k − 4 4 k for 4 ⩽ k ⩽ 8
by Li and Yang [2], Kolesnik [3] and Heath–Brown [4] (and Ivić [5]) respectively. Ivić also gave upper bounds with k ⩾ 9 in his book. For results with large k, one can see works of Heath–Brown [6] and Bellotti and Yang [7]. We also refer the readers to the blueprint of the new project ANTEDB organized by Tao, Trudgian and Yang [8].
In 1989, Ivić and Ouellet [9] refined the technique used in and gave better bounds for α k with k ⩾ 9 . In [5], Ivić connected this problem with the function m ( σ ) defined as follows: For any fixed 1 2 < σ < 1 we define m ( σ ) as the supremum of all numbers m ⩾ 4 such that
∫ 1 T ζ ( σ + i t ) m d t ≪ T 1 + ε .
In order to obtain good bounds for α k , one need to get lower bounds for m ( σ ) . Ivić and Ouellet [9] used a large value theorem and growth exponents for Riemann zeta–function to bound m ( σ ) . Specially, for 10 ⩽ k ⩽ 20 they got
α 10 ⩽ 0.675 , α 11 ⩽ 0.6957 , α 12 ⩽ 0.7130 , α 13 ⩽ 0.7306 , α 14 ⩽ 0.7461 , α 15 ⩽ 0.75851 , α 16 ⩽ 0.7691 , α 17 ⩽ 0.7785 , α 18 ⩽ 0.7868 , α 19 ⩽ 0.7942 , α 20 ⩽ 0.8009 .
In 2024, Trudgian and Yang [10] mentioned a series of new bounds for α k . They combined the method of Ivić and Ouellet [9] with their new growth exponents for Riemann zeta–function to obtain those bounds.
Theorem 1.1 
([10], Theorem 2.9). We have
α 9 ⩽ 0.64720 , α 10 ⩽ 0.67173 , α 11 ⩽ 0.69156 , α 12 ⩽ 0.70818 , α 13 ⩽ 0.72350 , α 14 ⩽ 0.73696 , α 15 ⩽ 0.74886 , α 16 ⩽ 0.75952 , α 17 ⩽ 0.76920 , α 18 ⩽ 0.77792 , α 19 ⩽ 0.78581 , α 20 ⩽ 0.79297 , α 21 ⩽ 0.79951 .
In this paper, we use the essentially same methods to give a very minor improvement on their results.
Theorem 1.2. 
We have
α 9 ⩽ 0.638889 , α 10 ⩽ 0.663329 , α 11 ⩽ 0.684349 , α 12 ⩽ 0.701768 , α 13 ⩽ 0.717523 , α 14 ⩽ 0.731898 , α 15 ⩽ 0.744898 , α 16 ⩽ 0.756380 , α 17 ⩽ 0.766588 , α 18 ⩽ 0.775721 , α 19 ⩽ 0.783939 , α 20 ⩽ 0.791374 .

2. Growth Exponents for Riemann Zeta–Function

In this section we list the new growth exponents for Riemann zeta–function proved by Trudgian and Yang [10], which is the most powerful and important input in the proof of Theorem 1.2. In the proof of Theorem 1.1 a weaker version of this was used.
Lemma 2.1 
([8], Table 6.2). We have
μ ( σ ) ⩽ 31 36 − 3 7 σ , 1 2 ⩽ σ ⩽ 88225 153852 , 220633 620612 − 62831 155153 σ , 88225 153852 ⩽ σ ⩽ 521 796 , 1333 3825 − 1508 3825 σ , 521 796 ⩽ σ ⩽ 53141 76066 , 405 1202 − 227 601 σ , 53141 76066 ⩽ σ ⩽ 454 641 , 779 2590 − 423 1295 σ , 454 641 ⩽ σ ⩽ 1744 2411 , 179 622 − 96 311 σ , 1744 2411 ⩽ σ ⩽ 951057 1298878 , 157319 560830 − 251324 841245 σ , 951057 1298878 ⩽ σ ⩽ 1389 1736 , 2841 10316 − 754 2579 σ , 1389 1736 ⩽ σ ⩽ 587779 702192 , 1691 6554 − 890 3277 σ , 587779 702192 ⩽ σ ⩽ 7441 8695 , 29 130 − 3 13 σ , 7441 8695 ⩽ σ ⩽ 277 300 , 3 23 − 3 23 σ , 277 300 ⩽ σ < 1 .
In order to use the large value theorem in the next section, we also need the following two results, which give the upper bounds for μ ( σ ) when σ < 1 2 :
Lemma 2.2 
([8], Lemma 6.4). We have
μ ( σ ) = μ ( 1 − σ ) + 1 2 − σ
for all 0 < σ ⩽ 1 2 .
Lemma 2.3 
([8], Lemma 6.5). We have
μ ( σ ) = 1 2 − σ
for all σ ⩽ 0 .

3. A Large Value Theorem

Now we provide a new large value theorem, which is a refined version of Ivić’s large value theorem [[5], Lemma 8.2]. Note that Ivić’s version was used by Ivić and Ouellet [9].
Lemma 3.1. 
Let t 1 , … , t R be real numbers such that T ⩽ t r ⩽ 2 T for r = 1 , … , R and | t r − t s | ⩾ ( log T ) 4 for 1 ⩽ r ≠ s ⩽ R . If
T ε < V ⩽ ∑ m ∼ M a m m − σ − i t r
where a m ≪ M ε for m ∼ M , 1 ≪ M ≪ T C , then
R ≪ T ε M 2 − 2 σ V − 2 + T V − f ( σ ) ,
where
f ( σ ) = 2 3 − 4 σ , 1 2 < σ ⩽ 2 3 , 58 63 − 80 σ , 2 3 < σ ⩽ 583 860 , 47 41 − 50 σ , 583 860 < σ ⩽ 16581 24022 , 4968 3981 − 4774 σ , 16581 24022 < σ ⩽ 1333047 1920826 , 15998 12283 − 14600 σ , 1333047 1920826 < σ ⩽ 3269 4658 , 656601 497599 − 589921 σ , 3269 4658 < σ ⩽ 2410373 3361430 , 245 182 − 215 σ , 2410373 3361430 < σ ⩽ 2233 3105 , 1037 743 − 872 σ , 2233 3105 < σ ⩽ 592 819 , 503 325 − 374 σ , 592 819 < σ ⩽ 140323 193464 , 12982 8109 − 9268 σ , 140323 193464 < σ ⩽ 1461 1982 , 1061878 648903 − 738576 σ , 1461 1982 < σ ⩽ 1960121 2577906 , 146 85 − 96 σ , 1960121 2577906 < σ ⩽ 76 97 , 158 67 − 72 σ , 76 97 < σ ⩽ 1960121 2419300 .
Proof. 
We follow the arguments in [5], Lemma 8.2]. Let c ( σ ) be an upper bound for μ ( σ ) . By Lemmas 2.1–2.3, we know that c ( σ ) can be written in the form A − B σ with potisive A , B when σ ⩽ 0.8 . We choose 0.8 as the end point because it is enough for our proof of Theorem 1.2. Let θ = θ ( σ ) be implicitly defined by
2 c ( θ ) + 1 + θ − 2 ( 1 + c ( θ ) ) σ = 0 .
Suppose that for some σ , the value of θ lies in an interval [ σ 1 , σ 2 ] with fixed A , B . Then by (4) we have
θ = 2 ( 1 + A ) σ − ( 2 A + 1 ) 2 B σ + ( 1 − 2 B ) .
Furthermore, let
f ( σ ) = 2 ( 1 + c ( θ ) ) c ( θ ) .
The values of f ( σ ) when 1 2 ⩽ σ ⩽ 0.8 are listed above. Now by similar arguments as in the proof of [[5], Lemma 8.2], Lemma 3.1 is proved. □

4. Proof of Theorem 1.2

We shall use the method of Ivić and Ouellet [9] to prove Theorem 1.2. It was shown in [5], Chapter 8] that to obtain bounds for m ( σ ) it suffices to obtain bounds of the form
R ≪ T 1 + ε V − m ( σ ) ,
where R is the number of points t r ( 1 ⩽ r ⩽ R ) such that | t r | ⩽ T , | t r − t s | ⩾ ( log T ) 4 for 1 ⩽ r ≠ s ⩽ R and | ζ ( σ + i t r ) | ⩾ V > 0 for any given V. Moreover, by [5], (8.97)] we know that
R ≪ T ε T V − 2 f ( σ ) + T 4 − 4 σ 1 + 2 σ V − 12 1 + 2 σ + T 4 ( 1 − σ ) ( κ + λ ) ( ( 2 − 4 λ ) σ − 1 + 2 κ − 2 λ ) V − 4 ( 1 + 2 κ + 2 λ ) ( ( 2 − 4 λ ) σ − 1 + 2 κ − 2 λ ) ,
where ( κ , λ ) is an exponent pair. We shall use ( κ , λ ) = 3 40 , 31 40 in the rest of our paper for the sake of convenience.
Note that c ( σ ) is an upper bound for μ ( σ ) given by Lemmas 2.1–2.3. By (8) and the definitions of f ( σ ) and c ( σ ) , we can easily calculate the corresponding m ( σ ) for σ between 1 2 and 0.8 . Numerical calculation gives that
m ( 0.638889 ) > 9 , m ( 0.663329 ) > 10 , m ( 0.684349 ) > 11 , m ( 0.701768 ) > 12 , m ( 0.717523 ) > 13 , m ( 0.731898 ) > 14 , m ( 0.744898 ) > 15 , m ( 0.756380 ) > 16 , m ( 0.766588 ) > 17 , m ( 0.775721 ) > 18 , m ( 0.783939 ) > 19 , m ( 0.791374 ) > 20 ,
and Theorem 1.2 is now proved.

Supplementary Materials

The following supporting information can be downloaded at the website of this paper posted on Preprints.org.

Acknowledgments

The author would like to thank the Analytic Number Theory Exponent Database (ANTEDB) project.

References

  1. Hardy, G.H. On Dirichlet’s divisor problem. Proc. London Math. Soc. 1916, 15, 1–25. [Google Scholar] [CrossRef]
  2. Li, X.; Yang, X. An improvement on Gauss’s Circle Problem and Dirichlet’s Divisor Problem. arXiv 2023, arXiv:2308.14859. [Google Scholar] [CrossRef]
  3. Kolesnik, G. On the estimation of multiple exponential sums. In Recent progress in analytic number theory, Vol. 1 (Durham, 1979); Academic Press, London–New York, 1981; pp. 231–246.
  4. Heath-Brown, D.R. Mean values of the zeta–function and divisor problems. In Recent progress in analytic number theory, Vol. 1 (Durham, 1979); Academic Press, London–New York, 1981; pp. 115–119.
  5. Ivić, A. The Riemann zeta–function; Dover Publications, Inc., Mineola, NY, 2003.
  6. Heath-Brown, D.R. A new k–th derivative estimate for exponential sums via Vinogradov’s mean value. Proc. Steklov Inst. Math. 2017, 296, 88–103. [Google Scholar] [CrossRef]
  7. Bellotti, C.; Yang, A. On the generalised Dirichlet divisor problem. Bull. London Math. Soc. 2024, 56, 1859–1878. [Google Scholar] [CrossRef]
  8. Tao, T.; Trudgian, T.; Yang, A. Database of known results on analytic number theory exponents.
  9. Ivić, A.; Ouellet, M. Some new estimates in the Dirichlet divisor problem. Acta Arith. 1989, 52, 241–253. [Google Scholar] [CrossRef]
  10. Trudgian, T.S.; Yang, A. Toward optimal exponent pairs. arXiv 2024, arXiv:2306.05599. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated