Preprint
Article

This version is not peer-reviewed.

Formal Calculation of Q-Binomial

Peng Ji  *

Submitted:

04 May 2025

Posted:

06 May 2025

Read the latest preprint version here

Abstract
This article offers formulas for computing various q-binomial nested sums, give three forms of results. More importantly, it reveals the three forms of q-binomial and their interrelationships. It is a powerful tool for q-analysis, which can prove and generalize many classic conclusions in a simple way. This article also utilized it to obtain a large number of new results, including formulas for q-Eulerian numbers and polynomials. By taking the limit of q to 1, it can calculate general nested sums and analyze binomial coefficients.
Keywords: 
;  ;  ;  ;  

1. Calculation Formula

q-binomial: M N q = ( q N 1 ) ( q N 1 1 ) . . . ( q N M + 1 1 ) ( q M 1 ) ( q M 1 1 ) . . . ( q 1 1 ) , q 0 , 1 , abbreviated as G M N , [ N ] q = G 1 N .
( a ; q ) n = ؜ 1 , n = 0 ( 1 a ) ( 1 a q ) . . . ( 1 a q n 1 ) , n > 0 . G g 1 , g 2 . . . g p M = ( q ; q ) M i = 1 p ( q ; q ) g p , g i = M . The following relationship is established:
G 0 N = 1 , G M N = G N M N , G M N = 0 , M > N , M < 0 .
G M N = q M G M N 1 + G M 1 N 1 = G M N 1 + q N M G M 1 N 1 .
n = 0 N 1 q n G M n + K = q M K G M + 1 N + K . K M .
G K M = w Ω ( 0 M K , 1 K ) q i n v ( w ) , inv ( . ) denotes the inversion statistic . [ 1 ]
Lemma 1.1.
n = 0 N 1 q n [ n ] q G M n + K , M > 0 , M K = q 2 ( M K ) + 1 G 1 M + 1 G M + 2 N + K + q M K G 1 M K G M + 1 N + K ( 1 ) = q M 2 K 1 G 1 M + 1 G M + 2 N + K + 1 + q M K ( G 1 M K q K 1 G 1 M + 1 ) G M + 1 N + K ( 2 ) = ( q 2 ( M K ) + 1 G 1 M + 1 q 2 M K + 2 G 1 M K ) G M + 2 N + K + q M K G 1 M K G M + 2 N + K + 1 ( 3 ) .
Proof. 
q n [ n ] q G M n + K = q n q n q n M + K q 1 G M n + K + q n q n M + K 1 q 1 G M n + K = q n ( q n M + K 1 ) q M K 1 q 1 G M n + K + q n q M K 1 q 1 G M n + K + q n q n M + K 1 q 1 G M n + K = q n ( q M + 1 1 ) G 1 M K G M + 1 n + K + q n G 1 M K G M n + K + q n G 1 M + 1 G M + 1 n + K = ( q M K 1 ) G 1 M + 1 G M + 2 N + K q M + 1 K + G 1 M K G M + 1 N + K q M K + G 1 M + 1 G M + 2 N + K q M + 1 K = q 2 ( M K ) + 1 G 1 M + 1 G M + 2 N + K + q M K G 1 M K G M + 1 N + K ( 1 ) = q 2 ( M K ) + 1 G 1 M + 1 q M 2 ( G M + 2 N + K + 1 G M + 1 N + K ) + q M K G 1 M K G M + 1 N + K = q M 2 K 1 G 1 M + 1 G M + 2 N + K + 1 + q M K ( G 1 M K q K 1 G 1 M + 1 ) G M + 1 N + K ( 2 ) = q 2 ( M K ) + 1 G 1 M + 1 G M + 2 N + K + q M K G 1 M K ( G M + 2 N + K + 1 q M + 2 G M + 2 N + K ) = ( q 2 ( M K ) + 1 G 1 M + 1 q 2 M K + 2 G 1 M K ) G M + 2 N + K + q M K G 1 M K G M + 2 N + K + 1 ( 3 ) .
Definition 1.1.
Recursively define q p , p Z ; S U M q ( N ) = S U M q ( N , P S , P T ) , K i , D i C , T i N .
q 0 f ( n ) = f ( n ) , n = 0 N 1 q n q 1 f ( n + 1 ) = f ( N ) , n = 0 N 1 q n f ( n + 1 ) = q 1 f ( N ) , q 1 = q . S U M q ( N , [ K 1 : D 1 ] , [ T 1 = 1 ] ) = n = 0 N 1 q n ( K 1 + [ n ] q D 1 ) . S U M q ( N , [ K 1 : D 1 , K 2 : D 2 ] , [ T 1 , T 2 = T 1 + 2 p ] ) = n = 0 N 1 q n ( K 2 + [ n ] q D 2 ) p S U M q ( n + 1 , [ K 1 : D 1 ] , [ T 1 ] ) . S U M q ( N , P S , [ 1 , 2 . . . M ] ) = n = 0 N 1 i = 1 M q n ( K i + [ n ] q D i ) . S U M q ( N , P S , [ 1 , 3 . . . 2 M 1 ] ) = n M = 0 N 1 q n M ( K M + [ n M ] q D M ) . . . n 2 = 0 n 3 q n 2 ( K 2 + [ n 2 ] q D 2 ) n 1 = 0 n 2 q n 1 ( K 1 + [ n 1 ] q D 1 ) . S U M q ( N , P S , [ 1 , 2 , 4 ] ) = n 3 = 0 N 1 q n 3 ( K 3 + [ n 3 ] q D 3 ) n = 0 n 3 q n ( K 1 + [ n ] q D 1 ) ( K 2 + [ n ] q D 2 ) . S U M q ( N , P S , [ 1 , 3 , 4 ] ) = n 3 = 0 N 1 q n 3 ( K 3 + [ n 3 ] q D 3 ) ( K 2 + [ n 3 ] q D 2 ) n = 0 n 3 q n ( K 1 + [ n ] q D 1 ) . S U M q ( N , P S , [ 1 , 4 ] ) = n 3 = 0 N 1 q n 3 ( K 2 + [ n 3 ] q D 2 ) n 2 = 0 n 3 q n 2 n 1 = 0 n 2 q n 1 ( K 1 + [ n 1 ] q D 1 ) . Abbreviations : [ K 1 : D , K 2 : D . . . K M : D ] = [ K 1 , K 2 . . . K M ] : D , [ K 1 , K 2 . . . K M ] : 1 = [ K 1 , K 2 . . . K M ] . In this paper , the default P S = [ K 1 : D 1 , K 2 : D 2 . . . K M : D M ] , P T = [ T 1 , T 2 . . . T M ] , T i < T i + 1 . Use K , T to represent the set { K i } , { T i } . ( K 1 + T 1 ) ( K 2 + T 2 ) . . . ( K M + T M ) = i = 1 M X i , X i = T i o r K i
Definition 1.2.
X ( T ) =Number of { X 1 , X 2 . . . X M } T .
X T 1 =Number of { X 1 , X 2 . . . X i 1 } T , X K 1 =Number of { X 1 , X 2 . . . X i 1 } K .
X T =Number of { X 1 , X 2 . . . X i } T , X K =Number of { X 1 , X 2 . . . X i } K .
Obviously, X T 1 + X K 1 = i 1 , X T + X K = i . Use the auxiliary form and each X i cannot be exchanged:
Theorem 1.1.
H = T M M , S U M q ( N , P S , P T ) =
F o r m 1 g = 0 M H 1 q ( g ) G H + 1 + g N + H , B i = ؜ q ( T i T i 1 1 ) X T 1 ( K i + G 1 X T 1 D i ) , X i = K i q 1 + ( T i T i 1 ) X T 1 G 1 T i X K 1 D i , X i = T i , F o r m 2 g = 0 M H 2 q ( g ) G H + 1 + g N + H + g , B i = ؜ K i q ( T i X K 1 ) G 1 T i X K 1 D i , X i = K i q ( T i X K 1 ) G 1 T i X K 1 D i , X i = T i F o r m 3 g = 0 M H 3 q ( g ) G T M + 1 N + T M g , B i = ؜ q ( T i T i 1 1 ) X T 1 ( K i + G 1 X T 1 D i ) , X i = K i q 1 + ( T i T i 1 1 ) X T 1 { ( q X T 1 G 1 T i q T i G 1 X T 1 ) D i K i q T i } , X i = T i . H i q ( g ) = H i q ( g , P S , P T ) = H i q ( g , M ) , is defined as X ( T ) = g i = 1 M B i .
Proof. 
S U M q ( 1 , [ K 1 : D 1 ] , [ 1 ] ) = n = 0 N 1 q n ( K 1 + [ n ] q D 1 ) = n = 0 N 1 q n G 1 n D 1 + n = 0 N 1 q n K 1 = q 1 D 1 G 2 N + K 1 G 1 N = q 1 D 1 G 2 N + 1 + ( K 1 q 1 D 1 ) G 1 N = ( q 1 D 1 K 1 q 2 ) G 2 N + K 1 G 2 N + 1 . It s holds when M = 1 , suppose that holds when M . P S 1 = [ P S , K M + 1 : D M + 1 ] , P T 1 = [ P T , T M + 1 = T M + 2 p ] , X = 1 + T M M p . If f ( n + 1 ) = A g G H + 1 + g n + H + 1 + g , then q p f ( n + 1 ) = A g G H + 1 + g p n + H + 1 + g p . S U M q ( N , P S 1 , P T 1 ) = n = 0 N 1 q n ( K M + 1 + [ n ] q D M + 1 ) q p S U M q ( n + 1 ) = n = 0 N 1 q n ( K M + 1 + [ n ] q D M + 1 ) g = 0 M H 2 q ( g ) G X + g n + X + g = g = 0 M ( K M + 1 q X g 1 G 1 X + g + 1 D M + 1 ) H 2 q ( g ) G X + 1 + g N + X + g + g = 0 M q X g 1 G 1 X + g + 1 D M + 1 H 2 q ( g ) G X + 2 + g N + X + g + 1 = g = 0 M ( K M + 1 q ( T M + 1 ( M g ) ) G 1 T M + 1 ( M g ) D M + 1 ) H 2 q ( g ) G T M + 1 ( M + 1 ) + g + 1 N + T M + 1 ( M + 1 ) + g + g = 0 M q ( T M + 1 ( M g ) ) G 1 T M + 1 ( M g ) D M + 1 H 2 q ( g ) G T M + 1 ( M + 1 ) + g + 2 N + T M + 1 ( M + 1 ) + g + 1 = g = 0 M + 1 H 2 q ( g , P S 1 , P T 1 ) G T M + 1 ( M + 1 ) + 1 + g N + T M + 1 ( M + 1 ) + g . Proof of F o r m 2 completion . If f ( n + 1 ) = A g G H + 1 + g n + H + 1 , then q p f ( n + 1 ) = A g G H + 1 + g p n + H + 1 p q p g . S U M q ( N , P S 1 , P T 1 ) = n = 0 N 1 q n ( K M + 1 + [ n ] q D M + 1 ) g = 0 M H 1 q ( g ) G X + g n + X q p g = g = 0 M ( K M + 1 q g + q g G 1 g D M + 1 ) H 1 q ( g ) G X + 1 + g N + X q p g + g = 0 M q 2 g + 1 G 1 X + g + 1 D M + 1 H 1 q ( g ) G X + 2 + g N + X q p g = g = 0 M ( K M + 1 + G 1 g D M + 1 ) H 1 q ( g ) G T M + 1 ( M + 1 ) + 1 + g N + T M + 1 ( M + 1 ) q ( 1 p ) g + g = 0 M q ( 2 p ) g + 1 G 1 T M + 1 ( M g ) D M + 1 H 1 q ( g ) G X + 2 + g N + X = g = 0 M + 1 H 1 q ( g , P S 1 , P T 1 ) G T M + 1 ( M + 1 ) + 1 + g N + T M + 1 ( M + 1 ) . Proof of F o r m 1 completion . If f ( n + 1 ) = A g G T M + 1 n + 1 + T M g , then q p f ( n + 1 ) = A g G T M + 1 p n + 1 + T M g p q p g . S U M q ( N , P S 1 , P T 1 ) = n = 0 N 1 q n ( K M + 1 + [ n ] q D M + 1 ) g = 0 M H 3 q ( g ) G T M + 1 p n + 1 + T M p g q p g = g = 0 M K M + 1 q g H 3 q ( g ) G T M + 2 p N + 1 + T M p g q p g + g = 0 M q g G 1 g D M + 1 H 3 q ( g ) G T M + 3 p N + T M p + 2 g q p g + g = 0 M ( q 2 g + 1 G 1 T M + 2 p q T M + 3 p + g G 1 g ) D M + 1 H 3 q ( g ) G T M + 3 p N + T M p + 1 g q p g = g = 0 M ( K M + 1 q g + q g G 1 g D M + 1 ) H 3 q ( g ) G T M + 3 p N + T M p + 2 g q p g + g = 0 M ( ( q 2 g + 1 G 1 T M + 2 p q T M + 3 p + g G 1 g ) D M + 1 q T M + 3 p K M + 1 q g ) H 3 q ( g ) G T M + 3 p N + T M p + 1 g q p g = g = 0 M ( K M + 1 + G 1 g D M + 1 ) H 3 q ( g ) G T M + 1 + 1 N + T M + 1 g q ( 1 p ) g + g = 0 M ( ( q g G 1 T M + 1 q T M + 1 G 1 g ) D M + 1 q T M + 1 K M + 1 ) H 3 q ( g ) G T M + 1 + 1 N + T M + 1 ( g 1 ) q 1 + ( 1 p ) g = g = 0 M + 1 H 3 q ( g , P S 1 , P T 1 ) G T M + 1 + 1 N + T M + 1 g . Proof of F o r m 3 completion .
n = 0 N 1 q n i = 1 M ( K i + D i q n ) = S U M ( N , [ K 1 + D 1 : D 1 ( q 1 ) . . . K M + D M : D M ( q 1 ) ] , [ 1 , 2 . . . M ] )
= g = 0 M H 1 q ( g ) G 1 + g N . B i = ؜ K i + D i + G 1 X T 1 D i ( q 1 ) = K i + D i + G 1 X T D i ( q 1 ) = K i + q X T D i , X i = K i q 1 + X T 1 G 1 i X K 1 D i ( q 1 ) = q X T G 1 1 + X T 1 D i ( q 1 ) = q X T G 1 X T D i ( q 1 ) = q X T ( q X T 1 ) D i , X i = T i .
Following a similar form, we are able to prove inductively:
Theorem 1.2.
n = 0 N 1 i = 1 M ( K i + D i q n ) = g = 1 M f ( g ) G g N + N K i , f ( g ) = B i ,
B i = ؜ K i , X T 1 = 0 ; K i + q X T 1 1 D i , X T 1 > 0 , X i = K i D i , X T 1 = 0 ; q X T 1 ( q X T 1 1 ) D i , X T 1 > 0 , X i = T i .
Definition 1.3.
lim q 1 H q ( g ) = H ( g ) , S U M q ( N ) = S U M ( N ) .
lim q 1 [ n ] q = n , G M N = ؜ M N . which yields the nested summation formula for K i + n D i .

2. Property

Definition 2.1.
[ n ] q = q n G 1 n , [ n ! ] q = [ n ] q . . . [ 2 ] q [ 1 ] q , [ 0 ! ] q = 1 , [ n ] q + = q n G 1 n , similarly defining [ n ! ] q + .
Theorem 2.1.
(1). q S U M q ( n + 1 , P S , [ 1 , 2 . . . M ] ) = i = 1 M ( K i + [ n ] q D i ) .
(2). At S U M q ( N , [ . . . P S . . . ] , [ . . . T , T + 1 . . . T + M 1 . . . ] ) , K i : D i can exchange orders.
(3). q p S U M q ( N ) = g = 0 M H 1 q ( g ) G X + 1 + g N + X q g p = g = 0 M H 2 q ( g ) G X + 1 + g N + X + g = g = 0 M H 3 q ( g ) G X + M + 1 N + X + M g q g p , X = T M M p .
(4). S U M q ( N , [ [ L 1 ] q , [ L 2 ] q . . . [ L Q ] q , P S ] , [ L 1 , L 2 . . . L Q , P T ] ) = i = 1 Q [ L i ] q S U M q ( N ) . So T 1 can great than 1, T i N .
(5). S U M q ( N , [ [ T 1 ] q , [ T 2 ] q . . . [ T M ] q ] , [ T 1 , T 2 . . . T M ] ) = i = 1 M [ T i ] q G T M + 1 N + T M .
(6) At H q ( g ) , X i K q X T = G M g M = G g M .
Proof. (1) and (2) is derived from the definition of S U M q .
(3) is derived from n = 0 N 1 q n G M n + K = q M K G M + 1 N + K , which has already used in the proof of [1.1].
P S 1 = [ [ L 1 ] q , [ L 2 ] q . . . [ L Q ] q , P S ] , P T 1 = [ L 1 , L 2 . . . L Q , P T ] ) ,
H 2 q ( g < Q , P S 1 , P T 1 ) = 0 , H 2 q ( g Q , P S 1 , P T 1 ) = i = 1 Q [ L i ] q H 2 q ( g Q ) , which proves (4) and (5).
(6) is actually G K M = w Ω ( 0 M K , 1 K ) q i n v ( w ) . □
[ x ] q + [ n ] q = q x q x 1 q 1 + q n 1 q 1 = q n + x 1 q x ( q 1 ) = q x [ n + x ] q . From ( 5 ) : P T = [ 1 , 2 . . . M ] , P S = [ [ T i ] q ] n = 0 N 1 q n [ n + 1 ] q [ n + 2 ] q . . . [ n + M ] q = [ 1 ] q [ 2 ] q . . . [ M ] q G M + 1 N + M . P T = [ 1 , 3 . . . 2 M 1 ] , P S = [ [ T i ] q ] n M = 0 N 1 . . . n 1 = 0 n 2 q i = 1 M n i i = 1 M [ n i + 2 i 1 ] q = [ 1 ] q [ 3 ] q . . . [ 2 M 1 ] q G 2 M N + 2 M 1 . P S = [ 0 , [ 1 ] q , [ 2 ] q . . . [ M 1 ] q ] H 1 q ( g < M ) = H 3 q ( g < M ) = 0 , H 1 q ( M ) = H 3 q ( M ) = q M + ( T 2 T 1 ) + 2 ( T 3 T 2 ) + . . . + ( M 1 ) ( T M T M 1 ) G 1 T i = q M + ( M 1 ) T M i = 1 M 1 T i G 1 T i . P T = [ 1 , 2 . . . M ] n = 0 N 1 q n [ n ] q [ n 1 ] q . . . [ n M + 1 ] q = q M [ 1 ] q [ 2 ] q . . . [ M ] q G M + 1 N . P T = [ 1 , 3 . . . 2 M 1 ] q 0 + 1 + 2 + . . . + ( M 1 ) n M = 0 N 1 . . . n 1 = 0 n 2 q i = 1 M n i i = 1 M [ n i + 1 i ] q = q M + ( M 1 ) ( 2 M 1 ) ( M 1 ) 2 [ 1 ] q [ 3 ] q . . . [ 2 M 1 ] q G 2 M N + M 1 n M = 0 N 1 . . . n 1 = 0 n 2 q i = 1 M n i i = 1 M [ n i + 1 i ] q = q M ( M + 1 ) 2 [ 1 ] q [ 3 ] q . . . [ 2 M 1 ] q G 2 M N + M 1 .
Theorem 2.2.
P T = [ 1 , 2 . . . M ] ,
(1). H 1 q ( g ) = q g ( g + 1 ) k = g M H 2 q ( k ) G g k .
(2). H 1 q ( g ) = k = 0 g H 3 q ( k ) G M g M k q ( g + 1 ) ( g k ) .
(3). H 2 q ( g ) = k = g M ( 1 ) k + g G g k q k ( k + 1 ) + ؜ 2 k g H 1 q ( k ) = k = g M ( 1 ) k + g G g k q g ( g + 1 ) k ( k + 3 ) 2 k g H 1 q ( k ) .
(4). H 3 q ( g ) = k = 0 g ( 1 ) k + g G M g M k q ( g + 1 ) ( g k ) ؜ 2 g k H 1 q ( k ) = k = 0 g ( 1 ) k + g G M g M k q g ( g + 3 ) k ( k + 3 ) 2 H 1 q ( k ) .
Proof. 
Direct verification when M = 1 , assuming M holds . P S 1 = [ P S , K M + 1 : D M + 1 ] , P T 1 = [ P T , T M + 1 ] . H 1 q ( g , M + 1 ) = H 1 q ( g 1 ) q 1 + X T G 1 1 + X T D M + 1 + H 1 q ( g ) ( K M + 1 + G 1 X T D M + 1 ) = q 1 + X T G 1 1 + X T D M + 1 q g ( g 1 ) k = 0 M H 2 q ( k ) G g 1 k + ( K M + 1 + G 1 X T D M + 1 ) q g ( g + 1 ) k = 0 M H 2 q ( k ) G g k = q g G 1 g D M + 1 q g ( g 1 ) k = 0 M H 2 q ( k ) ( G g k + 1 q g G g k ) + ( K M + 1 + G 1 g D M + 1 ) q g ( g + 1 ) k = 0 M H 2 q ( k ) G g k = q g G 1 g D M + 1 q g ( g + 1 ) k = 0 M H 2 q ( k ) G g k + 1 + K M + 1 q g ( g + 1 ) k = 0 M H 2 q ( k ) G g k . ( 1 * ) H 2 q ( g , M + 1 ) = H 2 q ( g 1 ) q g G 1 g D M + 1 + H 2 q ( g ) ( K M + 1 q ( g + 1 ) G 1 g + 1 D M + 1 ) . q g ( g + 1 ) k = 0 M + 1 H 2 q ( k , M + 1 ) G g k = = q g ( g + 1 ) k = 0 M + 1 ( H 2 q ( k 1 ) q k G 1 k D M + 1 + H 2 q ( k ) ( K M + 1 q ( k + 1 ) G 1 k + 1 D M + 1 ) ) G g k = q g ( g + 1 ) k = 1 M + 1 ( H 2 q ( k 1 ) q k G 1 k D M + 1 G g k + q g ( g + 1 ) k = 0 M H 2 q ( k ) ( K M + 1 q ( k + 1 ) G 1 k + 1 D M + 1 ) ) G g k = q g ( g + 1 ) k = 0 M ( H 2 q ( k ) q ( 1 + k ) G 1 1 + k D M + 1 G g k + 1 + q g ( g + 1 ) k = 0 M H 2 q ( k ) ( K M + 1 q ( k + 1 ) G 1 k + 1 D M + 1 ) ) G g k . ( 1 * * ) ( ( 1 * ) ( 1 * * ) ) / ( q g ( g + 1 ) D M + 1 ) = k = 0 M H 2 q ( k ) ( q g G 1 g G g k + 1 q ( 1 + k ) G 1 1 + k G g k + 1 + q ( k + 1 ) G 1 k + 1 G g k ) = k = 0 M H 2 q ( k ) ( . . . ) . ( . . . ) = q g G 1 g G g k + 1 q k + 1 g q ( 1 + k ) G 1 1 + k G g 1 k = 0 . Proof of ( 1 ) is complete . H 1 q ( g , M + 1 ) = q g G 1 g D M + 1 k = 0 M H 3 q ( k ) G M g + 1 M k q g ( g 1 k ) + ( K M + 1 + G 1 g D M + 1 ) k = 0 M H 3 q ( k ) G M g M k q ( g + 1 ) ( g k ) . ( 2 * ) k = 0 M + 1 H 3 q ( k , M + 1 ) G M + 1 g M + 1 k q ( g + 1 ) ( g k ) = k = 0 M q ( ( q k G 1 M + 1 q M + 1 G 1 k ) D M + 1 K M + 1 q M + 1 ) H 3 q ( k ) G M g + 1 M k q ( g + 1 ) ( g k 1 ) + k = 0 M ( K M + 1 + G 1 k D M + 1 ) H 3 q ( k ) G M + 1 g M + 1 k q ( g + 1 ) ( g k ) . ( 2 * * ) Items containing K M + 1 : K M + 1 G M + 1 g M + 1 k q ( g + 1 ) ( g k ) K M + 1 q M + 2 G M + 1 g M k q ( g + 1 ) ( g k 1 ) = K M + 1 G M g M k q ( g + 1 ) ( g k ) . Items does not contain K M + 1 in ( 2 * ) : = q g G 1 g D M + 1 G M g + 1 M k q g ( g 1 k ) + G 1 g D M + 1 G M g M k q ( g + 1 ) ( g k ) . Divide by D M + 1 q g q g ( g 1 k ) ( q 1 ) 1 = ( q g 1 ) G M + 1 g M k + ( q g 1 ) G M g M k q g k = ( q g 1 ) G M + 1 g M + 1 k . Items does not contain K M + 1 in ( 2 * * ) : = q M + 2 q k + 1 q 1 D M + 1 G M g + 1 M k q ( g + 1 ) ( g k 1 ) + G 1 k D M + 1 G M + 1 g M + 1 k q ( g + 1 ) ( g k ) . Divide by D M + 1 q g q g ( g 1 k ) ( q 1 ) 1 = ( q M + 1 k 1 ) G M + 1 g M k + ( q g q g k ) G M + 1 g M + 1 k = ( q g 1 ) G M + 1 g M + 1 k . ( 2 * ) = ( 2 * * ) , proof of ( 2 ) is complete . H 2 q ( g , M + 1 ) = H 2 q ( g 1 ) q g G 1 g D M + 1 + H 2 q ( g ) ( K M + 1 q ( g + 1 ) G 1 g + 1 D M + 1 ) . = q g G 1 g D M + 1 k = 0 M ( 1 ) k + g 1 H 1 q ( k ) G g 1 k q k ( k + 1 ) + ؜ 2 k g + 1 + ( K M + 1 q ( 1 + g ) G 1 g + 1 D M + 1 ) k = 0 M ( 1 ) k + g H 1 q ( k ) G g k q k ( k + 1 ) + ؜ 2 k g . ( 3 * ) k = 0 M + 1 ( 1 ) k + g H 1 q ( k , M + 1 ) G g k q k ( k + 1 ) + ؜ 2 k g = k = 0 M + 1 ( 1 ) k + g ( q k G 1 k D M + 1 H 1 q ( k 1 ) + ( K M + 1 + G 1 k D M + 1 ) H 1 q ( k ) ) G g k q k ( k + 1 ) + ؜ 2 k g = k = 0 M ( 1 ) k + g 1 q 1 + k G 1 1 + k D M + 1 H 1 q ( k ) G g 1 + k q ( k + 1 ) ( k + 2 ) + ؜ 2 k g + 1 + k = 0 M ( 1 ) k + g ( K M + 1 + G 1 k D M + 1 ) H 1 q ( k ) G g k q k ( k + 1 ) + ؜ 2 k g . ( 3 * * )
Items containing K M + 1 in ( 3 * ) and ( 3 * * ) = ( 1 ) k + g K M + 1 G g k q k ( k + 1 ) + ؜ 2 k g . Items does not contain K M + 1 in ( 3 * ) : = q g G 1 g D M + 1 ( 1 ) k + g 1 G g 1 k q k ( k + 1 ) + ؜ 2 k g + 1 q ( 1 + g ) G 1 1 + g D M + 1 ( 1 ) k + g G g k q k ( k + 1 ) + ؜ 2 k g . Divide by D M + 1 q ( 1 + g ) ( 1 ) k + g 1 q k ( k + 1 ) + ؜ 2 k g ( q 1 ) 1 = ( q g 1 ) G g 1 k q k g + 1 + ( q 1 + g 1 ) G g k = q k + 1 G g 1 k q k g + 1 G g 1 k + q 1 + g G g k G g k . ( A * ) Items does not contain K M + 1 in ( 3 * * ) : = ( 1 ) k + g 1 q 1 + k G 1 1 + k D M + 1 G g 1 + k q ( k + 1 ) ( k + 2 ) + ؜ 2 k g + 1 + ( 1 ) k + g G 1 k D M + 1 G g k q k ( k + 1 ) + ؜ 2 k g . Divide by D M + 1 q ( 1 + g ) ( 1 ) k + g 1 q k ( k + 1 ) + ؜ 2 k g ( q 1 ) 1 = ( q 1 + k 1 ) ( q g G g k + G g 1 k ) q 1 + g ( q k 1 ) G g k = q 1 + k G g 1 k q g G g k G g 1 k + q 1 + g G g k . ( A * * ) ( A * ) ( A * * ) = q k g + 1 G g 1 k G g k ( q g G g k G g 1 k ) = G g k + 1 + G g k + 1 = 0 . ( 3 * ) = ( 3 * * ) , proof of ( 3 ) is complete . H 3 q ( g , M + 1 ) = ( ( q g G 1 M + 1 q M + 2 G 1 g 1 ) D M + 1 K M + 1 q M + 2 ) H 3 q ( g 1 ) + ( K M + 1 + G 1 g D M + 1 ) H 3 q ( g ) = ( ( q g G 1 M + 1 q M + 2 G 1 g 1 ) D M + 1 K M + 1 q M + 2 ) k = 0 M ( 1 ) k + g 1 G M g + 1 M k q g ( g k 1 ) ؜ 2 g k 1 H 1 q ( k ) + ( K M + 1 + G 1 g D M + 1 ) k = 0 M ( 1 ) k + g G M g M k q ( g + 1 ) ( g k ) ؜ 2 g k H 1 q ( k ) . ( 4 * ) k = 0 M + 1 ( 1 ) k + g H 1 q ( k , M + 1 ) G M + 1 g M + 1 k q ( g + 1 ) ( g k ) ؜ 2 g k = k = 0 M + 1 ( 1 ) k + g ( q k G 1 k D M + 1 H 1 q ( k 1 ) + ( K M + 1 + G 1 k D M + 1 ) H 1 q ( k ) ) G M + 1 g M + 1 k q ( g + 1 ) ( g k ) ؜ 2 g k = k = 0 M ( 1 ) k + g 1 q 1 + k G 1 1 + k D M + 1 H 1 q ( k ) G M + 1 g M k q ( g + 1 ) ( g k 1 ) ؜ 2 g k 1 + k = 0 M ( 1 ) k + g ( K M + 1 + G 1 k D M + 1 ) H 1 q ( k ) G M + 1 g M + 1 k q ( g + 1 ) ( g k ) ؜ 2 g k . ( 4 * * ) Items containing K M + 1 in ( 4 * ) : = K M + 1 q M + 2 ( 1 ) k + g 1 G M g + 1 M k q g ( g k 1 ) ؜ 2 g k 1 + ( 1 ) k + g K M + 1 G M g M k q ( g + 1 ) ( g k ) ؜ 2 g k . Divide by K M + 1 ( 1 ) k + g q ( g + 1 ) ( g k ) ؜ 2 g k = q M + 1 g G M g + 1 M k + G M g M k = G M g + 1 M k + 1 = Items containing K M + 1 in ( 4 * * ) divided by K M + 1 ( 1 ) k + g q ( g + 1 ) ( g k ) ؜ 2 g k . Items does not contain K M + 1 in ( 4 * ) : = ( q g G 1 M + 1 q M + 2 G 1 g 1 ) D M + 1 ( 1 ) k + g 1 G M g + 1 M k q g ( g k 1 ) ؜ 2 g k 1 + G 1 g D M + 1 ( 1 ) k + g G M g M k q ( g + 1 ) ( g k ) ؜ 2 g k . Divide by D M + 1 ( 1 ) k + g 1 q ( g + 1 ) ( g k ) ؜ 2 g k ( q 1 ) 1 = [ ( q g G 1 M + 1 q M + 2 G 1 g 1 ) G M g + 1 M k q g 1 G 1 g G M g M k ] ( q 1 ) 1 = ( q M g 1 q 1 ) G M g + 1 M k ( q g 1 ) G M g M k . ( B * ) Items does not contain K M + 1 in ( 4 * * ) : = ( 1 ) k + g 1 q 1 + k G 1 1 + k D M + 1 G M + 1 g M k q ( g + 1 ) ( g k 1 ) ؜ 2 g k 1 + ( 1 ) k + g G 1 k D M + 1 G M + 1 g M + 1 k q ( g + 1 ) ( g k ) ؜ 2 g k . Divide by D M + 1 ( 1 ) k + g 1 q ( g + 1 ) ( g k ) ؜ 2 g k ( q 1 ) 1 = ( q 1 + k G 1 1 + k G M + 1 g M k q k 2 G 1 k G M + 1 g M + 1 k ) ( q 1 ) 1 = ( q k q 1 ) G M + 1 g M k ( q k 1 ) G M + 1 g M + 1 k . ( B * * ) ( B * ) ( B * * ) = ( q M g 1 q k ) G M g + 1 M k ( q g 1 ) G M g M k + ( q k 1 ) ( G M g + 1 M k + q g k G M g M k ) = ( q M g 1 1 ) G M g + 1 M k ( q g k 1 ) G M g M k = 0 . ( 4 * ) = ( 4 * * ) , proof of ( 4 ) is complete .
In the calculation of H q ( g ) , X i = ( X i , X i T ) ( X i , X i K ) .
Definition 2.2.
H q ( g , T ) = H q ( g , T , P S , P T ) = H q ( g , T , M ) = X i T B i , H q ( g , K ) = X i K B i
Definition 2.3.
F 0 K = 1 , E 0 K = 1 ,
F g K = 1 λ 1 < . . . < λ g M i = 1 g K λ i , F g N = F g { 1 , 2 . . . N } . E g K = 1 λ 1 . . . λ g M i = 1 g K λ i , E g N = E g { 1 , 2 . . . N } . E g N , q = 1 λ 1 . . . λ g N i = 1 g [ λ i ] q = S 2 q ( N + g , N ) . E g N , q = 1 λ 1 . . . λ g N i = 1 g [ λ i ] q = S 2 q ( N + g , N ) .
Theorem 2.3.
PT = [T,T+1...T+M-1] and D i = 1 , H 1 q ( g , K ) = F M g K E 0 g , q + F M g 1 K E 1 g , q + . . . + F 0 K E M g g , q .
Proof. 
P S 1 = [ P S , K M + 1 ] , P T 1 = [ P T , T M + 1 ] . Using induction to prove . H 1 q ( g , K , M + 1 ) = H 1 q ( g 1 , K ) + H 1 q ( g , K ) ( K M + 1 + G 1 g ) . F A { K 1 , K 2 . . . K M , K M + 1 } i n H 1 q ( g , K , M + 1 ) has three sources . = F A K E M ( g 1 ) A g 1 , q + F A 1 K E M g ( A 1 ) g , q K M + 1 + F A K E M g A g , q G 1 g = F A K ( E M + 1 g A g 1 , q + E M g A g , q G 1 g ) + F A 1 K E M + 1 g A g , q K M + 1 = F A K E M + 1 g A g , q + F A 1 K E M + 1 g A g , q K M + 1 = F A { K 1 , K 2 . . . K M , K M + 1 } E M + 1 g A g , q .
So P T = [ 1 , 2 . . . M ] , we can always choose K , q p S U M q ( X p , P S , P T ) = g = 0 M H 1 q ( g ) q p g G 1 + p + g X , H 1 q ( M ) = [ M ! ] q + , H 1 q ( g < M ) p p g can take any value. So g = 0 M a g G 1 + p + g X , 1 + p 0 , can be converted to a M [ M ! ] q + q p M q p S U M q ( X p , P S , P T ) . For an arbitrary PT1, S U M q ( N , P S 1 , P T 1 ) can be converted into constant × q ( T M M ) S U M q ( N , P S , P T ) .
In this article, if g = 0 M a g G 1 + p + g X = g = 0 M b g G 1 + p + g X + g = g = 0 M c g G 1 + p + M X + M g , 1 + p 0 , then c is a constant,
a g = c × H 1 q ( g , P S , P T ) q p g , b g = c × H 2 q ( g , P S , P T ) , c g = c × H 3 q ( g , P S , P T ) q p g . From [2.2], [2.1(3)]:
Theorem 2.4.
X , K N , M > K , 1 + p 0 , a g * = a g q p g , c g * = c g q p g .
If g = 0 M a g G 1 + p + g X = g = 0 M b g G 1 + p + g X + g = g = 0 M c g G 1 + p + M X + M g , then
a g * = q g ( g + 1 ) k = g M b k G g k = k = 0 g G M g M k q ( g + 1 ) ( g k ) c k * . b g = ( 1 ) g G g k q g ( g + 1 ) 2 k = g M ( 1 ) k G g k q k ( k + 3 ) 2 k g a k * . c g * = ( 1 ) g G g k q g ( g + 3 ) 2 k = 0 g ( 1 ) k G M g M k q k ( k + 3 ) 2 a k * .
g = 0 M a g G 1 + p + g X can be coverted to g = 0 M K ( . . . ) G 1 + p + K + g X + K is equivalent to
k = g M ( 1 ) k G g k q k ( k + 1 ) + ؜ 2 k g a k * = 0 , 0 g < K . k = 0 g ( 1 ) k G M g M k q g + 1 ( g k ) ؜ 2 g k a k * = 0 , 0 M g < K .
The latter part refers to the necessary and sufficient conditions for merging, which correspond to b g = c M g = 0 .

3. Application

Proposition 3.1.
(1). 0 λ 1 λ 2 . . . λ M N q i = 1 M λ i = G M N + M = g = 0 M ( 1 ) g q M g + g ( g + 1 ) 2 G g M G 2 M N + 2 M g .
(2). A λ 1 < λ 2 < . . . < λ M B q i = 1 M λ i = q ؜ 2 M + A M G M B A + 1 , A , B Z , 1 λ 1 < . . . < λ g M q i = 1 M λ i = q ؜ 2 g + 1 G g M .
(3). i = 1 M ( a + q A + i z ) = g = 0 M q ؜ 2 g + ( A + 1 ) g G g M z g a M g .
(4). G M K N K = g = 0 M ( 1 ) g q ( M K ) g + g ( g + 1 ) 2 G g M G 2 M K N + M K g , N M K 0 .
(5). g = 0 M ( 1 ) g q g ( g + 1 ) 2 G g M G K N g = ( q M ; q 1 ) M K , N M K 0 .
(6). g = 0 M ( 1 ) g q g ( g + 1 ) 2 G g M G M + 1 N g = i = 0 N M 1 q ( M + 1 ) i , N M + 1 , M > 0 .
(7). ؜ M N + M q 2 = g = 0 M ( 1 ) g q g 2 ؜ g M q 2 G 2 M N + 2 M g .
Proof. 
P S = [ 1 , 1 . . . 1 ] : 0 , P T = [ 1 , 3 . . . 2 M 1 ] , H 1 q ( g > 0 ) = 0 , H 1 q ( 0 ) = 1 , S U M ( N + 1 ) = G M N + M pre - equation of ( 1 ) . A λ 1 < . . . < λ M B q i = 1 M λ i = q A + ( A + 1 ) + . . . + ( A + M 1 ) 0 λ 1 . . . λ M B A M + 1 q i = 1 M λ i ( 2 ) . At H 3 q ( g ) , B i = ؜ q X T = q i X K , X i = K i q X T ( q 2 i 1 ) , X i = T i , Extract q i form B i , after extraction , B i = ؜ q X K , X i = K i q X T ( q i 1 ) , X i = T i , H 3 q ( g ) = q ؜ 2 M + 1 ؜ 2 M g + 1 ( 1 ) g q ؜ 2 g + 1 g 1 λ 1 < . . . < λ g M q i = 1 g λ i = ( 1 ) g q ؜ 2 M + 1 ؜ 2 M g + 1 + ؜ 2 g + ؜ 2 g + 1 G g M . S U M ( N + 1 ) = G M N + M = g = 0 M H 3 q ( g ) G 2 M N + 2 M g post - equation of ( 1 ) . Comparing the coefficients of z g on both sides of ( 3 ) , combined with ( 2 ) , proves that ( 3 ) . A = 1 , it s Rothe s q - Binomial Theorem i = 1 M ( a + q i 1 z ) = g = 0 M q ؜ 2 g G g M z g a M g . Using the post - equation of ( 1 ) and q K to obtain ( 4 ) K = M , g = 0 M ( 1 ) g q g ( g + 1 ) 2 G g M G M N g = 1 = g = 0 M ( 1 ) g q g ( g + 1 ) 2 G g M ( q M G M N g 1 + G M 1 N g 1 ) = q M + g = 0 M ( 1 ) g q g ( g + 1 ) 2 G g M G M 1 N g 1 g = 0 M ( 1 ) g q g ( g + 1 ) 2 G g M G M 1 N g 1 = 1 q M . Continuing the same process ( 5 ) . K = 0 , g = 0 M ( 1 ) g q g ( g + 1 ) 2 G g M = ( q ; q ) M ; K = M , g = 0 M ( 1 ) g q g ( g + 1 ) 2 G g M G M N g = 1 , it s a special case of ( 4 ) . Using the same recursive and inductive methods can obtain ( 6 ) . S U M q ( N + 1 , [ 1 , 1 . . . 1 ] : q 1 , [ 1 , 3 . . . 2 M 1 ] ) = 0 λ 1 . . . λ M N q 2 λ i = ؜ M N + M q 2 . A t H 1 q ( g ) , B i = ؜ q ( T i T i 1 1 ) X T 1 ( K i + G 1 X T 1 D i ) = q 2 X T 1 = q 2 X T , X i = K i q 1 + ( T i T i 1 ) X T 1 G 1 T i X K 1 D i = q 1 + 2 X T 1 ( q 2 i 1 X K 1 1 ) = q 2 X T 1 ( q i + X T 1 1 ) , X i = T i , Unable to derive a concise expression for H 1 q ( g ) , the same applies to H 2 q ( g ) . A t H 3 q ( g ) , B i = ؜ q X T 1 ( K i + G 1 X T 1 D i ) = q X T 1 ( 1 + G 1 X T 1 ( q 1 ) ) = q 2 X T 1 = q 2 X T , X i = K i q 1 + X T 1 { ( q X T 1 G 1 T i q T i G 1 X T 1 ) D i K i q T i } = q 1 + 2 X T 1 = q 1 + 2 X T , X i = T i . H 3 q ( g ) = ( 1 ) g q g + 2 ( i = 1 g i ) X i K q 2 X T = ( 1 ) g q g 2 ؜ g M q 2 .
A λ 1 < λ 2 < . . . < λ M B q i = 1 M λ i D = q ؜ 2 M D + A M D ؜ M B A + 1 q D . i = 1 A ( 1 + q C + D i z ) = g = 0 A q g C 1 λ 1 . . . λ g A q i = 1 g λ i D z g = g = 0 A q ؜ 2 g D + g D + g C ؜ g A q D z g . i = 1 A ( a + q ( 2 i 1 ) D z ) = g = 0 A q g 2 D ؜ g A q 2 D z g a A g , i = 1 B ( a 1 + q ( 2 i 1 ) D z 1 ) = g = 0 B q g 2 D ؜ g B q 2 D z g a ( B g ) . i = 1 A ( a + q ( 2 i 1 ) D z ) i = 1 B ( a 1 + q ( 2 i 1 ) D z 1 ) = k = B A z k f ( k ) . f ( k ) = i = 0 A + B ؜ i A q 2 D ؜ i k B q 2 D q i 2 D q ( i k ) 2 D a A i a ( B ( i k ) ) = q k 2 D a A B k i = 0 A + B ؜ i A q 2 D ؜ i k B q 2 D q 2 D ( i ( i k ) ) = q k 2 D a A B k ؜ A k A + B q 2 D .
The last step used q - Vandermorde identity . a = D = 1 , it s MacMahon s q - binomial theorem . [ 2 ] pp 74 | q | , | x | < 1 , 1 ( x ; q ) M + 1 = ( 1 + x + x 2 + . . . ) ( 1 + x q + x 2 q 2 + . . . ) ( 1 + x q 2 + + x 2 q 4 + . . . ) . . . ( 1 + x q M + + x 2 q 2 M + . . . ) . When we multiply this out , the coefficient of x 2 will be q a q b , 0 a b M , and so forth . ( 1 ) 1 ( x ; q ) M + 1 = k = 0 G k M + k x k , 1 ( x ; q ) = k = 0 x k ( q ; q ) k , it s Euler and Cauchy s identity [ 2 ] pp 121 123 ( 3 ) ( x , q ) M = g = 0 M q ؜ 2 g G g M x g ( x , q ) = k = 0 q ؜ 2 k x k ( q ; q ) k , it s Euler s identity [ 2 ] pp 129 C 2 , P S = [ 1 , 1 . . . 1 ] : q 1 , P T = [ 1 , C + 1 , 2 C + 1 . . . C ( M 1 ) + 1 ] , A t H 3 q ( g ) , B i = ؜ q C X T , X i = K i q C X T 1 + 1 , X i = T i X = C ( M 1 ) M + 2 , M > 1 , 0 λ 1 . . . λ X N 1 q i = 1 X f i λ i = g = 0 M ( 1 ) g q g + C g ( g 1 ) 2 ؜ g M q C G C ( M 1 ) + 2 N + C ( M 1 ) + 1 g , f i = 2 , i 1 ( mod C 1 ) ; f i = 1 , i ¬ 1 ( mod C 1 ) .
Proposition 3.2.
(1). G M + 1 N + M = g = 0 M q ( g + 1 ) g G g M G 1 + g N ; G M + 1 + p N + M + p = g = 0 M q ( g + 1 + p ) g G g M G p + 1 + g N + p = g = 0 M + p q ( g + 1 ) g G g M + p G 1 + g N , M + p 0 .
(2). k = g M ( 1 ) k G g k G k M q ؜ 2 k g k = 0 , g < M ; k = 0 g ( 1 ) k G M g M k G k M q ؜ 2 k = 0 , g > 0 .
(3). M > g + x , k = g M ( 1 ) k G g k G k M q ؜ 2 k ( g + x ) k = 0 ; M > g , k = g M ( 1 ) k G g k G k M q ؜ 2 k ( M 1 ) k = 0 .
(4). g > x , k = 0 g ( 1 ) k G M g M k G k M q ؜ 2 k x k = 0 ; g > 0 , k = 0 g ( 1 ) k G M g M k G k M q ؜ 2 k ( g 1 ) k = 0 .
Proof. 
P S = [ [ 1 ] q , [ 2 ] q . . . [ M ] q ] , P S 1 = [ [ M ] q , [ M 1 ] q . . . [ 1 ] q ] , P T = [ 1 , 2 . . . M ] S U M q ( N , P S , P T ) = [ M ! ] q G M + 1 N + M = g = 0 M H 1 q ( g ) G 1 + g N = S U M q ( N , P S 1 , P T ) . I n H 1 q ( g , P S 1 , P T ) , X i K , B i = [ M + 1 i ] q + G 1 X T 1 = q ( M i + 1 ) G 1 M + 1 i + X T 1 . H 1 q ( g , K ) = G 1 M G 1 M 1 . . . G 1 g + 1 q ( M + 1 ) ( M g ) 1 λ 1 < . . . < λ M g M q λ 1 + . . . + λ M g . = G 1 M G 1 M 1 . . . G 1 g + 1 q ؜ 2 M g + 1 ( M + 1 ) ( M g ) G M g M . H 1 q ( g ) = q i = 1 g i [ g ! ] q H 1 q ( g , K ) . H 1 q ( g ) [ M ! ] q = q ؜ 2 M g + 1 ( M + 1 ) ( M g ) + i = 1 M i + i = 1 g i G M g M = q g ( g + 1 ) G g M , this and [ 2.1 ( 3 ) ] yields ( 1 ) . It s q - Vandermorde identity : G M + t N + M = G N t N + M = g = 0 M q g ( g + t ) G g M G g + t N . ( 2 ) is obtained from [ 2.4 ] . It is obvious from q - Binomial theorem that k = 0 M ( 1 ) k q ؜ 2 k G k M = 0 . k = g M ( 1 ) k G g k q ؜ 2 k g k G k M = k = g M ( 1 ) k G g k q ؜ 2 k g k G k M 1 + q M k = g M ( 1 ) k G g k q ؜ 2 k g k G k 1 M 1 q k . M > 1 + g , k = g M ( 1 ) k G g k q ؜ 2 k g k G k M 1 = 0 k = g M ( 1 ) k G g k q ؜ 2 k ( g + 1 ) k G k 1 M 1 = 0 . k = g M ( 1 ) k G g k q ؜ 2 k g k G k M q k = k = g M ( 1 ) k G g k q ؜ 2 k g k G k M 1 + k = g M ( 1 ) k G g k q ؜ 2 k ( g + 1 ) k G k 1 M 1 = 0 . Similarly , M > g + x , k = g M ( 1 ) k G g k q ؜ 2 k G k M q ( g + x ) k = 0 ( 3 ) . k = 0 g ( 1 ) k G M g M k G k M q ؜ 2 k = k = 0 g ( 1 ) k G M g M k q ؜ 2 k G k M 1 + q M k = 0 g ( 1 ) k G M g M k q ؜ 2 k k G k 1 M 1 = 0 . ( 1 ) k G M g M k q ؜ 2 k k G k 1 M 1 = q 1 ( 1 ) k G M 1 ( g 1 ) M 1 ( k 1 ) q ؜ 2 k 1 G k 1 M 1 g > 0 , k = 0 g ( 1 ) k G M g M k q ؜ 2 k G k M 1 = 0 . k = 0 g ( 1 ) k G M g M k q ؜ 2 k k G k M = k = 0 g ( 1 ) k G M g M k q ؜ 2 k G k M 1 + q 1 k = 0 g ( 1 ) k G M 1 ( g 1 ) M 1 ( k 1 ) q ؜ 2 k 1 G k 1 M 1 = 0 . Similarly , g > x , k = 0 g ( 1 ) k G M g M k q ؜ 2 k x k G k M = 0 .
Proposition 3.3.
If g = 0 M a g G g n = i = 1 M ( K i + [ n ] q D i ) then g = 0 M a g G g T + g G T + g n + T = i = 1 M ( K i + [ n ] q D i ) G T n + T .
Proof. 
P T 1 = [ 1 , 2 . . . M ] , P T 2 = [ T + 1 , T + 2 . . . T + M ] , q S U M ( n + 1 , P S , P T 1 ) = i = 1 M ( K i + [ n ] q D i ) , q S U M ( n + 1 , P S , P T 2 ) = i = 1 M ( K i + [ n ] q D i ) G T n + T , At H 1 q ( g ) , B i of P T 1 = ؜ ( K i + G 1 X T D i ) , X i = K i q X T G 1 X T D i , X i = T i , B i of P T 2 = ؜ ( K i + G 1 X T D i ) , X i = K i q X T G 1 T + X T D i , X i = T i . H 1 q ( g , P S , P T 2 ) = H 1 q ( g , P S , P T 1 ) G 1 T . . . G 1 T + g G 1 1 . . . G 1 g = H 1 q ( g , P S , P T 1 ) G g T + g , a g = constant × H 1 q ( g , P S , P T 1 ) q g
For D i = ( q 1 ) K i , P S = [ T , T + D . . . T + ( M 1 ) D ] , H 3 q ( g ) and T are not related, similar equations exist.
Proposition 3.4.
x 0 ,
(1). k = 0 M ( 1 ) k + g G k M G g k q k ( k 1 ) 2 g k + x k z k = q g ( g 1 ) 2 g 2 + x g G g M ( z q x ; q ) M g z g .
(2). k = 0 M ( 1 ) k G k M G M g M k q k ( k 1 ) 2 + x k z k = G g M ( z q x ; q ) g .
Proof. 
For ( 1 ) : g = 0 , it s [ 3.1 ( 3 ) ] . When g = M , it clearly holds . Prove by induction . k = 0 M ( 1 ) k + g ( G k M 1 + q M k G k 1 M 1 ) G g k q k ( k 1 ) 2 g k + x k z k = q g ( g 1 ) 2 g 2 + x g G g M 1 ( z q x ; q ) M 1 g z g + q M k = 0 M ( 1 ) k + g G k 1 M 1 G g k q k ( k 1 ) 2 g k + x k k z k = q g ( g 1 ) 2 g 2 + x g G g M 1 ( z q x ; q ) M 1 g z g q M k = 0 M ( 1 ) k + g G k M 1 ( G g k + q k + 1 g G g 1 k ) q k ( k 1 ) 2 g ( k + 1 ) + x ( k + 1 ) 1 z k + 1 = q g ( g 1 ) 2 g 2 + x g ( G g M 1 ( z q x ; q ) M 1 g z g z g + 1 q M + x g 1 G g M 1 ( z q x ; q ) M 1 g ) q M z k = 0 M ( 1 ) k + g G k M 1 q k + 1 g G g 1 k q k ( k 1 ) 2 g ( k + 1 ) + x ( k + 1 ) 1 z k = q g ( g 1 ) 2 g 2 + x g G g M 1 ( z q x ; q ) M g z g + q M + x 2 g z k = 0 M ( 1 ) k + g 1 G k M 1 G g 1 k q k ( k 1 ) 2 ( g 1 ) k + x k z k = ( z q x ; q ) M g z g ( q g ( g 1 ) 2 g 2 + x g G g M 1 + q ( g 1 ) ( g 2 ) 2 ( g 1 ) 2 + x ( g 1 ) q M + x 2 g G g 1 M 1 ) = q g ( g 1 ) 2 g 2 + x g ( z q x ; q ) M g z g ( G g M 1 + q M g G g 1 M 1 ) ( 1 ) . For ( 2 ) : g = M , it s [ 3.1 ( 3 ) ] . When g = 0 , it clearly holds . k = 0 M ( 1 ) k ( q k G k M 1 + G k 1 M 1 ) G M g M k q k ( k 1 ) 2 + x k z k = k = 0 M ( 1 ) k G k M 1 G M g M k q k ( k 1 ) 2 + ( x + 1 ) k z k + k = 0 M ( 1 ) k G k 1 M 1 G M 1 ( g 1 ) M 1 ( k 1 ) q k ( k 1 ) 2 + x k z k = k = 0 M ( 1 ) k G k M 1 G M 1 ( g 1 ) M 1 k q k ( k 1 ) 2 + ( x + 1 ) k z k + k = 0 M ( 1 ) k G k M 1 q g k G M 1 g M 1 k q k ( k 1 ) 2 + ( x + 1 ) k z k z k = 0 M ( 1 ) k G k M 1 G M 1 ( g 1 ) M 1 k q k ( k + 1 ) 2 + x ( k + 1 ) z k = G g 1 M 1 ( z q 1 + x ; q ) g 1 z q x G g 1 M 1 ( z q 1 + x ; q ) g 1 + q g G g M 1 ( z q x ; q ) g ( 2 ) .
Proposition 3.5.
k = 0 M ( 1 ) k + g G k M G g k = ؜ 0 , M + g 1 ( mod 2 ) G g M ( q ; q 2 ) M g 2 , M + g 0 ( mod 2 ) ; k = 0 M ( 1 ) k + g G k M G M g M k = ؜ 0 , g 1 ( mod 2 ) G g M ( q ; q 2 ) g 2 , g 0 ( mod 2 ) .
Proof. 
M + g is odd , ( 1 ) k + g G k M G g k = ( 1 ) k + g ( q ; q ) M ( q ; q ) g ( q ; q ) k g ( q ; q ) M k = ( 1 ) g + M k + g G M k + g M G g M k + g S u m = 0 . M + g is even , use induction to prove . Sum = k = 0 M ( 1 ) k + g G k M 1 G g k + k = 0 M ( 1 ) k + g G k 1 M 1 G g k q M k = 0 + k = 0 M ( 1 ) k + g G k 1 M 1 G g k q M k = k = 0 M ( 1 ) k + g G k 1 M 1 G g k 1 q M k + k = 0 M ( 1 ) k + g G k 1 M 1 G g 1 k 1 q M g = k = 0 M ( 1 ) k + g 1 G k 1 M 1 G g k 1 ( 1 q M k ) + k = 0 M ( 1 ) k + g G k 1 M 1 G g 1 k 1 q M g = k = 0 M ( 1 ) k + ( g + 1 ) G k M 1 G g + 1 k ( 1 q g + 1 ) + k = 0 M ( 1 ) ( k 1 ) + ( g 1 ) G k 1 M 1 G g 1 k 1 q M g = G g + 1 M 1 ( q ; q 2 ) ( M g 2 ) / 2 ( 1 q g + 1 ) + q M g G g 1 M 1 ( q ; q 2 ) ( M g ) / 2 = ( G g M 1 + q M g G g 1 M 1 ) ( q ; q 2 ) ( M g ) / 2 . Replace k by M k , g by M g to complete the proof . g = 0 , It s Gauss s q - Binomial theorems [ 2 ] pp 61
Proposition 3.6.
i = 1 M ( b + q A + i z ) = g = 0 M i = 1 g ( q M + 1 i 1 ) i = 1 M g ( b + q A + 1 i z ) G g M z g q g ( g + A M ) .
Proof. 
P S = [ b + q A z : ( q 1 ) q A z , b + q A 1 z : ( q 1 ) q A 1 z . . . b + q A M + 1 z : ( q 1 ) q A M + 1 z ] , P T = [ 1 , 2 . . . M ] . q 1 S U M q ( M + 1 ) = i = 1 M ( b + q M + A i + 1 z ) = i = 1 M ( b + q A + i z ) = g = 0 M H 1 q ( g ) G g M q g . A t H 1 q ( g ) , B i = ؜ b + q X T 1 q A i + 1 z = b + q A X K 1 z , X i = K i q X T ( q X T 1 ) q A i + 1 z , X i = T i . H 1 q ( g ) = q g ( A + 1 ) + i = 1 g i z g i = 1 g ( q i 1 ) [ M λ 1 < . . . < λ g 1 q i = 1 g λ i ] i = 1 M g ( a + q A + 1 i z ) = q g ( A + 1 ) + ؜ 2 g + 1 q ؜ 2 g M g G g M z g i = 1 g ( q i 1 ) i = 1 M g ( b + q A + 1 i z ) . i = 1 M ( b + q A + i z ) = g = 0 M i = 1 g ( q i 1 ) i = 1 M g ( b + q A + 1 i z ) G g M G g M q g ( g + A M + 1 ) q g z g .
b = 1 , z = 1 , i = 1 M ( 1 q A + i ) = g = 0 M i = 1 g ( 1 q M + 1 i ) i = 1 M g ( 1 q A + 1 i ) G g M q g ( g + A M ) G M A + M = g = 0 M G M g A G g M q g ( g + A M ) , it s q - Vandermorde identity . i = 1 M ( b q A + i z ) = g = 0 M i = 1 g ( z q g + A M q 1 i + g + A z ) i = 1 M g ( b q A + 1 i z ) G g M . = g = 0 M i = 1 g ( z q g + A M q g i q A + 1 z ) i = 1 M g ( b q A + 1 i ( g + A M ) z q g + A M ) G g M . a = q A + 1 z , d = z q A M i = 1 M ( b q i 1 a ) = g = 0 M i = 1 g ( d q g q g i a ) i = 1 M g ( b q M g i d q g + 1 ) G g M . It can be compared to Jacobi s q - binomial theorem [ 2 ] pp 71 i = 1 M ( b q i 1 a ) = g = 0 M i = 1 g ( c q g i a ) i = 1 M g ( b q M g i c ) G g M .
Proposition 3.7.
P S = [ [ T i ] q ] , P S 1 = [ [ K ] q , [ K + 1 ] q . . . [ K + M 1 ] q ] , P T 1 = [ T , T + 1 . . . T + M 1 ] .
(1). H 1 q ( g , P S , P T ) = i = 1 M [ T i ] q q ( g + 1 + p ) g G g M , p = T M M .
(2). H 1 q ( g , P S 1 , P T 1 ) = i = 1 g [ T 1 + i ] q i = 1 M g [ K + M i ] q G g M q ؜ 2 g + 1 ( K + M ) ( M g ) + ؜ 2 M g + 1 .
(3). K = { P S 1 } , F M g K E 0 g , q + F M g 1 K E 1 g , q + . . . + F 0 K E M g g , q = i = 1 M g [ K + M i ] q G g M q ؜ 2 M g + 1 ( K + M ) ( M g ) .
Proof. 
g = 0 M H 1 q ( g ) G 1 + p + g N + p = [ T i ] q G T M + 1 N + T M = [ T i ] q G M + p + 1 N + M + p , [ 3.2 ] yields ( 1 ) , [ 2.4 ] can also reach the conclusion . At ( 2 ) , K i can exchange order , let P S = [ [ K + M 1 ] q . . . [ K + 1 ] q , [ K ] q ] . B i o f H 1 q ( g ) = ؜ q ( K + M i ) G 1 K + M i + X T , X i = K i q X T G 1 T + X T 1 , X i = T i . H 1 q ( g ) = q ؜ 2 g + 1 i = 1 g [ T 1 + i ] q H 1 q ( g , K ) . H 1 q ( g , K ) = i = 1 M g [ K + M i ] q q ( K + M ) ( M g ) q ؜ 2 M g + 1 G g M and [ 2.3 ] yields ( 2 ) and ( 3 ) . If K = T , then p = T - 1 , q ؜ 2 g + 1 ( T + M ) ( M g ) + ؜ 2 M g + 1 = q g ( g + 1 + p ) i = 1 M ( T 1 + i ) , it s compatible with ( 1 ) .
F o r H 1 ( g ) , ( 1 ) = T i ؜ g M , ( 2 ) = i = 1 g ( T 1 + i ) i = 1 M g ( K + M i ) ؜ g M . ( 1 q ) A + M ( q ; q ) A ( q ; q ) M q S U M ( N , [ [ 1 ] q , [ 2 ] q . . . [ A ] q , [ B + 1 ] q , [ B + 2 ] q . . . [ B + M ] q ] , [ 1 , 2 . . . A , A + 1 , A + 2 . . . A + M ] ) = G A n + A G M n + M + B = ( 1 q ) A + M ( q ; q ) A ( q ; q ) M [ A ! ] q q S U M ( N , [ [ B + 1 ] q . . . [ B + M ] q ] , [ A + 1 . . . A + M ] ) . ( 1 q ) A + M ( q ; q ) A ( q ; q ) M q S U M ( N , [ [ X ] q , [ X 1 ] q . . . [ X A + 1 ] q , [ Y ] q , [ Y + 1 ] q . . . [ Y + M 1 ] q ] , [ 1 , 2 . . . A + M ] ) 0 Y M , P S 1 = [ [ 1 ] q , [ 2 ] q . . . [ Y ] q , [ 0 ] q , [ 1 ] q , [ 2 ] q . . . [ ( M Y ) + 1 ] q , [ X ] q , [ X 1 ] q . . . [ X A + 1 ] q ] , = G A n + X G M n + Y = ( 1 q ) A + M ( q ; q ) A ( q ; q ) M q S U M ( N , P S 1 , [ 1 , 2 . . . A + M ] ) = ( 1 q ) A + M ( q ; q ) A ( q ; q ) M [ Y ! ] q q S U M ( N , [ [ 0 ] q . . . [ ( M Y ) + 1 ] q , [ X A + 1 ] q . . . [ X ] q ] , [ Y + 1 . . . A + M ] ) . If H 1 q ( g ) > 0 , then X 1 , X 2 . . . X M Y T , so H 1 q ( g < M Y ) = 0 . It s not difficult to deduce H 1 q ( g M Y ) . They can obtain the formula for G A n + A G M n + M + B and G A n + X G M n + Y , 0 Y M . H 1 q ( g , [ [ 1 ] q , [ 2 ] q . . . [ M ] q ] , [ 1 , 2 . . . M ] ) = i = 1 M [ T i ] q q ( g + 1 ) g G g M = q M ( M + 1 ) 2 + g ( g + 1 ) i = 1 M G 1 i G g M . B i o f H 1 q ( g ) = ؜ q T i G 1 T i + X T 1 , X i = K i q T i q T i + X T G 1 T i X K 1 , X i = T i B i = ؜ G 1 i + X T 1 , X i = K i q i G 1 i X K 1 , X i = T i , X ( T ) = g i = 1 M B i = q g ( g + 1 ) 2 i = 1 M G 1 i G g M , B i = ؜ G 1 i + X T 1 , X i = K i q i X T G 1 i X K 1 = q X K G 1 i X K 1 , X i = T i , X ( T ) = g i = 1 M B i = i = 1 M G 1 i G g M . Promote this conclusion :
Definition 3.1.
Set T come from p Source: S 1 , S 2 . . . S p .
D i f f ( S x , S x ) = 0 , D i f f ( S x , S y ) = D i f f ( S y , S x ) = 1 , x > y . D i f f ( T i , T j ) = D i f f ( S x , S y ) , T i S x , T j S y .
Proposition 3.8.
g 1 + . . . + g p = M , g i = | S i | i = 1 M ؜ G 1 T i + j < i D i f f ( T j , T i ) q j < i , D i f f ( T j , T i ) = 1 1 = G g 1 , g 2 . . . g p M i = 1 M G 1 T i , T i i .
Proof. 
Record the sum as W q ( g 1 , g 2 , . . . g p , P T ) . W ( 1 , 1 , [ T 1 , T 2 ] ) = G 1 T 1 G 1 T 2 + 1 + G 1 T 1 G 1 T 2 1 q = G 1 T 1 G 1 T 2 G 1 2 , it s holds . Suppose W q ( g 1 , g 2 , P T ) holds , W q ( g 1 , g 2 + 1 , [ P T , T M + 1 ] ) = T M + 1 S o u r c e 1 + T M + 1 S o u r c e 2 = W q ( g 1 , g 2 , P T ) G 1 T M + 1 + g 1 + W q ( g 1 1 , g 2 + 1 , P T ) G 1 T M + 1 ( g 2 + 1 ) q g 2 + 1 . = ( i = 1 M G 1 T i ) G g 1 , g 2 M G 1 T M + 1 + g 1 + ( i = 1 M G 1 T i ) G g 1 1 , g 2 + 1 M G 1 T M + 1 ( g 2 + 1 ) q g 2 + 1 . Just need to prove : G g 1 M G 1 T M + 1 + g 1 + G g 1 1 M G 1 T M + 1 ( M g 1 + 1 ) q M g 1 + 1 = G 1 T M + 1 G g 1 M + 1 . ( R i g h t s i d e ) × ( q M g 1 + 1 1 ) / G g 1 M = ( q T M + 1 1 + . . . + q + 1 ) ( q M + 1 1 ) = ( 1 ) . ( L e f t s i d e ) × ( q M g 1 + 1 1 ) / G g 1 M = ( q M g 1 + 1 1 ) G 1 T M + 1 + g 1 + ( q g 1 1 ) G 1 T M + 1 ( M g 1 + 1 ) q M g 1 + 1 = ( q M g 1 + 1 1 ) ( q T M + 1 + g 1 1 + . . . + q + 1 ) + ( q g 1 1 ) ( q T M + 1 1 + . . . + q M g 1 + 2 + q M g 1 + 1 ) = ( 2 ) . ( 1 ) ( 2 ) = 0 It s holds when p = 2. W q ( g 1 , g 2 + g 3 , P T ) = G g 1 , g 2 + g 3 g 1 + g 2 + g 3 i = 1 M G 1 T i . Every product has g 2 + g 3 factors come from S o u r c e 2 , divide them to g 2 × S o u r c e 2 + g 3 × S o u r c e 3 , g 1 - factors are invariant , ( g 2 + g 3 ) - factors are variant . ( variant factors ) = W q ( g 2 , g 3 , [ X 1 , X 2 . . . X g 2 + g 3 ] ) = G g 2 , g 3 g 2 + g 3 i = 1 g 2 + g 3 G 1 X i . W q ( g 1 , g 2 , g 3 , [ T 1 , T 2 . . . T M ] ) = G g 1 , g 2 + g 3 g 1 + g 2 + g 3 G g 2 , g 3 g 2 + g 3 i = 1 M G 1 T i = G g 1 , g 2 , g 3 g 1 + g 2 + g 3 i = 1 M G 1 T i .
Proposition 3.9.
K N , K > 0 , n = 0 N 1 q K n G M n + M
= g = 0 K 1 q g ( g + 1 ) 2 i = 1 g ( q M + i 1 ) G g K 1 G 1 + M + g N + M
= q ( M + 1 ) ( K 1 ) g = 0 K 1 q g ( g 1 ) 2 i = 1 g ( q M + i 1 ) ؜ g K 1 q 1 G 1 + M + g N + M + g
= g = 0 K 1 ( 1 ) g q g ( g + 1 ) 2 G g K 1 G M + K N + M + K 1 g .
Proof. 
S U M q ( N , [ [ 1 ] q , [ 2 ] q . . . [ M 1 ] q , 1 : q 1 , 1 : q 1 . . . 1 : q 1 ] , [ 1 , 2 . . . M 1 , M + 1 , M + 2 . . . M + K 1 ] ) = [ ( M 1 ) ! ] q g = 0 M q n ( 1 + q n 1 ) . . . ( 1 + q n 1 ) G M n + M = [ ( M 1 ) ! ] q g = 0 M q K n G M n + M . = [ ( M 1 ) ! ] q S U M q ( N , [ 1 , 1 . . . 1 ] : q 1 , [ M + 1 , M + 2 . . . M + K 1 ] ) [ ( 4 ) ] g = 0 N 1 q K n G M n + M = S U M q ( N , [ 1 , 1 . . . 1 ] : q 1 , [ M + 1 , M + 2 . . . M + K 1 ] ) = g = 0 K 1 H 1 q ( g ) G 1 + M + g N + M = g = 0 K 1 H 2 q ( g ) G 1 + M + g N + M + g = g = 0 K 1 H 3 q ( g ) G M + K N + M + K 1 g . B i = ؜ 1 + G 1 X T 1 ( q 1 ) = q X T 1 = q X T , X i = K i q 1 + X T 1 G 1 M + i X K 1 ( q 1 ) = q X T ( q M + X T 1 ) , X i = T i , H 1 q ( g ) = q g ( g + 1 ) 2 i = 1 g ( q M + i 1 ) G g K 1 . B i = ؜ q ( M + 1 + X T 1 ) = q ( M + 1 ) q X T , X i = K i q ( M + X T ) ( q M + X T 1 ) , X i = T i , H 2 q ( g ) = q g ( g + 1 ) 2 M g ( M + 1 ) ( K 1 g ) i = 1 g ( q M + i 1 ) ؜ g K 1 q 1 . B i = ؜ q X T 1 = q X T , X i = K i q 1 + X T 1 = q X T , X i = T i , H 3 q ( g ) = ( 1 ) g q g ( g + 1 ) 2 G g K 1 .
Definition 3.2.
؜ M M q = 0 , ؜ g M q = λ 1 + . . . + λ g + 1 = M g i = 1 g + 1 [ i ] q λ i [ 1 + λ 1 ] q [ 1 + λ 1 + λ 2 ] q . . . [ 1 + λ 1 + . . . + λ g ] q , λ i 0 .
Easy to obtain: ؜ g M q = [ M g ] q ؜ g 1 M 1 q + [ g + 1 ] q ؜ g M 1 q , so ؜ g M q = ؜ M g 1 M q .
Proposition 3.10.
[ N ] q M = g = 1 M [ g ! ] q S 2 q ( M , g ) q g ( g 3 ) 2 G g N = g = 1 M ( 1 ) M g [ g ! ] q S 2 q ( M , g ) q g ( g 3 ) 2 G g N + g 1 = g = 0 M 1 ؜ g M q q ؜ 2 M g G M N + g .
Proof. 
q 1 S U M ( N , [ [ 1 ] q , [ 1 ] q . . . [ 1 ] q ] , [ 1 , 2 . . . M ] ) = ( 1 q + q N 1 1 q 1 ) = q M [ N ] q M = q 1 q 1 S U M ( N , [ 1 ] q , [ 1 ] q . . . [ 1 ] q ] , [ 2 , 3 . . . M ] ) = q 1 g = 0 M 1 H 1 q ( g ) G 1 + g N q g . = q 1 g = 0 M 1 H 2 q ( g ) G 1 + g N + g . I n H 1 q ( g ) , B i = ؜ q 1 + G 1 X T 1 = q 1 G 1 1 + X T 1 = q 1 G 1 1 + X T , X i = K i q 1 + X T 1 G 1 ( i + 1 ) X K 1 = q X T G 1 1 + X T = q 1 q 1 + X T G 1 1 + X T , X i = T i . H 1 q ( g ) = q g [ ( g + 1 ) ! ] q q g ( g + 1 ) 2 / q 1 H 1 q ( g , K ) = [ ( g + 1 ) ! ] q q ( g + 1 ) q g ( g + 1 ) 2 q ( M 1 g ) E M 1 g g + 1 , q . q M [ N ] q M = q 1 g = 0 M 1 q M [ ( g + 1 ) ! ] q q g ( g + 1 ) 2 S 2 q ( M , g + 1 ) G 1 + g N q g F o r m 1 . I n H 2 q ( g ) , B i = ؜ q 1 q ( i + 1 X K 1 ) G 1 i + 1 X K 1 = q 1 q ( 2 + X T ) G 1 2 + X T = q 1 q 1 X T G 1 1 + X T , X i = K i q ( 1 + X T ) G 1 1 + X T , X i = T i . H 2 q ( g ) = [ ( g + 1 ) ! ] q / [ 1 ! ] q H 2 q ( g , K ) = q [ ( g + 1 ) ! ] q ( 1 ) M 1 g q ( M 1 g ) E M 1 g g + 1 , q . q M [ N ] q M = q 1 g = 0 M 1 q [ ( g + 1 ) ! ] q ( 1 ) M 1 g q ( M 1 g ) E M 1 g g + 1 , q G 1 + g N + g F o r m 2 . q 1 S U M ( N , [ [ 1 ] q , [ 1 ] q . . . [ 1 ] q ] , [ 1 , 2 . . . M ] ) = g = 0 M H 3 q ( g ) G M N + M 1 g q g . B i = ؜ q 1 + G 1 X T 1 = q 1 G 1 1 + X T 1 = q 1 G 1 1 + X T , X i = K i q ( q X T 1 G 1 i q i G 1 X T 1 q i q 1 ) = q q i 1 q X T 1 q 1 = q X T G 1 i X T , X i = T i , H 3 q ( g ) = q ( M g ) q g ( g + 1 ) 2 ؜ g M q , H 3 q ( M ) = 0 . q M [ N ] q M = g = 0 M 1 ؜ g M q q g ( g + 1 ) 2 q ( M g ) q g G M N + M 1 g . [ N ] q M = g = 0 M 1 ؜ g M q q g ( g + 1 ) 2 G M N + M 1 g = g = 0 M 1 ؜ M 1 g M q q ( M 1 g ) ( M g ) 2 G M N + g .
This can be compared to N M = g = 1 M g ! S 2 ( M , g ) ؜ g N = g = 1 M ( 1 ) M g g ! S 2 ( M , g ) ؜ g N + g 1 = g = 0 M 1 ؜ g M ؜ M N + g . S 2 ( M , g ) is Stirling number of the sec ond kind . S 2 ( M , g ) = E M g g , ؜ g M is Eulerian number , ؜ g M = λ 1 + λ 2 + . . + λ g + 1 = M g i = 1 g + 1 i λ i ( 1 + λ 1 ) ( 1 + λ 1 + λ 2 ) . . . ( 1 + λ 1 + . . + λ g ) [ 3 ] .
Proposition 3.11.
q M n = g = 0 M G g M i = 0 g 1 ( q n q i ) = q M g = 0 M q g ؜ g M q 1 i = 1 g ( q n q i ) = g = 0 M G g M ( 1 ) g q ؜ 2 g G M n + M g .
Proof. 
q M n = q 1 S U M q ( n + 1 , [ 1 , 1 . . . 1 ] : q 1 , [ 1 , 2 . . . M ] ) = g = 0 M H 1 q ( g ) G g n q g = g = 0 M H 2 q ( g ) G g n + g = g = 0 M H 3 q ( g ) G M n + M g q g . B i = ؜ 1 + G 1 X T 1 ( q 1 ) = q X T 1 = q X T , X i = K i q 1 + X T 1 G 1 i X K 1 ( q 1 ) = q X T ( q X T 1 ) , X i = T i , H 1 q ( g ) = ( q 1 ) g [ g ! ] q + H 1 q ( g , K ) = ( q 1 ) g [ g ! ] q + G g M . B i = ؜ q ( 1 + X T 1 ) = q 1 q X T , X i = K i q ( 1 + X T 1 ) ( q 1 + X T 1 1 ) = q X T ( q X T 1 ) , X i = T i , H 2 q ( g ) = ( q 1 ) g [ g ! ] q q ( M g ) ؜ g M q 1 . B i = ؜ q X T 1 = q X T , X i = K i q 1 + X T 1 = q X T , X i = T i , H 3 q ( g ) = ( 1 ) g q ؜ 2 g + 1 H 3 q ( g , K ) = ( 1 ) g q ؜ 2 g + 1 G g M .
Proposition 3.12.
(1). ( K + q D ) M = ( q 1 ) D g = 0 M 1 ( K + D ) g ( K + q D ) M 1 g + ( K + D ) M .
(2). ( K + D ) M = D g = 0 M 1 K g ( K + D ) M 1 g + K M .
(3). ( K + q D ) M = q ( q 1 ) D 2 a + b + c = M 2 , a , b , c 0 K a ( K + D ) b ( K + q D ) c + q D g = 0 M 1 K g ( K + D ) M 1 g + K M .
Proof. 
P S = [ K + D , K + D . . . K + D ] : ( q 1 ) D , P T = [ 1 , 2 . . . M ] . B i = ؜ K + D q X T , X i = K i q X T ( q X T 1 ) D , X i = T i , H 1 q ( 0 ) = ( K + D ) M , H 1 q ( 1 ) = q 1 ( q 1 1 ) D a + b = M 1 , a , b 0 ( K + D ) a ( K + q D ) b . S U M q 2 S U M q 1 = H 1 q ( 1 ) + H 1 q ( 0 ) G 1 2 H 1 q ( 0 ) = H 1 q ( 1 ) + q H 1 q ( 0 ) = q ( K + q D ) M ( 1 ) . From [ 1.2 ] : ( K + D ) M = f ( 1 ) G 1 1 + K M ( 2 ) . From [ 1.2 ] : ( K + q D ) M = n = 0 1 ( K + q n D ) n = 0 0 ( K + q n D ) = f ( 2 ) G 2 2 + f ( 1 ) G 1 2 + 2 K M ( f ( 1 ) G 1 1 + K M ) = f ( 2 ) + q f ( 1 ) + K M ( 3 ) .
Proposition 3.13.
(1). 0 A < M , 0 T , g = 0 M G g M G A A + T + g G A + T + 1 + g N + A + T q g ( g + 1 + T ) = k = 0 A G k + T A + T G M + T M + T + k G M + T + 1 + k N + M + T q k ( k + 1 + T ) .
(2). 0 A , B , T , 0 A + B < M , g = 0 M G g M G A A + T + g G B g q ؜ 2 g g ( A + B ) ( 1 ) g = 0 .
(3). 0 K , T , g = 0 M ( 1 ) g G g M G M + K M + K + T + g q ؜ 2 M + 1 g + ( M g ) K = ( 1 ) M G K T + M + K .
Proof. 
P S = [ [ T + 1 ] q , [ T + 2 ] q . . . [ T + M ] q ] , P T = [ T + A + 1 , T + A + 2 . . . T + A + M ] ) , S U M q ( N ) = g = 0 M G A + T + 1 + g N + A + T [ T + A + 1 ] q . . . [ T + A + g ] q × [ T + g + 1 ] q . . . [ T + M ] q q g ( 1 + g ) 2 ( M g ) ( T + M + 1 ) + ؜ 2 M + 1 g G g M [ 3.7 ] = ( q ; q ) A ( q T + A + 1 ; q ) M A ( 1 q ) M g = 0 M G A + T + 1 + g N + A + T q g ( 1 + g ) 2 ( M g ) ( T + M + 1 ) + ؜ 2 M + 1 g G A T + A + g G g M ( * ) = i = 1 M A [ T + A + i ] q S U M q ( N , [ [ T + 1 ] q . . . [ T + A ] q ] , [ T + M + 1 . . . T + M + A ] ) . [ 2.1 ( 4 ) ] = q ( M A ) ( T + A + 1 + T + M ) 2 i = 1 M A [ T + A + i ] q k = 0 A G M + T + 1 + k N + M + T q k ( 1 + k ) 2 ( A k ) ( T + A + 1 ) + ؜ 2 A + 1 k [ T + M + 1 ] q . . . [ T + M + k ] q × [ T + 1 + k ] q . . . [ T + A ] q G k A = q ( M A ) ( T + A + 1 + T + M ) 2 k = 0 A G M + T + 1 + k N + M + T q k ( 1 + k ) 2 ( A k ) ( T + A + 1 ) + ؜ 2 A + 1 k i = 1 M [ T + k + i ] q G k A . ( * * ) Compare ( * ) and ( * * ) : g = 0 M G A + T + 1 + g N + A + T q g ( 1 + g ) ( M g ) ( g + M + 1 + 2 T ) 2 G A A + T + g G g M = q ( M A ) ( T + A + 1 + T + M ) 2 k = 0 A G M + T + 1 + k N + M + T q k ( 1 + k ) ( A k ) ( k + A + 1 + 2 T ) 2 ( q T + k + 1 ; q ) M ( q T + A + 1 ; q ) M A ( q ; q ) k ( q ; q ) A k = q ( M A ) ( T + A + 1 + T + M ) 2 k = 0 A G M + T + 1 + k N + M + T q k ( 1 + k ) ( A k ) ( k + A + 1 + 2 T ) 2 G M + T M + T + k G k + T A + T Proof of ( 1 ) completed , the two sides correspond to merging and unfolding . A + B < M , From [ 2.4 ] and ( 1 ) : g = 0 M G g M G A A + T + g G B g q g ( 1 + g + T ) q g ( g + 1 ) + ؜ 2 g B ( A + T ) g ( 1 ) g = g = 0 M G g M G A A + T + g G B g q g A + ؜ 2 g B ( 1 ) g = 0 g = 0 M G g M G A A + T + g G B g q ؜ 2 g g ( A + B ) ( 1 ) g = 0 . This is ( 2 ) , when A = 0 , it s [ 3.2 ] . Similar expressions about G M B M g can also be obtained . S U M q ( N , [ [ T + 1 ] q , [ T + 2 ] q . . . [ T + M ] q ] , [ T + K + M + 1 , T + K + M + 2 . . . T + K + 2 M ] ) . H 1 q ( g ) = q g ( 1 + g ) 2 ( M g ) ( T + M + 1 ) + ؜ 2 M g + 1 i = 1 g [ T + K + M + i ] q i = 1 M g [ T + M + 1 i ] q G g M .
Direct calculations yield H 2 q ( 0 ) = ( 1 ) M q M ( T + K + M + 1 ) i = 1 M [ K + i ] q . H 2 q ( 0 ) = g = 0 M ( 1 ) g H 1 q ( g ) q g ( g + 1 ) + g ( g 1 ) 2 ( T + K + M ) g . [ ( 3 ) ] ( 1 ) M i = 1 M [ K + i ] q = g = 0 M ( 1 ) g q ؜ 2 M g + 1 + ( M g ) K i = 1 g [ T + K + M + i ] q i = 1 M g [ T + M + 1 i ] q G g M . ( 1 ) M i = 1 M [ K + i ] q i = 1 K [ T + M + i ] q = g = 0 M ( 1 ) g q ؜ 2 M g + 1 + ( M g ) K i = 1 K + M [ T + g + i ] q G g M . ( 1 ) M i = 1 K [ T + M + i ] q = g = 0 M ( 1 ) g q ؜ 2 M g + 1 + ( M g ) K i = 1 K + M [ T + g + i ] q / i = 1 M [ K + i ] q × G g M . ( 1 ) M G K T + M + K = g = 0 M ( 1 ) g q ؜ 2 M g + 1 + ( M g ) K × G M + K T + K + M + g G g M ( 3 ) . It s the case of A + B M of ( 2 ) .
q-Vandermorde: K=T+1+M, A=0, X=N+T, g = 0 M G g M G K ( M g ) N + T q g ( g + 1 + T ) = g = 0 M G g M G K g X q ( M g ) ( K g ) = G K X + M .
Proposition 3.14.
n M = 0 N 1 . . . n 1 = 0 n 2 i = 1 M [ K 1 + i + 2 n i ] q q j = 1 M n j = q ( N 1 ) M i = 1 M [ K + N 2 + i ] q G M M + N 1 .
Proof. 
P S = [ [ K ] q , [ K + 1 ] q . . . [ K + M 1 ] q ] , P S 1 = [ [ K + M 1 ] q , [ K + M 2 ] q . . . [ K ] q ] , P T = [ 1 , 2 . . . M ] . B i = K i o f H 1 q ( g , P S , P T ) = q ( K 1 + i ) G 1 K 1 + i + G X T = q ( K 1 + i ) G 1 K 1 + i + X T . Expand by definition : H 1 q ( g , K , P S , P T ) = n M g = 0 g . . . n 1 = 0 n 2 i = 1 M g [ K 1 + i + 2 n i ] q q ( K 1 ) ( M g ) j = 1 M g j j = 1 M g n j = H 1 q ( g , K , P S 1 , P T ) = i = 1 M g [ K + g 1 + i ] q q ( M g ) ( K + M ) q ؜ 2 M + 1 g G g M . [ 3.7 ] n M g = 0 g . . . n 1 = 0 n 2 i = 1 M g [ K 1 + i + 2 n i ] q q g ( M g ) j = 1 M g n j = i = 1 M g [ K + g 1 + i ] q G g M . n M = 0 g . . . n 1 = 0 n 2 i = 1 M [ K 1 + i + 2 n i ] q q g M j = 1 M n j = i = 1 M [ K + g 1 + i ] q G g M + g . n M = 0 N 1 . . . n 1 = 0 n 2 i = 1 M [ K 1 + i + 2 n i ] q q ( N 1 ) M j = 1 M n j = i = 1 M [ K + N 2 + i ] q G N 1 M + N 1 .
K = 1 , M = 1 n = 0 N 1 [ 1 + 2 n ] q q n = q ( N 1 ) [ N ] q 2 .

4. The Extension of q-Euler Polynomials and the Relationship Between Three Forms

In this section, a 1 , q 1 , q 2 , . . . , q M .
Lemma 4.1.
n = 0 N 1 a n G M n + A = a N g = 0 M q ( N + A M ) g G M g N + A 1 g ( a ; q ) g + 1 + a M A ( a ; q ) M + 1 , 0 A M , N > M A .
Proof. 
A = M , M = 0 , n = 0 N 1 a n = a N 1 a + 1 1 a , holds . A = M , M = 1 , n = 0 N 1 a n G 1 n + 1 = n = 0 N 1 a n ( 1 + q + . . . + q n ) = ( 1 + q + . . . + q n ) n = 0 N 1 a n q n = 0 0 a n q 2 n = 0 1 a n . . . q N 1 n = 0 N 2 a n = G 1 N 1 a N 1 a q ( 1 a ) 1 a q 2 ( 1 a 2 ) 1 a . . . q N 1 ( 1 a N 1 ) 1 a = G 1 N 1 a N 1 a + 1 + a q + . . . + a N 1 q N 1 1 a 1 + q + . . . + q N 1 1 a = G 1 N G 1 N a N 1 a + 1 a N q N ( 1 a ) ( 1 a q ) G 1 N 1 a = a N q N ( 1 a ) ( 1 a q ) + a N G 1 N 1 a + 1 ( 1 a ) ( 1 a q ) , holds . A = M , N = 1 , a 1 g = 0 M q g ( a ; q ) g + 1 + 1 ( a ; q ) M + 1 = 1 a q M ( a ; q ) M + 1 a 1 g = 0 M 1 q g ( a ; q ) g + 1 = ( 1 a q M ) ( 1 a q M 1 ) ( a ; q ) M + 1 a 1 g = 0 M 2 q g ( a ; q ) g + 1 = . . . = 1 , holds . Suppose it s holds when N . n = 0 N a n G M n + M = n = 0 N a n ( q M G M n 1 + M + G M 1 n 1 + M ) = a q M n = 0 N 1 a n G M n + M + n = 0 N a n G M 1 n + M 1 = q M a N + 1 g = 0 M q N g G M g N + M 1 g ( a ; q ) g + 1 + a q M ( a ; q ) M + 1 a N + 1 g = 0 M 1 q ( N + 1 ) g G M 1 g N + M 1 g ( a ; q ) g + 1 + 1 ( a ; q ) M = a N + 1 g = 0 M q N g + M G M g N + M 1 g + q ( N + 1 ) g G M 1 g N + M 1 g ( a ; q ) g + 1 + 1 ( a ; q ) M + 1 = a N + 1 g = 0 M q ( N + 1 ) g q M g G M g N + M 1 g + q ( N + 1 ) g G M 1 g N + M 1 g ( a ; q ) g + 1 + 1 ( a ; q ) M + 1 = a N + 1 g = 0 M q ( N + 1 ) g G M g ( N + 1 ) + M 1 g ( a ; q ) g + 1 + 1 ( a ; q ) M + 1 . Proof of A = M completed . n = 0 N 1 a n G M n + A = a M A n = 0 N M + A 1 a n G M n + M , complete the remaining proofs .
Taking the limit q 1 , n = 0 N 1 a n ؜ M n + A = a N g = 0 M ؜ M g N + A 1 g ( 1 a ) g + 1 + a M A ( 1 a ) M + 1 , 0 A M . n = 0 N 1 q n G M n + A = q M A G M + 1 N + A ( q N + A M ; q ) M + 1 = g = 0 M q ( N + A M ) ( g + 1 ) G M g N + A 1 g ( q g + 2 ; q ) M g + 1 .
Theorem 4.1.
X = T M M y 1 , 0 Y 1 , f ( g ) = ( a q 2 + X + g ; q ) M g = ( a q 2 + T M M y + g ; q ) M g ,
(1). g = 0 M H 1 q ( g ) a g q y g f ( g ) = g = 0 M H 2 q ( g ) f ( g ) = g = 0 M H 3 q ( g ) a g q y g ,define as A a q ( P S , P T , y ) .
(2). n = 0 N 1 a n q y S U M q ( n + Y ) = a N k = 0 M q ( N + Y 1 ) k q y + k S U M q ( N + Y 1 ) ( a ; q ) k + 1 + a 1 Y A a q ( P S , P T , y ) ( a ; q ) T M + 2 y .
(3). | a | , | q | < 1 , n = 0 a n q y S U M q ( n + Y ) = a 1 Y A a q ( P S , P T , y ) ( a ; q ) T M + 2 y .
(4). S U M q ( ) = A q q ( P S , P T , 1 ) ( q ; q ) T M + 1 , q y S U M q ( ) = A q q ( P S , P T , 1 + y ) ( q ; q ) T M + 1 y .
Proof. 
n = 0 N 1 a n q y S U M q ( n + Y ) = g = 0 M H 1 q ( g ) n = 0 N 1 a n G 1 + X + g n + Y + X q y g = g = 0 M H 1 q ( g ) ( a N k = 0 1 + X + g q ( N + Y 1 g ) k q y g G 1 + X + g k N + Y 1 + X k ( a ; q ) k + 1 + a 1 + g Y q y g ( a ; q ) 2 + X + g ) . = a N k = 0 M q ( N + Y 1 ) k g = 0 M H 1 q ( g ) q ( y + k ) g G 1 + X + g k N + Y 1 + X k ( a ; q ) k + 1 + g = 0 M H 1 q ( g ) a 1 + g Y q y g f ( g ) ( a ; q ) T M + 2 y = a N k = 0 M q ( N + Y 1 ) k q y + k S U M q ( N + Y 1 ) ( a ; q ) k + 1 + g = 0 M H 1 q ( g ) a 1 + g Y q y g f ( g ) ( a ; q ) T M + 2 y . n = 0 N 1 a n q y S U M q ( n + Y ) = g = 0 M H 2 q ( g ) n = 0 N 1 a n G 1 + X + g n + Y + X + g = g = 0 M H 2 q ( g ) ( a N k = 0 1 + X + g q ( N + Y 1 ) k G 1 + X + g k N + Y 1 + X + g k ( a ; q ) k + 1 + a 1 Y ( a ; q ) 2 + X + g ) . = a N k = 0 M q ( N + Y 1 ) k q y + k S U M q ( N + Y 1 ) ( a ; q ) k + 1 + a 1 Y g = 0 M H 2 q ( g ) f ( g ) ( a ; q ) T M + 2 y . n = 0 N 1 a n q y S U M q ( n + Y ) = g = 0 M H 3 q ( g ) n = 0 N 1 a n G T M + 1 p n + Y + T M p g q y g = g = 0 M H 3 q ( g ) ( a N k = 0 T M + 1 p q ( N + Y 1 ) k q ( y + k ) g G T M + 1 p k N + Y 1 + T M p g k ( a ; q ) T M + 2 p + a 1 + g Y q y g ( a ; q ) T M + 2 y ) . = a N k = 0 M q ( N + Y 1 ) k q y + k S U M q ( N + Y 1 ) ( a ; q ) T M + 2 y + g = 0 M H 3 q ( g ) a 1 + g Y q y g ( a ; q ) T M + 2 y . The three summations are identical , which leads to ( 1 ) and ( 2 ) . ( 3 ) is obvious . S U M q ( N ) = n = 0 N 1 q n q 1 S U M q ( n + 1 ) ( 4 ) . lim N G M N = 1 ( q ; q ) M can draw the same conclusion .
n = 0 a n [ n ] q M = E M ( a , q ) ( a ; q ) M + 1 , E M ( a , q ) is q-Eularian polynomials.[2] pp 332. From [3.10], we can get three expressions for E M ( a , q ) . In particular, we can get expressions for Eularian polynomials:
n 1 t n n M = t A M ( t ) ( 1 t ) M + 1 . A M ( a ) = g = 0 M H 1 ( g ) a g ( 1 a ) M g = g = 0 M H 2 ( g ) ( 1 a ) M g = g = 0 M H 3 ( g ) a g
= g = 0 M g ! S 2 ( M , g ) a g ( 1 a ) M g = g = 0 M ( 1 ) M g g ! S 2 ( M , g ) ( 1 a ) M g = g = 0 M ؜ g M a g .
More clearly, we can reformulate (1) as: if g = 0 M a g G 1 + p + g X = g = 0 M b g G 1 + p + g X + g = g = 0 M c g G 1 + p + M X + M g , then
g = 0 M a g q y g a g ( a q 2 + p y + g ; q ) M g = g = 0 M b g ( a q 2 + p y + g ; q ) M g = g = 0 M c g q y g a g , 2 + p y > 0 .
At [2.4], some relationships have been obtained, and now the remaining ones can be deduced:
Theorem 4.2.
X N , if g = 0 M b g G 1 + p + g X + g = g = 0 M c g G 1 + p + M X + M g , then
(1). c g q p g = ( 1 ) g q g ( g + 3 ) 2 k = 0 M g b k G g M k q g k = ( 1 ) g q g ( g + 3 ) 2 + M g k = g M b M k G g k q g k .
(2). b M g = ( 1 ) g q g ( g 1 ) 2 k = g M c k q p k G g k q ( M + 1 ) k , b g = ( 1 ) M g q ( M g ) ( M g 1 ) 2 k = M g M c k q p k G M g k q ( M + 1 ) k .
Proof. 
At [ ] , P T = [ 1 , 2 . . . M ] , f ( g ) = ( 1 a q 2 + g ) ( 1 a q 3 + g ) . . . ( 1 a q M + 1 ) , g = 0 M b g f ( g ) = g = 0 M b g k = 0 M g G k M g ( a ) k q g ( g 1 ) 2 + ( 2 + g ) k = g = 0 M c g a g q p g . Compare a g on both sides and yields ( 1 ) . x = g M c x = x = g M ( 1 ) x q x ( x + 1 ) 2 + ( M + p + 1 ) x k = x M b M k G x k q x k . x = g M c x G g x q x ( x + 1 ) 2 ( M + p + 1 ) x q ( x g ) ( x g 1 ) 2 = x = g M c x G g x q g ( g + 1 ) 2 ( M + p + 2 ) x g x . x = g M c x G g x q g ( g + 1 ) 2 ( M + p + 2 ) x g x q g x + x = x = g M ( 1 ) x G g x q ( x g ) ( x g 1 ) 2 + g x + x k = x M b M k G x k q x k . x = g M c x G g x q g ( g + 1 ) 2 ( M + p + 1 ) x = k = x M b M k x = g k ( 1 ) x G g x G x k q ( x g ) ( x g 1 ) 2 q ( k g 1 ) x = ( 1 ) k b M k q k . [ ( 3 ) ]
Theorem 4.3.
0 g M ,
(1). a g = k = g M b k G g k b g = k = g M ( 1 ) k + g G g k q ؜ 2 k g a k .
(2). a g = k = 0 g c k G M g M k q ( g k ) k c g = k = 0 g ( 1 ) k + g G M g M k q ( g k ) k ؜ 2 g k a k .
(3). c g = k = g M b M k G g k q g k b M g q g ( g 1 ) 2 = k = g M ( 1 ) k + g c k G g k q k ( k + 1 ) 2 .
Proof. 
By combining [ 2.4 ] and [ 4.2 ] , the inversion formula can be obtained . a g q p g = k = 0 g c k G M g M k q ( g + 1 ) ( g k ) q p k , c g q p g = k = 0 g ( 1 ) k + g G M g M k q ( g + 1 ) ( g k ) ؜ 2 g k a k q p k . Replace a g with a g q p g , c g with c g q p g , then a g = k = 0 g c k G M g M k q ( g + 1 ) ( g k ) = q ( g + 1 ) g k = 0 g c k G M g M k q ( g + 1 ) k = q ( g + 1 ) g k = 0 g q ( g k ) k G M g M k c k q ( k + 1 ) k , c g = k = 0 g ( 1 ) k + g G M g M k q ( g + 1 ) ( g k ) ؜ 2 g k a k = q ( g + 1 ) g k = 0 g ( 1 ) k + g G M g M k q ( g k ) k ؜ 2 g k a k q ( k + 1 ) k . Replace a g with a g q ( g + 1 ) g , c g with c g q ( g + 1 ) g ( 2 ) . Other proofs are similar .
Theorem 4.4.
1 + p 0 . If g = 0 M a g G 1 + p + g X = g = 0 M b g G 1 + p + g X + g = g = 0 M c g G 1 + p + M X + M g , a g * = a g q p g , c g * = c g p p g , then
(1). g = 0 M a g * q g ( g + 1 ) 2 + A g a M g z g = a M g = 0 M b g ( q A + 1 z a ; q ) g = g = 0 M c g * q g ( g + 1 ) 2 + A g a M g z g ( q A + 1 z a ; q ) M g .
(2). g = 0 M b g q A g a M g z g = a M g = 0 M ( 1 ) g a g * q g ( g + 3 ) 2 ( q A g + 1 z a ; q ) g = q A M z M g = 0 M c g * q ( M + 1 ) g ( q A a z ; q ) g .
(3). g = 0 M c g * q A g a M g z g = g = 0 M a g * q A g z g a M g ( q A + 2 + g z a ; q ) M g = a M g = 0 M b g ( q A + 2 + g z a ; q ) M g .
Proof. 
From [2.4] and [4.2]:
g = 0 M a g * q g ( g + 1 ) q g ( g 1 ) 2 + ( A + 1 ) g a M g z g = g = 0 M k = 0 M b k G g k q g ( g 1 ) 2 + ( A + 1 ) g a M g z g = k = 0 M b k a M k g = 0 M G g k q g ( g 1 ) 2 + ( A + 1 ) g a k g z g = k = 0 M b k a M k i = 1 k ( a + q A + i z ) . g = 0 M a g * a M g z g = g = 0 M k = 0 M c k * G M g M k q ( g + 1 ) ( g k ) a M g z g , q ( g + 1 ) ( g k ) = q ؜ 2 g k + g 2 + 3 g k 2 3 k 2 . g = 0 M a g * q g ( g + 3 ) 2 + ( A + 1 ) g a M g z g = k = 0 M c k * q k ( k + 3 ) 2 + ( A + 1 ) k z k g = 0 M G g k M k q ؜ 2 g k + ( A + 1 ) ( g k ) a ( M k ) ( g k ) z g k = k = 0 M c k * q k ( k + 1 ) 2 + A k z k i = 1 M k ( a + q A + i z ) ( 1 ) . g = 0 M b g q A g a M g z g = g = 0 M q A g a M g z g k = 0 M ( 1 ) k + g G g k q k ( k + 1 ) + ( k g ) ( k g 1 ) 2 a k * = k = 0 M ( 1 ) k a k * q k ( k + 3 ) 2 a M k g = 0 M G g k q ؜ 2 g + ( A k + 1 ) g a k g ( z ) g = k = 0 M ( 1 ) k a k * q k ( k + 3 ) 2 a M k i = 1 k ( a q A k + i z ) . g = 0 M b g q A g a M g z g = g = 0 M q A g a M g z g ( 1 ) M g q ( M g ) ( M g 1 ) 2 k = 0 M G M g k q ( M + 1 ) k c k * = k = 0 M q ( M + 1 ) k c k * g = 0 M a M g z g ( 1 ) M g G M g k q ( M g ) ( M g 1 ) 2 + A g , replace g with M - g = k = 0 M q ( M + 1 ) k c k * g = 0 M z M g ( a ) g G g k q g ( g 1 ) 2 + A ( M g ) = q A M k = 0 M q ( M + 1 ) k c k * z M k i = 1 k ( z q A 1 + i a ) ( 2 ) . g = 0 M c g * q A g a M g z g = g = 0 M k = 0 M ( 1 ) k + g a k * G g k M k q g ( g + 3 ) 2 k ( k + 3 ) 2 + A g a M g z g = k = 0 M ( 1 ) k a k * q k ( k + 3 ) 2 g = 0 M ( 1 ) g G g k M k q g ( g + 3 ) 2 + A g a M g z g , replace g with g + k = k = 0 M ( 1 ) k a k * q k ( k + 3 ) 2 g = 0 M ( 1 ) g + k G g M k q ( g + k ) ( g + k + 3 ) 2 + A ( g + k ) z g + k a M k g = k = 0 M a k * q A k z k g = 0 M G g M k q g ( g 1 ) 2 + ( A + k + 2 ) g ( z ) g a M k g = k = 0 M a k * q A k z k i = 1 M k ( a q A + k + 1 + i z ) . g = 0 M c g * q A g a M g z g = k = 0 M b k g = 0 M ( 1 ) g q g ( g + 3 ) 2 G g M k q g k + A g a M g z g = k = 0 M b k a k g = 0 M ( 1 ) g q g ( g 1 ) 2 + ( A + k + 2 ) g G g M k a M k g z g = k = 0 M b k a k i = 1 M k ( a q A + k + 1 + i z ) ( 3 ) .
a z 0 , if g = 0 M a g ؜ 1 + p + g X = g = 0 M b g ؜ 1 + p + g X + g = g = 0 M c g ؜ 1 + p + M X + M g , then g = 0 M a g a M g z g = g = 0 M b g a M g ( a + z ) g = g = 0 M c g z g ( a + z ) M g . From [ 4.4 ] 4.1 [ ] 4.4 [ ] and the mutual transformation of a g , b g , c g [ 2.4 ] [ 4.2 ] , many equations can be obtained . We can arbitrarily specify a set of values , calculate the other two sets , and obtain the corresponding relationships . g = 0 M a g G 1 + p + g X = g = 0 M b g G 1 + p + g X + g = g = 0 M c g G 1 + p + M X + M g . 1 + p 0 . a M = c M = 1 , a g < M = c g < M = 0 b g = ( 1 ) M + g G g M q M ( 1 + M ) + ( M g ) ( M g 1 ) 2 g = 0 M b g ( q A + 1 z a ; q ) g = q A M M ( M + 1 ) 2 z M a M ; g = 0 M b g ( q A + g + 2 z a ; q ) M g = q A M z M a M . b M = 1 , b g < M = 0 a g = q g ( g + p + 1 ) G g M g = 0 M a g z g ( z q 2 + p + g ; q ) M g = 1 . g = 0 M ( 1 ) g a g q p g q g ( g + 3 ) 2 ( q A g + 1 z a ; q ) g = q A M z M a M . a 0 * = b 0 = 1 , a g > 0 * = b g > 0 = 0 c g * = ( 1 ) g q g ( g + 1 ) 2 + g G g M [ ] g = 0 M c g * q ( M + 1 ) g ( q A a z ; q ) g = q A M z M a M . k = 0 g ( 1 ) k G k M G M g M k q k ( k + 1 ) 2 k g = 0 , g > 0 ; k = g M ( 1 ) k G k M G g k q k ( k + 1 ) 2 M k = 0 , g < M special case of [ 3.2 ( 3 ) ( 4 ) ] . b g = ( 1 ) g G g M , a g * = q g ( g + 1 ) k = 0 M b k G g k , [ 3.5 ] will lead to some special identities . b g = q g , k = 0 M G g k q k g = G g + 1 M + 1 a g * = q g ( g + 1 ) k = g M q k G g k = q g ( g + 2 ) G g + 1 M + 1 . calculate b g using a g * k = 0 M ( 1 ) k + g G g k q ؜ 2 k g q k G k + 1 M + 1 = q g . g = 0 M q g ( q 1 + g ; q ) M g = g = 0 M q g ( g + 1 ) G g + 1 M + 1 ( q 1 + g ; q ) M g = ( q ; q ) M + 1 g = 0 M q g ( g + 1 ) G g M ( q ; q ) g + 1 .
From [ ( 1 ) ] , G M + 1 N + M = g = 0 M q ( g + 1 ) g G g M G 1 + g N g = 0 M q g ( g + 1 ) G g M ( q ; q ) g + 1 = 1 ( q ; q ) M + 1 g = 0 M q g ( q 1 + g ; q ) M g = 1 g = 0 M q g ( q ; q ) g = 1 ( q ; q ) M ( * ) . It is a known formula [ 2 ] It can be proven through induction that : k = 0 M G g M k q ( g + 1 ) k = G g + 1 M + 1 c g * = ( 1 ) g q g ( g + 3 ) 2 G g + 1 M + 1 g = 0 M c g * q g = g = 0 M ( 1 ) g q g ( g + 1 ) 2 G g + 1 M + 1 = g = 1 M + 1 ( 1 ) g q g ( g 1 ) 2 G g M + 1 = 1 ( q 0 ; q ) M + 1 = 1 , get ( * ) again . g = 0 M c g * q g a g = a 1 a 1 ( a ; q ) M + 1 , [ ( 2 ) ] 1 + g = 0 M a q g ( a ; q ) g + 1 = 1 ( a ; q ) M + 1 , generalization of ( * ) [ 2 ] pp 113 a g * and c g * G g + 1 M + 1 = k = 0 M ( 1 ) k G M g M k G k + 1 M + 1 q k ( k + 1 ) 2 = k = 0 M ( 1 ) k G M g M k G k + 1 M + 1 q k ( k + 1 ) 2 g ( k + 1 ) . [ ( 2 ) ] g = 0 M b g q g = M + 1 = q M g = 0 M c g * q ( M + 1 ) g ( q ; q ) g = g = 0 M ( 1 ) g G g + 1 M + 1 q ( g + 1 ) g 2 M ( g + 1 ) ( q ; q ) g . If we replace q by q 1 , we will still get M + 1 , which is Euler s identity : g = 1 M G g M ( q ; q ) g 1 = M [ 2 ] pp 83 a g * = G g M q g 2 + g c g * = ( 1 ) g q g ( g + 3 ) 2 k = 0 M ( 1 ) k G M g M k G k M q k ( k 1 ) 2 , [ 3.2 ] c 0 * = 1 , c g > 0 * = 0 . g = 0 M G g M q g 2 + g y g ( a q ) g ( a q × q 2 y + g ; q ) M g ( a q ; q ) M + 2 y = 1 ( a q ; q ) M + 2 y g = 0 M G g M q g 2 a g ( a q 1 + g ; q ) M g ( a q ; q ) M = 1 ( a q ; q ) M . It s a finite form of Jacobi s Durfee square identity [ 2 ] pp 158 159 . g = 0 q g 2 + g r a g ( q ; q ) g ( a q ; q ) g + r = 1 ( a q ; q ) , r = 2 y 0 . [ ( 4 ) ] , g > x , k = 0 g ( 1 ) k G M g M k G k M q ؜ 2 k x k = 0 , further promotion can be done . Calculating b g is also acceptable . [ 4.4 ] is flexible . We can consider A , a , z as an independent variable or as a part of a g , b g , c g , for example : a g * , 1 = q g ( g + 1 ) + g x G g M , a g * , 2 = a g * , 1 z g [ 3.4 ] b g * , 1 = q x g G g M ( q x ; q ) M g , b g * , 2 = q x g G g M ( z q x ; q ) M g z g , c g * , 1 = ( 1 ) g q g ( g + 3 ) 2 G g M ( q x ; q ) g , c g * , 2 = ( 1 ) g q g ( g + 3 ) 2 G g M ( z q x ; q ) g . g = 0 M a g * , 1 q g ( g + 1 ) 2 z g = g = 0 M a g * , 2 q g ( g + 1 ) 2 = ( z q 1 + x ; q ) M = g = 0 M q x g G g M ( q x ; q ) M g ( z q ; q ) g ( * ) = g = 0 M q x g z g G g M ( z q x ; q ) M g ( q ; q ) g = g = 0 M ( 1 ) g q g z g G g M ( q x ; q ) g ( z q ; q ) M g = g = 0 M ( 1 ) g q g G g M ( z q x ; q ) g ( q ; q ) M g . x = 1 , replace z q by z , ( * ) ( z q ; q ) ( q ; q ) = g = 0 q g ( z ; q ) g ( q ; q ) g . [ ( 1 ) ] a M g = 0 M b g ( q A + 1 z a ; q ) g = g = 0 M c g * q g ( g + 1 ) 2 + A g a M g z g ( q A + 1 z a ; q ) M g = g = 0 M q g ( g + 1 ) 2 + A g a M g z g ( q A + 1 z a ; q ) M g ( 1 ) g q g ( g + 3 ) 2 k = 0 M b k G g M k q g k , let b g k = 0 a M ( q A + 1 z a ; q ) k = g = 0 M q g + A g a M g ( q A + 1 z a ; q ) M g ( z ) g G g M k q g k ; ( z ; q ) k = g = 0 M ( z ; q ) M g z g G g M k q g k . ( 3 ) g = 0 M c g * = g = 0 M a g * ( q 2 + g ; q ) M g = g = 0 M b g ( q 2 + g ; q ) M g . Let a g * = b g = x g , calculate c g by a g * and b g For any x g , g = 0 M ( 1 ) g q g ( g + 3 ) 2 k = 0 M ( 1 ) k G M g M k q k ( k + 3 ) 2 x k = g = 0 M ( 1 ) g q g ( g + 3 ) 2 k = 0 M ( 1 ) k G g M k q g k x k . More basically , x g k = 0 q k ( k + 3 ) 2 g = 0 M ( 1 ) g q g ( g + 3 ) 2 G M g M k = g = 0 M ( 1 ) g q g ( g + 3 ) 2 G g M k q g k . In the previous text , T i N , but excluding the actual meaning of S U M q ( N ) , T i can be any number . P S = [ b q T , b q T . . . b q T ] : b q T ( q 1 ) , P T = [ T , T + 1 . . . . T + M 1 ] , a = b q T , due to T , a and b are independent . At H 1 q ( g ) , B i = q ( T i T i 1 1 ) X T 1 ( K i + G 1 X T 1 D i ) = a q X T , X i = K i q X T G 1 T + i 1 X K 1 ( q 1 ) b q T = q X T ( b q X T 1 a ) , X i = T i , H 1 q ( g ) = G g M q g ( g + 1 ) 2 ( b a ) ( b q a ) . . . ( b q g 1 a ) a M g . At H 3 q ( g ) , B i = ( K i + G 1 X T 1 D i ) = a q X T , X i = K i q 1 { ( q X T 1 G 1 T i q T i G 1 X T 1 ) D i K i q T i } = a q X T , X i = T i , H 3 q ( g ) = G g M ( 1 ) g q g ( g + 1 ) 2 a M . g = 0 M q y g G g M q g ( g + 1 ) 2 ( b a ) ( b q a ) . . . ( b q g 1 a ) ( b q T ) M g ( b x ) g ( b x × q 2 + T M M y + g ; q ) M g ( b x ; q ) T M + 2 y , T M = T + M 1 , T M + 2 y = M , y = T + 1 b M q T M g = 0 M q g G g M q g ( g + 1 ) 2 ( b a ) ( b q a ) . . . ( b q g 1 a ) x g ( b x × q g ; q ) M g ( b x ; q ) M = g = 0 M H 3 q ( g ) ( b x ) g q y g ( b x ; q ) M = a M g = 0 M G g M ( 1 ) g q g ( g + 1 ) 2 ( b x ) g q y g ( b x ; q ) M = a M g = 0 M G g M ( 1 ) g q g ( g 1 ) 2 ( b q T x ) g ( b x ; q ) M .
That is to say : g = 0 M G g M q g ( g 1 ) 2 ( b a ) ( b q a ) . . . ( b q g 1 a ) x g ( b x × q g ; q ) M g ( b x ; q ) M = ( a x ; q ) M ( b x ; q ) M . This proves Cauchy s identity [ 2 ] : ( a x ; q ) ( b x ; q ) = g = 0 q g ( g 1 ) 2 x g ( b a ) ( b q a ) . . . ( b q g 1 a ) ( q ; q ) g ( b x ; q ) g .

5. An Example

We can verify various propositions and theorems . PS = [ A , B , C ] , PT = [ 1 , 3 , 5 ] , M = 3 , p = 5 - M = 2. n 3 = 0 N 1 n 2 = 0 n 3 n 1 = 0 n 2 q n 1 + n 2 + n 3 ( A + [ n 1 ] q ) ( B + [ n 2 ] q ) ( C + [ n 3 ] q ) = g = 0 3 H 1 q ( g ) G 3 + g N + 2 = g = 0 3 H 2 q ( g ) G 3 + g N + 2 + g = g = 0 3 H 3 q ( g ) G 6 N + 5 g . H 1 q ( 0 ) = A B C . H 1 q ( 1 ) = A B q 1 G 1 3 + A q 1 G 1 2 ( C + 1 ) + q 1 G 1 1 q 1 ( B + 1 ) q 1 ( C + 1 ) . H 1 q ( 2 ) = q 1 G 1 1 q 3 G 1 3 q 2 ( C + G 1 2 ) + q 1 G 1 1 q 1 ( B + 1 ) q 3 G 1 4 + A q 1 G 1 2 q 3 G 1 4 . H 1 q ( 3 ) = q 1 G 1 1 q 3 G 1 3 q 5 G 1 5 . H 2 q ( 0 ) = ( A q 1 G 1 1 ) ( B q 2 G 1 2 ) ( C q 3 G 1 3 ) . H 2 q ( 1 ) = ( A q 1 G 1 1 ) ( B q 2 G 1 2 ) q 3 G 1 3 + ( A q 1 G 1 1 ) q 2 G 1 2 ( C q 4 G 1 4 ) + q 1 G 1 1 ( B q 3 G 1 3 ) ( C q 4 G 1 4 ) . H 2 q ( 2 ) = q 1 G 1 1 q 3 G 1 3 ( C q 5 G 1 5 ) + q 1 G 1 1 ( B q 3 G 1 3 ) q 4 G 1 4 + ( A q 1 G 1 1 ) q 2 G 1 2 q 4 G 1 4 . H 2 q ( 3 ) = q 1 G 1 1 q 3 G 1 3 q 5 G 1 5 . H 3 q ( 0 ) = A B C . H 3 q ( 1 ) = A B q 1 ( G 1 5 q 5 C ) + A q 2 ( G 1 3 q 3 B ) ( C + 1 ) + q 3 ( 1 q 1 A ) ( B + 1 ) ( C + 1 ) . H 3 q ( 2 ) = q 5 ( 1 q 1 A ) ( q 1 G 1 3 q 3 q 3 B ) ( C + G 1 2 ) + q 4 ( 1 q 1 A ) ( B + 1 ) ( q 1 G 1 5 q 5 q 5 C ) + A q 3 ( G 1 3 q 3 B ) ( q 1 G 1 5 q 5 q 5 C ) . H 3 q ( 3 ) = q 6 ( 1 q 1 A ) ( q 1 G 1 3 q 3 q 3 B ) ( q 2 G 1 5 q 5 G 1 2 q 5 C ) . P S = [ A , B ] , P T = [ 1 , 3 ] . n 2 = 0 N 1 n 1 = 0 n 2 ( A + n 1 ) ( B + n 2 ) = g = 0 2 H 1 ( g ) 2 + g N + 1 = g = 0 2 H 2 ( g ) 2 + g N + 1 + g = g = 0 2 H 3 ( g ) 4 N + 3 g . H 1 ( 0 ) = A B , H 1 ( 1 ) = A × 2 + 1 × ( B + 1 ) , H 1 ( 2 ) = 1 × 3 . H 2 ( 0 ) = ( A 1 ) ( B 2 ) , H 2 ( 1 ) = ( A 1 ) × 2 + 1 × ( B 3 ) , H 2 ( 2 ) = 1 × 3 . H 3 ( 0 ) = A B , H 3 ( 1 ) = A ( 3 B ) + ( 1 A ) ( B + 1 ) , H 3 ( 2 ) = ( 1 A ) ( 2 B ) .

References

  1. P.A. MacMahon. The Indices of Permutations and the Derivation Therefrom of Functions of a Single Variable Associated with the Permutations of Any Assemblage of Objects, American Journal of Mathematics. 35 (1913) 281-322. [CrossRef]
  2. Warren P. Johnson , An Introduction to q-analysis. American Mathematical Society. (2020).
  3. QI Deng-Ji. A New Explicit Expression for the Eulerian Numbers, Journal of Qingdao University of Science and Technology: Natural Science Edition. 04 (2012) 33. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated