Submitted:
30 April 2025
Posted:
02 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Strain Reactivation and Scale-up
2.2. Evaluation of Bacterial Growth
2.3. Monitoring of Rhamnolipid (RL) Production
2.4. Purification of Rhamnolipids
2.5. Dosage of Rhamnolipids
2.6. Dissolved Oxygen (DO) Concentration Monitoring
2.7. Evaluation of the Effect of Aeration on Dissolved Oxygen and RL Production
2.8. Evaluation of the Effect of Agitation on DO and RL Production
2.9. Statistical Analysis
3. Results
3.1. Growth Kinetics


3.2. Influence of Aeration Rate
3.3. Influence of Agitation Rate
3.4. Influence of Nitrogen Concentration
3.5. Design Expert
4. Discussion
4.1. Response Surface Results
4.2. Bacterial Growth
4.3. Dissolved Oxygen Concentration
4.4. Influence of Aeration Rate and Agitation Speed
4.5. Influence of the Nitrogen Source
4.6. Optimization of Rhamnolipid (RL) Production
5. Conclusions
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CCD | Compound Central Design |
| RSM | Response Surface Methodology |
| DO | Dissolved Oxygen |
| RL | Rhamnolipid |
| SW | Siegmund and Wagner |
References
- Sarubbo, L. A.; et al. Biosurfactants: Production, properties, applications, trends, and general perspectives. Biochemical Engineering Journal. 2022, vol. 181, p. 108377. DOI 10.1016/j.bej.2022.108377.
- Liu, Y.; et al. Effect of rhamnolipid solubilization on hexadecane bioavailability: enhancement or reduction? Journal of Hazardous Materials, 2017; 322, 394–401. [Google Scholar] [CrossRef]
- Sekhon, K.; Rahman, P 2014. Rhamnolipid biosurfactants: past, present, and future scenario of global market. Frontiers in Microbiology. 2014, vol. 5. DOI 10.3389/fmicb.2014.00454.
- Gong, Z.; Peng. Y.; Wang, Q. Rhamnolipid production, characterization and fermentation scale-up by Pseudomonas aeruginosa with plant oils. Biotechnology Letters. 2015, vol. 37, no. 10, pp. 2033–2038. DOI 10.1007/s10529-015-1885-2.
- Pérez-Armendáriz, B.; et al. Use of waste canola oil as a low-cost substrate for rhamnolipid production using Pseudomonas aeruginosa. AMB Express. 2009, vol. 9, no. 1, p. 61. DOI 10.1186/s13568-019-0784-7.
- Clarke, K.; Ballot, F.; Reid, S. Enhanced rhamnolipid production by Pseudomonas aeruginosa under phosphate limitation. World Journal of Microbiology and Biotechnology. 2010, vol. 26, no. 12, pp. 2179–2184. DOI 10.1007/s11274-010-0402-y.
- Amani, H. Application of a Dynamic Method for the Volumetric Mass Transfer Coefficient Determination in the Scale-Up of Rhamnolipid Biosurfactant Production. Journal of Surfactants and Detergents. 2018, vol. 21, no. 6, pp. 827–833. DOI 10.1002/jsde.12184.
- Paciello, L.; Parascandola, P. Determination of Volumetric Oxygen Transfer Coefficient to Evaluate the Maximum Performance of Lab Fermenters. CET Journal - Chemical Engineering Transactions. 2020, vol. 79, p. 73.
- Bazsefidpar, S.; et al. Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control. Biodegradation. 2019, vol. 30, no. 1, pp. 59–69. DOI 10.1007/s10532-018-09866-3.
- Zhu, L.; et al. Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process. Bioresource Technology. 2012, vol. 117, pp. 208–213. DOI 10.1016/j.biortech.2012.04.091.
- Sun, H.; et al. Optimization and characterization of rhamnolipid production by Pseudomonas aeruginosa NY3 using waste frying oil as the sole carbon. Biotechnology Progress. 2021. DOI 10.1002/btpr.3155.
- Aggo, G.; Noh, N. A.; Yahya, A. Use of agricultural wastes in rhamnolipid production by Pseudomonas aeruginosa USM-AR2. IOP Conference Series: Earth and Environmental Science. 2023, vol. 1139, no. 1, p. 012007. DOI 10.1088/1755-1315/1139/1/012007.
- Alcalde, M. A.; Merino-Rafael, F. A.; Gutiérrez-Moreno, S. M. Optimization of mineral nutrients to improve rhamnolipid production by Pseudomonas aeruginosa 6K-11. Journal of Chemical Technology and Biotechnology. 2024, vol. 99, no. 10, pp. 2170-2177. DOI 10.1002/jctb.7588.
- Guzmán, J. A. Optimización de parámetros fermentativos para la producción de ramnolípidos por Pseudomonas aeruginosa 6K-11 por cultivos sumergidos a escala laboratorio. Tesis Título Profesional, UNMSM, Lima, 2016.
- Martinez, D. G. Optimización de la fuente de carbono para la producción de un surfactante ramnolipídico por una cepa nativa de Pseudomonas aeruginosa 6K11. Tesis Título Profesional, UNMSM, Lima, 2015.
- Zhu, L.; et al. Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process. Bioresource Technology. 2012, vol. 117, pp. 208–213. DOI 10.1016/j.biortech.2012.04.091.
- Monsigny, M.; Petit, C.; Roche, A. Colorimetric determination of neutral sugars by a resorcinol sulfuric acid micromethod. Analytical Biochemistry. 1988, vol. 175, no. 2, pp. 525–530. DOI 10.1016/0003-2697(88)90578-7.
- Valladares, K. K. Producción a nivel piloto de un biosurfactante ramnolipidico con la cepa Pseudomonas aeruginosa 6k-11. Tesis Título Profesional, UNMSM, Lima, 2016.
- Ramesh, H.; et al. Measurement of oxygen transfer from air into organic solvents. Journal of Chemical Technology & Biotechnology. 2016, vol. 91, no. 3, pp. 832–836. DOI 10.1002/JCTB.4862.
- Garcia-Ochoa, F.; Gomez, E. Oxygen Transfer Rate Determination: Chemical, Physical and Biological Methods. Encyclopedia of Industrial Biotechnology. 2010, pp. 1–21. Wiley. DOI 10.1002/9780470054581.eib467.
- Jamal, A.; et al. Enhanced Production of rhamnolipid by P. aeruginosa using Response Surface Methodology. Asian Journal of Chemistry. 2014, vol. 26, no. 4, pp. 1044–1048. DOI 10.14233/ajchem.2014.15851.
- Pérez, C. F.; et al. Diseño y construcción de un reactor discontinuo con recirculación externa para obtener biodiésel a partir de aceite de fritura en condiciones subcríticas. Ingenius. 2020. No. 25, pp. 32–40. DOI 10.17163/ings.n25.2021.03.
- Gómez, B. D; Martínez, L. M; Cardona, L. M. Composición de ácidos grasos en algunos alimentos fritos y aceites de fritura y factores relacionados, en un sector universitario de Medellín-Colombia. Perspectivas en Nutrición Humana. 2014, vol. 16, no. 2. DOI 10.17533/udea.penh.v16n2a04.
- Torres, J.; et al. Optimización del proceso de fritura por inmersión de la arepa con huevo utilizando metodología de superficie de respuesta. Revista chilena de nutrición. 2018, vol. 45, no. 1, pp. 50–59. DOI 10.4067/S0717-75182018000100050.
- Márquez, R. E. Evaluation of trophic status in the Pom-Atasta and Palizada del Este Fluvial-lagoon systems Campeche, Mexico. Hidrobiológica. 2017, vol. 27, no. 3, pp. 281–291. DOI 10.24275/uam/izt/dcbi/hidro/2017v27n3/Mucino.
- González, C. J.; et al. Predicción de oxígeno disuelto en acuacultura semi-intensiva con redes neuronales artificiales. Research in Computing Science. 2016, vol. 120, no. 1, pp. 159–168. DOI 10.13053/rcs-120-1-14.
- Kronemberger, F.; et al. Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor. Biotechnology for Fuels and Chemicals. 2007 pp. 401–413. DOI 10.1007/978-1-60327-526-2_39.
- Schmidt, A.; et al. Oxygen-dependent regulation of c-di- GMP synthesis by SadC controls alginate production in Pseudomonas aeruginosa. Environmental Microbiology. 2016, vol. 18, no. 10, pp. 3390–3402. DOI 10.1111/1462-2920.13208. Gomez (2010.
- Zhao, F.; et al. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Microbial Cell Factories. 2018, vol. 17, no. 1, p. 39. DOI 10.1186/s12934-018-0888-9.
- Vanavil, B.; Perumalsamy, M. and Seshagiri Rao, A. Studies on the Effects of Bioprocess Parameters and Kinetics of Rhamnolipid Production by P. aeruginosa NITT 6L. Chem.Biochem.Eng.Q. 2014, vol. 28, no. 3, pp. 383–390.
- Chayabutra, C.; Wu, J.; Ju, L. Rhamnolipid production by Pseudomonas aeruginosa under denitrification: Effects of limiting nutrients and carbon substrates. Biotechnology & Bioengineering. 2001, vol. 72, no. 1, pp. 25–33.
- Azemi, M. A.; et al. Application of Sweetwater as Potential Carbon Source for Rhamnolipid Production by Marine Pseudomonas aeruginosa UMTKB-5. International Journal of Bioscience, Biochemistry and Bioinformatics. 2016, vol. 6, no. 2, pp. 50–58. DOI 10.17706/ijbbb.2016.6.2.50-58.
- Centeno da Rosa, C.; et al. Production of a rhamnolipid-type biosurfactant by Pseudomonas aeruginosa LBM10 grown on glycerol. African Journal of Biotechnology. 2010, vol. 9, no. 53, pp. 9012–9017. DOI 10.5897/AJB10.854.
- Shatila, F.; et al. The effect of carbon, nitrogen and iron ions on mono-rhamnolipid production and rhamnolipid synthesis gene expression by Pseudomonas aeruginosa ATCC 15442. Archives of Microbiology. 2020, vol. 202, no. 6, pp. 1407–1417. DOI 10.1007/s00203-020-01857-4.
- Alcalde, M. A. Influencia de las sales inorgánicas en la optimización de la producción de ramnolípidos por Pseudomonas aeruginosa 6K-11 empleando la metodología de superficie de respuesta. Tesis Título Profesional, UNMSM, Lima, 2018.
- Wu, T.; et al. High-Performance Production of Biosurfactant Rhamnolipid with nitrogen Feeding. Journal of Surfactants and Detergents. 2019, vol. 22, no. 2, pp. 395–402. DOI 10.1002/JSDE.12256.



| Nº |
Factor A:
Nitrogen source (g/L) |
Factor B:
Aeration rate (vvm) |
Factor C:
Agitation speed (rpm) |
Response: Rhamnolipids (g/L) |
|
|---|---|---|---|---|---|
| Experimental | Theoretical | ||||
| 1 | 3.3 | 0.5 | 160 | 17.345 | 18.913 |
| 2 | 1.95 | 0.6 | 180 | 27.203 | 19.591 |
| 3 | 2.4 | 0.65 | 180 | 19.186 | 24.447 |
| 4 | 2.4 | 0.6 | 170 | 7.387 | 7.374 |
| 5 | 1.5 | 0.5 | 160 | 8.784 | 8.053 |
| 6 | 2.4 | 0.6 | 180 | 18.485 | 19.545 |
| 7 | 1.5 | 0.7 | 160 | 7.061 | 9.239 |
| 8 | 2.4 | 0.6 | 190 | 16.256 | 16.602 |
| 9 | 2.4 | 0.6 | 180 | 21.916 | 19.545 |
| 10 | 3.3 | 0.7 | 200 | 30.459 | 30.535 |
| 11 | 2.4 | 0.6 | 170 | 6.777 | 7.374 |
| 12 | 2.4 | 0.55 | 180 | 29.735 | 26.074 |
| 13 | 1.5 | 0.7 | 200 | 27.943 | 26.831 |
| 14 | 1.5 | 0.7 | 200 | 29.252 | 26.831 |
| 15 | 3.3 | 0.7 | 200 | 28.893 | 30.535 |
| 16 | 2.4 | 0.6 | 190 | 16.541 | 16.602 |
| 17 | 1.5 | 0.5 | 160 | 9.348 | 8.053 |
| 18 | 1.5 | 0.5 | 200 | 17.557 | 19.875 |
| 19 | 1.5 | 0.7 | 160 | 6.979 | 9.239 |
| 20 | 3.3 | 0.5 | 200 | 39.710 | 38.230 |
| 21 | 3.3 | 0.5 | 200 | 41.125 | 38.230 |
| 22 | 3.3 | 0.5 | 200 | 40.367 | 38.230 |
| 23 | 1.5 | 0.5 | 160 | 9.341 | 8.053 |
| 24 | 3.3 | 0.7 | 200 | 28.915 | 30.535 |
| 25 | 1.95 | 0.6 | 180 | 24.437 | 19.591 |
| 26 | 2.4 | 0.65 | 180 | 19.585 | 24.447 |
| 27 | 3.3 | 0.5 | 160 | 15.951 | 18.913 |
| 28 | 2.4 | 0.55 | 180 | 31.544 | 26.074 |
| 29 | 2.4 | 0.6 | 180 | 20.768 | 19.545 |
| 30 | 1.5 | 0.7 | 160 | 7.142 | 9.239 |
| 31 | 3.3 | 0.7 | 160 | 8.664 | 5.448 |
| 32 | 2.85 | 0.6 | 180 | 17.574 | 23.232 |
| 33 | 3.3 | 0.5 | 160 | 17.738 | 18.913 |
| 34 | 3.3 | 0.7 | 160 | 8.192 | 5.448 |
| 35 | 1.5 | 0.5 | 200 | 16.770 | 19.875 |
| 36 | 3.3 | 0.7 | 160 | 8.448 | 5.448 |
| 37 | 1.5 | 0.7 | 200 | 28.977 | 26.831 |
| 38 | 1.5 | 0.5 | 200 | 16.315 | 19.875 |
| 39 | 2.85 | 0.6 | 180 | 15.439 | 23.232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).