Submitted:
07 May 2025
Posted:
13 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Astrocyte Domains, Microdomains, and Synaptic Interactions
2.1. Astrocyte to Neuron Signaling
2.2. Neuron to Astrocyte Signaling
3. Astrocyte Domains Integrate Synaptic Activity
3.1. Calcium Excitability
3.2. Electrical Activation
4. The Astroglial Syncytium Integrates Multiple Neural Networks Throughout the Brain
Spatial Distribution of Astrocyte Domains
5. The Panglial Syncytium Integrates the Entirety of Brain Information
5.1. Myelin Plasticity
5.2. The Corpus Callosum and Consciousness
5.3. Neurovascular Coupling
5.4. Metabolic Pathways and Human Brain Evolution
6. Discussion
Acknowledgments
Conflicts of Interest
References
- Agid Y.; Magistretti, P. In: Glial Man: A Revolution in Neuroscience, 1st ed; Oxford University Press: Oxford, U.K., 2021. ISBN 978-0-19-884767-0.
- Araque, A.; Parpura, V.; Sanzgiri, R.P.; Haydon, P.G. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999, 22, 208–215. [CrossRef] [PubMed]
- Pannasch, U.; Freche, D.; Dallérac. G.; Ghézali, G.; Escartin, C.; Ezan, P.; Cohen Salmon, M.; Benchenane, K.; Abudara, V.; Dufour, A.; Lübke, J.H.; Déglon, N.; Knott, G.; Holcman, D.; Rouach, N. Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci. 2014, 17(4),549-558. [CrossRef] [PubMed]
- Peters, A.; Palay, S.L.; Webster, H.d.F. The Fine Structure of the Nervous System, 3rd ed.; Oxford University Press: Oxford, UK, 1991; ISBN 0-19-506571-9.
- Ventura, R.; Harris, K.M. Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci. 1999, 19(16):6897-6906. [CrossRef]
- Chao, T.I.; Rickmann, M.; Wolff, J.R. The synapse-astrocyte boundary: an anatomical basis for an integrative role of glia in synaptic transmission. In: Volterra A, Magistretti P, Haydon P, editors. The tripartite synapse: glia in synaptic transmission. New York: Oxford University Press; 2002. p. 3–23.; ISBN 0 19 850854 9.
- Aten, S.; Kiyoshi, C.M.; Arzola, E.P.; Patterson, J.A.; Taylor, A.T.; Du, Y.; Guiher, A.M.; Philip, M; Camacho E.G., Mediratta, D. et al. Ultrastructural view of astrocyte arborization, astrocyte-astrocyte and astrocyte-synapse contacts, intracellular vesicle-like structures, and mitochondrial network. Prog Neurobiol. 2022, 213: 102264. [CrossRef]
- Nieuwenhuys, R. The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat Embryol (Berl). 1994 190(4):307-37. [CrossRef]
- Zonta, M.; Carmignoto, G. Calcium oscillations encoding neuron-to-astrocyte communication. J Physiol (Paris) 2002, 96(3-4),193–198. [CrossRef]
- Lin, S.C.; Bergles, D.E. Synaptic signaling between neurons and glia. Glia 2004, 47(3),290-298. [CrossRef]
- Perea, G.; Araque A. Glial calcium signaling and neuron-glia communication. Cell Calcium 2005, 38(3–4),375–382. [CrossRef]
- Perea, G.; Araque, A. Astrocytes Potentiate Transmitter Release at Single Hippocampal Synapses. Science 2007, 317(5841); 1083-1086. [CrossRef]
- Fellin, T. Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. J Neurochem 2009,108(3),533–544. [CrossRef]
- Volterra A. Astrocytes: Modulation of Synaptic Function and Network Activity. In: Neuroglia, 3rd ed.; Kettenmann H., Ransom B.R., Eds.; Oxford University Press: New York, USA, 2013; pp. 481-493; ISBN 978-0-19-979459-1.
- Halassa, M.M.; Haydon, P.G. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 2010, 72:335–55. [CrossRef]
- Halassa, M.M.; Haydon, P.G. Astrocyte Modulation of Mammalian Synapses: Circuits and Behaviors. In: Neuroglia, 3rd ed.; Kettenmann H., Ransom B.R., Eds.; Oxford University Press: New York, USA, 2013; pp.494-503; ISBN 978-0-19-979459-1.
- 17 Bernardinelli, Y.; Muller, D.; Nikonenko, I. Astrocyte-synapse structural plasticity. Neural Plast. 2014, 24, 232105. [CrossRef]
- Bernardinelli, Y; Randall, J.; Janett, E.; Nikonenko, I.; König, S.; Jones, E.V.; Flores, C.E.; Murai, K.K.; Bochet C.G.; Holtmaat, A.; Muller, D. Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Curr Biol 2014 24(15):1679-1688. [CrossRef]
- Volterra, A.; Meldolesi, J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 2005, 6, 626–640. [CrossRef]
- Araque, A. Astrocytes process synaptic information. Neuron Glia Biol 2008, 4(1),3-10. [CrossRef] [PubMed]
- Schipke, C.G.; Haas, B.; Kettenmann, H. Astrocytes discriminate and selectively respond to the activity of a subpopulation of neurons within the barrel cortex. Cereb Cortex 2008, 18(10):2450-2459. [CrossRef]
- Perea, G.; Navarrete, M.; Araque, A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 2009, 32(8):421–431. [CrossRef]
- Pannasch, U.; Rouach, N. Emerging role for astroglial networks in information processing: from synapse to behavior. Trends Neurosci. 2013, 36(7),405-417. [CrossRef]
- Robertson, J.M. Astrocyte domains and the three-dimensional and seamless expression of consciousness and explicit memories. Med. Hypotheses 2013, 81,1017–1024. [CrossRef]
- Ghézali, G; Dallérac, G; Rouach. N. Perisynaptic astroglial processes: dynamic processors of neuronal information. Brain Structure and Function, 2016, 221 (5), 2427-2442. [CrossRef]
- Deemyad, T.; Lüthi, J.; Spruston, N. Astrocytes Integrate and Drive Action Potential Firing in Inhibitory Subnetworks. Nat. Commun. 2018, 9(1), 4336. [CrossRef]
- Robertson, J.M. The Gliocentric Brain Int. J. Mol. Sci. 2018, 19, 3033. [CrossRef]
- Santello, M.; Toni, N.; Volterra, A. Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci. 2019, 22(2):154-166. [CrossRef]
- Oppenheim, R.W. Naturally occurring cell death during neural development. Trends Neursci 1985, 8,487–493.
- Mauch, D.H.; Nägler, K.; Schumacher, S.; Göritz, C.; Müller, E.C.; Otto, A.; Pfrieger, F.W. CNS synaptogenesis promoted by glia-derived cholesterol. Science 2001, 294(5545),1354-1357. [CrossRef]
- Ullian, E.M.; Sapperstein, S.K.; Christopherson, K.S.; Barres, B.A. Control of synapse number by glia. Science 2001, 291(5504):657–661. [CrossRef]
- Christopherson, K.S.; Ullian, E.M.; Stokes, C.C.A.; Mullowney, C.E.; Hell, J.W; Agah, A.; Lawler, J; Mosher, D.F.; Paul Bornstein, P; Barres, B.A. Thrombospondins Are Astrocyte-Secreted Proteins that Promote CNS Synaptogenesis. Cell 2005 120(3):421-33. [CrossRef]
- Caceres, M; Suwyn, C.; Maddox, M.; Thomas, J.W.; Preuss T.M. Increased cortical expression of two synaptogenic thrombospondins in human brain evolution. Cereb Cortex 2007, 17(10),2312–2321. [CrossRef]
- Eroglu, C.; Allen, N.J.; Susman, M.W.; O'Rourke, N.A.; Park, C.Y.; Ozkan E.; Chakraborty, C.; Mulinyawe, S.B.; Annis, D.S.; Huberman, A.D. et al. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell, 2009, 139(2),380-392. [CrossRef]
- Eroglu, C.; Barres, B.A. Regulation of Synaptic Connectivity by Glia. Nature 2010, 468, 223–231. [CrossRef] [PubMed]
- Kucukdereli, H.; Allen, N.J.; Lee, A.T.; Feng, A.; Ozlu, M.I.; Conatser, L.M.; Chakraborty, C.; Workman, G.; Weaver, M.; Sage, E.H.; et al. Control of Excitatory CNS Synaptogenesis by Astrocyte-Secreted Proteins Hevin and SPARC. Proc. Natl. Acad. Sci. USA 2011, 108, E440–E449. [CrossRef]
- Chung, W.-S.; Clarke, L.E.; Wang, G.X.; Stafford, B.K.; Sher, A.; Chakraborty, C.; Joung, J.; Foo, L.C.; Thompson, A.; Chen, C.; et al. Astrocytes Mediate Synapse Elimination through MEGF10 and MERTK Pathways. Nature 2013, 504, 394–400. [CrossRef]
- Allen, N.J.; Bennett M.L.; Foo L.C. Astrocyte glypicans 4 and 6 promote formation of excitatory synapse via GluA1 AMPA receptors. Nature 2012, 486,410–414. [CrossRef]
- Allen, N.J. Glial Control of Synaptogenesis. In: Neuroglia, 3rd ed.; Kettenmann H., Ransom B.R., Eds.; Oxford University Press: New York, USA, 2013; pp. 388-401; ISBN 978-0-19-979459-1.
- Corty, M.M.; Freeman, M.R. Cell biology in neuroscience: Architects in neural circuit design: glia control neuron numbers and connectivity. J Cell Biol. 2013, 203(3),395-405. [CrossRef]
- Allen, N.J. Role of glia in developmental synapse formation.Curr Opin Neurobiol 2013, 23(6):1027-33. [CrossRef]
- Chung, W.S.; Allen, N.J.; Eroglu, C. Astrocytes Control Synapse Formation, Function, and Elimination. Cold Spring Harb Perspect Biol. 2015, 7(9):a020370. [CrossRef]
- Stogsdill, J.A.; Eroglu, C. The interplay between neurons and glia in synapse development and plasticity. Curr Opin Neurobiol. 2017, 42,1-8. [CrossRef]
- Baldwin, K.T.; Eroglu C. Molecular mechanisms of astrocyte-induced synaptogenesis. Curr Opin Neurobiol 2017, 45,113-120. [CrossRef]
- Rouach, N.; Glowinski, J.; Giaume, C. Activity-dependent neuronal control of gap junctional communication in astrocytes. J Cell Biol. 2000, 149(7),1513-1526. [CrossRef] [PubMed]
- Ransom, B.R.; Giaume C. Gap Junctions and Hemichannels. In The Cognitive Neurosciences III, 3rd ed, Gazzaniga, M.S, Ed In Chief, MIT Press, Cambridge MA., USA, pp.292-305; ISBN 0-262-07254-8.
- Giaume, C.; Koulakoff, A.; Roux, L.; Holcman, D.; Rouach, N. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 2010, 11(2),87–99. [CrossRef] [PubMed]
- Theis, M.; Giaume, C. Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res 2012, 1487,88–98. [CrossRef]
- Ransom, B; Giaume, C. 2013 Gap Junctions and Hemichannels. In: Neuroglia, 3rd ed.; Kettenmann H., Ransom B.R., Eds.; Oxford University Press: New York, USA, 2013; pp. 388-401; ISBN 978-0-19-979459-1.
- Giaume, C.; Naus, C.C.; Sáez, J.C.; Leybaert. L. Glial connexins and pannexins in the healthy and diseased brain. Physiol Rev. 2022, 101: 93-145. [CrossRef]
- Fields, R.D.; Araque, A.; Johansen-Berg H.; Lim, S.-S.; Lynch, G.; Nave, K.-A.; Nedergaard M.; Perez, R.; Sejnowski, T.; Wake, H. Glial Biology in Learning and Cognition. The Neuroscientist, 2014, 20(5),426-431. [CrossRef]
- Adamsky, A.; Kol, A.; Kreisel, T.; Doron, A.; Ozeri-Engelhard, N.; Melcer, T.; Refaeli, R.; Horn, H.; Regev, L.; Groysman, M.; et al. Astrocytic Activation Generates De Novo Neuronal Potentiation and Memory Enhancement. Cell 2018, 174, 59–71.e14. [CrossRef] [PubMed]
- Mederos, S.; Sánchez-Puelles, C.; Esparza, J.; Valero, M.; Ponomarenko, A.; Perea, G. GABAergic Signaling to Astrocytes in the Prefrontal Cortex Sustains Goal Directed Behaviors. Nat. Neurosci. 2021, 24, 82–92. [CrossRef] [PubMed]
- Kofuji, P; Araque, A. Astrocytes and Behavior. Annu Rev Neurosci. 2021, 44: 49–67. [CrossRef]
- Hastings, N.; Yu, Y.-L.; Huang, B.; Middya, S.; Inaoka, M.; Erkamp, N.A.; Roger J. Mason, R.J.; Carnicer-Lombarte, A.; Rahman,S. et al. Electrophysiological In Vitro Study of Long-Range Signal Transmission by Astrocytic Networks.Advanced Science. 2023, 2301756 (1 of 16) . [CrossRef]
- Escalada, P.; Ezkurdia, A.; Ramírez, M.J.; Solas, M. Essential Role of Astrocytes in Learning and Memory. Int. J. Mol. Sci. 2024, 25, 1899. [CrossRef]
- Fields, R.D. 2009. The other brain. New York: Simon & Schuster. ISBN 978-0-7432-9141-5.
- Visser, J; Milior, G.; Breton, R.; Ezan, P.; Ribot, J.; Rouach, N. Astroglial networks control visual responses of superior collicular neurons and sensory-motor behavior. Cell Rep. 2024. 23;43(7):114504. [CrossRef]
- Sattin, D.; Magnani, F.G.; Bartesaghi, L.; Caputo, M.; Fittipaldo, A.V.; Cacciatore, M.; Picozzi, M.; Leonardi, M. Theoretical Models of Consciousness: A Scoping Review. Brain Sci. 2021, 11, 535. [CrossRef]
- Zeki, S.The visual image in mind and brain. Sci Am. 1992, 267 (3) 69–76. [CrossRef]
- Verkhratsky, A.; Nedergaard, M. Physiology of astroglia. Physiol Rev 2018, 98: 239- 389. [CrossRef]
- Pasti, L.; Volterra, A.; Pozzan, T.; Carmignoto, G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 1997, 17(20),7817–7830. [CrossRef]
- Carmignoto, G. Reciprocal communication systems between astrocytes and neurons, Prog. Neurobiol. 2000, 62,561–581. [CrossRef]
- Perea, G.; Araque, A. Communication between astrocytes and neurons: a complex language. J Physiol Paris. 2002, 96(3-4),199-207. [CrossRef]
- Gebicke-Haerter, P.J. The computational power of the human brain. Front Cell Neurosci. 2023, 17:1220030. eCollection 2023. [CrossRef]
- Bushong, E.A.; Martone, M.E.; Jones, Y.Z.; Ellisman M.H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 2002, 22(1),183-192. [CrossRef]
- Oberheim, N.A.; Wang, X.; Goldman, S.; Nedergaard, M. Astrocytic complexity distinguishes the human brain. Trends Neurosci 2006, 29(10),547–553. [CrossRef]
- Oberheim, N.A.; Takano, T.; Han, X.; He, W.; Lin, J.H.; Wang, F.; Xu, Q.; Wyatt, J.D.; Pilcher, W.; Ojemann, J.G. et al. Uniquely hominid features of adult human astrocytes. J Neurosci 2009, 29(10). 3276–3287. [CrossRef]
- Shigetomi, E.; Kracun, S.; Khakh, B.S. Monitoring astrocyte calcium microdomains with improved membrane targeted GCaMP reporters. Neuron Glia Biol. 2010, 6,183-191. [CrossRef] [PubMed]
- Kettenmann H; Filippov V. Signalling between neurons and Bergmann glial cells. In: Volterra A, Magistretti P, Haydon P, editors. The tripartite synapse: glia in synaptic transmission. New York: Oxford University Press; 2002. p. 139–50. ISBN 0 19 850854 9.
- Bergles, D.E.; Edwards R.H. The role of glutamate transporters in synaptic transmission. In: Structural and functional organization of the synapse, 1st ed.; Hell J.W., Ehlers M.D., Eds; Springer Science+Business Media LLC: New York, USA, 2008; pp. 23–62. ISBN 9780387772318.
- Arizono, M; Bannai, H; Nakamura, K.; Niwa, F.; Enomoto, M.; Matsura, T.; Miyamoto, A.; Sherwood, M.W.; Nakamura, T.; Mikoshiba, K. Receptor-selective diffusion barrier enhances sensitivity of astrocytic processes to metabotropic glutamate receptor stimulation. Sci Signal 2012, 5(218):r27. [CrossRef]
- Bergersen, L.H.; Morland, C; Ormel, L.; Rinholm, J. E.; Larsson, M.; Wold, J. F. H.; Røe, A.T.; Stranna, M.; Santello, M.; Bouvier, D.; et al. Immunogold detection of Lglutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb Cortex 2012, 22(7):1690–7. [CrossRef]
- Stobart, J, L.; Ferrari, K.D.; Barrett, M.J.P.; Stobart, M.J.; Looser, Z.J.; Saab, A.S.; Weber, B. Long-term In Vivo Calcium Imaging of Astrocytes Reveals Distinct Cellular Compartment Responses to Sensory Stimulation. Cereb Cortex 2018, 28(1):184-198. [CrossRef]
- Stobart, J.L.; Ferrari, K.D.; Barrett, M.J.P.; Glück, C.; Stobart, M.J.; Zuend, M.; Weber, B. Cortical Circuit Activity Evokes Rapid Astrocyte Calcium Signals on a Similar Timescale to Neurons. Neuron 2018, 98(4):726-735. [CrossRef]
- Di Castro, M.A.; Chuquet, J.; Liaudet, N.; Bhaukaurally, K.; Santello, M.; Bouvier, D.; Tiret, P.; Volterra, A. Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat. Neurosci. 2011, 14, 1276–1284. [CrossRef] [PubMed]
- Bezzi, P.; Gundersen, V.; Galbete, J.; Seifert, G.; Steinhäuser, C.; Pilati, E.;Volterra, A. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 2004, 7, 613–620. [CrossRef] [PubMed]
- Sakers, K.; Lake, A.M.; Khazanchi, R.; Ouwenga, R.; Vasek, M.J.; Dani, A.; Dougherty, J.D. Astrocytes Locally Translate Transcripts in Their Peripheral Processes. Proc. Natl. Acad. Sci. USA 2017, 114, E3830–E3838. [CrossRef] [PubMed]
- Santello, M.; Calì, C.; Bezzi P. Gliotransmission and the tripartite synapse. Adv Exp Med Biol. 2012, 970:307-31. [CrossRef]
- Petrelli F, Bezzi P. Novel insights into gliotransmitters. Curr Opin Pharmacol. 2016, 26:138-45. [CrossRef]
- Kettenmann, H; Zorec, R. Release of Gliotransmitters and Transmitter Receptors in Astrocytes. In: Neuroglia, 3rd ed.; Kettenmann H., Ransom B.R., Eds.; Oxford University Press: New York, USA, 2013; pp.494-503; ISBN 978-0-19-979459-1.
- Araque, A.; Carmignoto, G.; Haydon, P.G.; Oliet, S.H.; Robitaille, R.; Volterra, A. Gliotransmitters travel in time and space. Neuron. 2014, 81(4):728-39. [CrossRef]
- Volterra, A.; Meldolesi, J. Quantal Release of Transmitter: Not Only From Neurons but from Astrocytes as Well? In: Neuroglia, 2nd ed.; Kettenmann H., Ransom B.R., Eds.; Oxford University Press: New York, USA, 2005.; pp. 190-201; ISBN 0-19-515222-0.
- Jourdain, P.; Bergersen, L.H.; Bhaukaurally, K.; Bezzi, P.; Santello, M.; Domercq, M.; Matute, C.; Tonello, F.; Gundersen, V.; Volterra A. Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci. 2007, 10(3):331-339. [CrossRef]
- Oliet ,S.H.; Mothet, J.P. Regulation of N-methyl-D-aspartate receptors by astrocytic D-serine. Neuroscience. 2009, 158(1):275-83. [CrossRef]
- Henneberger, C.; Bard, L.; Rusakov, D.A. D-Serine: a key to synaptic plasticity? Int J Biochem Cell Biol. 2012, 44(4):587-90. [CrossRef]
- Panatier, A.; Gentles, S.J.; Bourque, C.W.; Oliet, S.H.R. Activity-dependent synaptic plasticity in the supraoptic nucleus of the rat hypothalamus. J Physiol. 2006, 573(3): 711-721. [CrossRef]
- Dringen, R.; Gutterer, J.M.; Hirrlinger, J. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem. 2000 267(16):4912-6. PMID: 10931173. [CrossRef]
- Hillen, A.E.J.; Burbach, J.P.H.; Hol E.M. Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol. 2018, 165-167,66-86. [CrossRef]
- Pannasch, U.; Vargová, L.; Reingruber, J.; Ezan, P.; Holcman, D.; Giaume, C.; Syková, E.; Rouach, N. Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci U S A. 2011, 108(20):8467-72. [CrossRef]
- Franze, K.; Grosche, J.; Skatchkov. S.N.; Schinkinger, S.; Foja, C.; Schild, D.; Uckermann, O.; Travis, K.; Reichenbach, A.; Guck, J. Müller cells are living optical fibers in the vertebrate retina PNAS (USA) 2007, 104(20), 8287-92. [CrossRef]
- Yang, J.; Ruchti, E.; Petit, J.M.; Jourdain, P.; Grenningloh, G.; Allaman, I.; Magistretti,P.J. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc Natl Acad Sci U S A. 2014, 111(33):12228-33. [CrossRef]
- Suzuki, A.; Stern, S.A.; Bozdagi, O.; Huntley, G.W.; Walker, R.H.; Magistretti, P.J.; Alberini, C.M. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011, 144(5):810-823. [CrossRef]
- Petit, J.M.; Gyger, J.; Burlet-Godinot, S.; Fiumelli’ H.; Martin, J.L.; Magistretti; P. J. Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifically regulated in cortical astrocytes following sleep deprivation in mice. Sleep. 2013, 36(10):1445-58. [CrossRef]
- Petit, J.-M.; Magistretti, P.J. Regulation of Neuron-Astrocyte Metabolic Coupling Across the Sleep-Wake Cycle. Neuroscience. 2016, 323,135-156. [CrossRef]
- Steinhäuser, C..; Seifert, G.; Deitmer, W. Physiology of Astrocyte Ion Channels and Ion Transporters. In: Neuroglia, 3rd ed.; Kettenmann H., Ransom B.R., Eds.; Oxford University Press: New York, USA, 2013; pp.494-503; ISBN 978-0-19-979459-1.
- Navarrete, M; Araque, A. Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 2010, 68(1):113-26. [CrossRef]
- Shao, Y.; Porter, J.T.; McCarthy, K.D. Neuroligand receptor heterogeneity among astroglia. Perspect Dev Neurobiol 1994, 2(3):205–15.
- Snyder S. Drugs and the brain. New York: Scientific American Library; 1996. ISBN 0-7167-5015-5.
- Nilsson, M.; Hansson, E.; Rönnbäck, L. Adrenergic and 5-HT2 receptors on the same astroglial cell. A microspectrofluorimetric study on cytosolic Ca2+ responses in single cells in primary culture. Brain Res Dev Brain Res 1991, 63(1–2):33–41. [CrossRef]
- Bekar, L.K.; He, W.; Nedergaard, M. Locus coeruleus alpha-adrenergic mediated activation of cortical astrocytes in vivo. Cereb Cortex 2008, 18(12):2789–95. [CrossRef]
- Stone, E.A.; John, S.M. Further evidence for a glial localization of rat cortical beta adrenoceptors: studies of in vivo cyclic AMP responses to catecholamines. Brain Res 1991, 549(1):78-82. [CrossRef]
- Han, J.; Kesner, P.; Metna-Laurent, M.; Duan, T.; Xu, L.; Georges, F.; Koehl, M.; Abrous, D.N.; Mendizabal-Zubiaga, J.; Grandes, P. et al. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell 2012,148(5),1039–1050. [CrossRef]
- Aoki, C. Beta-adrenergic receptors: astrocytic localization in the adult visual cortex and their relation to catecholamine axon terminals as revealed by electron microscopic immunocytochemistry. J Neurosci. 1992,12(3):781–92. [CrossRef]
- Marchaland, J.; Calì,C.; Voglmaier, S.M.; Li, H.; Regazzi, R.; Edwards R.H.; Bezzi, P. Fast subplasma membrane Ca2+ transients control exo-endocytosis of synaptic like microvesicles in astrocytes. J Neurosci 2008, 28(37):9122-32. [CrossRef]
- Cornell-Bell, A.H.; Finkbeiner, S.M.; Cooper, M.S.; Smith, S.J. Glutamate induces calcium waves in cultured astrocytes: Long-range glial signaling. Science 1990, 247, 470-473. [CrossRef]
- Dani, J.W.; Chernjavsky, A.; Smith, S.J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 1992, 8, 429–440. [CrossRef]
- Verkhratsky, A.; Parpura, V. Calcium signaling in neuroglia. In: Neuroglia, 3rd ed.; Kettenmann H., Ransom B.R., Eds.; Oxford University Press: New York, USA, 2013. pp. 320-332. ISBN 978-0-19-979459-1.
- McCrone, J. How Do You Persist When Your Molecules Don’t? SCR 1. 2004.
- Kuffler, S.W.; Nicholls, J.G.; Orkand, R.K. Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 1966, 29:768-787. [CrossRef]
- Murphy, T.H.; Blatter, L.A.; Wier, W.G.; Baraban, J.M. Rapid communication between neurons and astrocytes in primary cortical cultures. J Neurosci 1993, 13(6):2672–9. [CrossRef]
- Winship, I.R.; Plaa, N.; Murphy, T.H. Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo. J Neurosci 2007, 27(23),6268-6272. [CrossRef]
- Dennis, M.Y.; Nuttle X.; Sudmant P.H.; Antonacci, F.; Graves, T.A; Neredov, M.; Rosenfeld, J.A.; Sajjadian, S.; Malig, M.; Kotkiewicz, H. et al. Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat Neurosci 2011,14(10),1276–1284. [CrossRef]
- Chuquet, J.; Quilichini, P.; Nimchinsky, E.A.; Buzsáki, G. Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex. J Neurosci 2010, 30(45):15298–303, 2010. [CrossRef]
- Crick, F.; Koch, C. A Framework for Consciousness. In The Cognitive Neurosciences III, 3rd ed.; Gazzaniga, M.S., Ed.; In Chief, MIT Press: Cambridge, MA, USA, 2004; pp. 1133–1143, ISBN 0-262-07254-8.
- Du, Y.; Ma, B.; Kiyoshi, C.M.; Alford, C.C.; Wang, W.; Zhou, M. Freshly dissociated mature hippocampal astrocytes exhibit similar passive membrane conductance and low membrane resistance as syncytial coupled astrocytes. J Neurophysiol 2015, 113:3744-3750. [CrossRef]
- Ma, B.; Buckalew, R.; Du, Y.; Kiyoshi, C.M.; Alford, C.C.; Wang, W.; McTigue, D.M.; Enyeart, J.J.; Terman, D.; Zhou, M. Gap junction coupling confers isopotentiality on astrocyte syncytium. Glia 2016, 64:214-226. [CrossRef]
- Kiyoshi, C.M.; Zhou, M. Astrocyte syncytium: a functional reticular system in the brain Neural Regen Res 2019, 14(4):595-596. [CrossRef]
- Huang, M.; Du, Y.; Kiyoshi, C.M.; Wu, X.; Askwith, C.C.; McTigue, D.M.; Zhou, M. Syncytial isopotentiality: an electrical feature of spinal cord astrocyte networks. Neuroglia 2018, 1:271-279. [CrossRef]
- De Pina-Benabou, M.H.;Srinivas, M.; Spray,D.C.; Scemes, E. Calmodulin Kinase Pathway Mediates the K -Induced Increase in Gap Junctional Communication between Mouse Spinal Cord Astrocytes J. Neurosci. 2001, 21(17):6635–6643. [CrossRef]
- Rouach, N.; Koulakoff, A.; Giaume C. Neurons set the tone of gap junctional communication in astrocytic networks. Neurochem Int. 2004, 4545(2-3):265-72. [CrossRef]
- Mazaud, D.; Capano. A.; Rouach, N. The many ways astroglial connexins regulate neurotransmission and behavior. Glia. 2021, 69(11):2527-2545. [CrossRef]
- De Pittà, M.; Brunel N. Modulation of Synaptic Plasticity by Glutamatergic Gliotransmission: A Modeling Study. Neural Plast. 2016, 2016:7607924. [CrossRef]
- Emsley, J.G.; Macklis, J.D. Astroglial heterogeneity closely reflects the neuronal defined anatomy of the adult murine CNS. Neuron Glia Biol 2006, 2(3):175–86. [CrossRef]
- Houades. V.; Koulakoff, A.; Ezan, P.; Seif, I.; Giaume, C. Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci, 2008, 28: 5207-5217. [CrossRef]
- Roux, L.; Benchenane, K.; Rothstein, J.D.; Bonvento, G.; Giaume, C.. Plasticity of astroglial networks in olfactory glomeruli. Acad Sci U S A 2011, 108(45):18442-6. [CrossRef]
- Rash, J.E.; Yasumura, T.; Davidson K.G.V.; Furman, C.S.; Dudek, F.E.; Nagy, J.I. Identification of Cells Expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in Gap Junctions of Rat Brain and Spinal Cord. Cell Commun Adhes. 2001, 8(4-6), 315–320. [CrossRef]
- Valiunas, V.; Polosina, Y.Y.; Miller, H.; Potapova, I.A.; Valiuniene, L.; Doronin, S.; Mathias, R.T.; Robinson, R.B.; Rosen, M.R.; Cohen, I.S.; Brink, P.R. Connexin specific cell-to-cell transfer of short interfering RNA by gap junctions. J Physiol. 2005, 568(Pt2),459-468. [CrossRef] [PubMed]
- Sakers, K.; Lake, A.M.; Khazanchi, R.; Ouwenga, R.; Vasek, M.J.; Dani, A.; Dougherty, J.D. Astrocytes Locally Translate Transcripts in Their Peripheral Processes. Proc. Natl. Acad. Sci. USA 2017, 114, E3830–E3838. [CrossRef] [PubMed]
- Brink, P.R.; Valiunas, V.; Gordon, C.; Rosen, M, R.; Cohen, I.S. Can gap junctions deliver? Biochim Biophys Acta 2012, 1818(8):2076–81. [CrossRef]
- Qureshi, I.A.; Mehler, M.F. Non-coding RNA networks underlying cognitive disorders across the lifespan. Trends Mol Med 2011, 17(6):337–46. [CrossRef]
- ladecola, C.; Nedergaard, M. Glial regulation of the cerebral microvasculature Nature Neuroscience 2007, 10,1369-1376. [CrossRef]
- James,W. The Principles of Psychology; Benton: Chicago, IL, USA, 1890; ISBN-13: 978 1543183184.
- Mountcastle, V.B. The columnar organization of the neocortex. Brain 1997, 120, 701–722. [CrossRef] [PubMed]
- Nagy, J.I.; Ionescu, A.V.; Lynn B.D.; Rash, J.E. Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice. Glia 2003, 44(3),205–18. [CrossRef]
- Magnotti, L.M.; Goodenough, D.A.; Paul, D.L. Functional Heterotypic Interactions Between Astrocyte and Oligodendrocyte Connexins. Glia. 2011 59(1),26–34. [CrossRef]
- 137 Elfgang, C.; Eckert, R.; Lichtenberg-Frat, H.; Butterweck, A.; Traub, Klein, R.A.; Hiilser, D.E.; Willecke, K. Specific Permeability and Selective Formation of Gap Junction Channels in Connexin-transfected HeLa Cell. J. Cell Biol. 1995, 129, 805-817. [CrossRef]
- Wake, H.; Lee, P.R.; Fields, R.D. Control of local protein synthesis and initial events in myelination by action potentials. Science 2011, 333(6049).1647-51. [CrossRef]
- Young, K.M.; Psachoulia, K.; Tripathi R.B.; Dunn, S-J.; Cossell, L.; Attwell, D.; Tohyama, K. Oligodendrocyte Dynamics in the Healthy Adult CNS: Evidence for Myelin Remodeling. Neuron. 2013, 77(5),873–885. [CrossRef]
- Fields, R.D. Myelination and support of axonal integrity by glia. Nature 2010, 468(7321),244-52. [CrossRef]
- 141 Fields, R.D. Regulation of Myelination by Functional Activity. 573-585. In: Neuroglia, 3rd ed.; Kettenmann H., Ransom B.R., Eds.; Oxford University Press: New York, USA, 2013; pp. 388-401; ISBN 978-0-19-979459-1.
- Fields, R.D. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008, 31(7),361–370. [CrossRef]
- Xin, W.; Chan, J.R. Myelin plasticity: sculpting circuits in learning and memory. Nat Rev Neurosci. 2020, 21(12),682–694. [CrossRef]
- Zatorre, R.J.; Fields, R.D.; Johansen-Berg, H. Neuroimaging changes in brain structure during learning. Nat Neurosci 2012, 15(4),528–536. [CrossRef]
- Huxley, T.H. Man’s Place in Nature. McMillan, London, UK. 1863.
- Sperry R. W. Lateral specialization in the surgically separated hemispheres. In Neuroscience Third Study Program, Vol. 3, eds. F. O. Schmitt, and F. G. Worden (Cambridge: MIT Press; ), 1974, 5–19. . [CrossRef]
- Sperry R. W. Hemisphere deconnection and unity in conscious awareness. Am. Psychol. 1968, 23,723–733. [CrossRef] [PubMed]
- Sperry, R. Consciousness, personal identity and the divided brain Neuropsychologia. 1984, 22(6),661-673. [CrossRef]
- Paolino, A.; Fenlon, L.R.; Kozulin, P.; Haines, E.; Lim, J.W.C.; Richards, L.J.; Suarez, R. Differential timing of a conserved transcriptional network underlies divergent cortical projection routes across mammalian brain evolution. Proc. Natl. Acad. Sci. USA 2020, 117,10554–10564. [CrossRef] [PubMed]
- Faissner, A. Neuron Migration and Axon Guidance. In: Neuroglia, 3rd ed.; Kettenmann H., Ransom B.R., Eds.; Oxford University Press: New York, USA, 2013; pp.494-503; ISBN 978-0-19-979459-1.
- Simard, M.; Arcuino, G.; Takano, T.; Liu, Q.S.; Nedergaard, M. Signaling at the Gliovascular Interface. J Neurosci. 2003, 23(27):9254 -9262. [CrossRef]
- Rouach N.; Koulakoff A.; Abudara V.; Willecke K.; Giaume, C. Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission. Science 2008, 322(5907) 1551-1555. [CrossRef]
- Bernardinelli, Y.; Magistretti, P.J.; Chatton, J.Y. Astrocytes generate Na+-mediated metabolic waves. Proc Natl Acad Sci U S A. 2004, 101(41):14937-42. [CrossRef]
- Porras, O.H.; Ruminot I.; Loaiza, A.; Barros, L.F. (2007) Na+-Ca2+ cosignaling in the stimulation of the glucose transporter GLUT1 in cultured astrocytes. Glia 2008, 56(1):59-68. [CrossRef]
- Ferrari, R.; Grandi, N.; Tramontano, E.; Dieci, G. Retrotransposons as Drivers of Mammalian Brain Evolution. Life (Basel). 2021, 11(5):376. PMID: 33922141. [CrossRef]
- Wang T.; Medynets, M.; Johnson, K.R.; Doucet-O’Hare, T.T.; DiSanza, B.; Li W, Xu, Y.; Bagnell, A.; Tyagi, R.; Sampson, K. et al. Regulation of stem cell function and neuronal differentiation by HERV-K via mTOR pathway. Proceedings of the National Academy of Sciences. 2020, 117(30):17842–53. [CrossRef]
- Wehle, D.T, Bass, C.S.; Sulc, J.; Mirzaa, G.; Smith, S.E.P. Protein interaction network analysis of mTOR signaling reveals modular organization, Journal of Biological Chemistry 2023. [CrossRef]
- Masvidal, L.; Hulea, L.; Furic, L.; Topisirovic, I.; Larsson, O. mTOR-sensitive translation: Cleared fog reveals more trees. RNA Biol 2017, 14(10):1299-1305. [CrossRef]
- Galambos R. A glia-neural theory of brain function. Proc Natl Acad Sci USA 1961, 47:129–136. [CrossRef]
- Jones, T.A.; Greenough, W.T. Behavioral experience-dependent plasticity of glial-neuronal interactions. In: Volterra A, Magistretti P, Haydon P, editors. The tripartite synapse: glia in synaptic transmission. New York: Oxford University Press; 2002. p. 248-260. ISBN 0 19 850854 9.
- Han, X.; Chen, M.; Wang, F.; Windrem, M.; Wang, S.; Shanz, S.; Xu, Q.; Oberheim, NA; Bekar, L.; Betstadt. S. et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 2013, 12(3),342–353. [CrossRef]
- LeDoux, J. Synaptic Self: How Our Brains Become Who We Are; Penguin Books: New York, NY, USA, 2002; ISBN 0-670-03028-7.
- Sherrington, C. The Brain and Its Mechanism; Cambridge University Press: Cambridge, UK, 1937.
- Shepherd, G.M.; Erulkar, S.D. Centenary of the synapse: From Sherrington to the molecular biology of the synapse and beyond. Trends Neurosci. 1997, 20, 385–392. [CrossRef] [PubMed]
- Ehlers, M.D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 2003, 6(3):231-42. [CrossRef]
- Star, E.N.; Kwiatkowski, D.J.; Murthy, V.N. Rapid turnover of actin in dendritic spines and its regulation by activity. Nat. Neurosci. 2002, 5, 239–246. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).