Submitted:
29 April 2025
Posted:
30 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Changes in the Brain and Cognition Associated with Ad
2.1. Brain Changes Associated with AD
2.2. Summary of Pathophysiological Brain Changes Associated with AD
2.3. Changes in Cognition Associated with AD
2.4. Behavior, Mood, and Psychiatric Disturbances Associated with AD
2.5. Changes in Sleep and Sleep Deprivation Associated with AD
2.6. Changes in Appetite Associated with AD
2.7. Summary of Changes in Brain and Cognition Associated with AD
3. Modifiable Risk Factors in Ad
4. Effects of Diet on Cognition and Brain Health in Patients with Ad
Summary of the Effects of Diet on AD
5. Effects of Exercise on Brain Health and Cognition in Patients with Ad
5.1. Effects of Exercise on AD
5.2. Mechanism of Action for the Effect of Exercise on AD Pathology
5.3. Influence of Exercise Type on AD
6. Exercise and AD Summary
6.1. Exercise Recommendations for Individuals with AD
6.2. Diet and Exercise, the Effect of Combined Intervention on AD
Limitations of Available Research
7. Conclusion
Funding
Abbreviations
| Alzheimer’s Disease (AD) |
| Magnetic Resonance Imaging (MRI) |
| Positron Emission Tomography (PET) |
| apolipoprotein E epsilon 4 (APOE4) |
| Low-density lipoprotein (LDL) |
| Randomized Controlled Trial (RCT) |
| Clinical Dementia Rating (CDR) |
| Sum of Boxes (SOB) |
| Brain-derived Neurotrophic Factor (BDNF) |
| High-intensity interval training (HIIT) |
References
- Lynch C. World Alzheimer Report 2019: Attitudes to dementia, a global survey. Alzheimer’s & Dementia. 2020;16(S10):e038255. [CrossRef]
- Ávila-Villanueva M, Marcos Dolado A, Gómez-Ramírez J, Fernández-Blázquez M. Brain Structural and Functional Changes in Cognitive Impairment Due to Alzheimer’s Disease. Front Psychol. 2022;13:886619. [CrossRef]
- Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". Clin Anat. 1995;8(6):429-31. [CrossRef]
- Thal DR, Rüb U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. Jun 25 2002;58(12):1791-800. [CrossRef]
- Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. Aug 30 2012;367(9):795-804. [CrossRef]
- Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239-59. [CrossRef]
- Hojjati SH, Feiz F, Ozoria S, Razlighi QR. Topographical Overlapping of the Amyloid-β and Tau Pathologies in the Default Mode Network Predicts Alzheimer’s Disease with Higher Specificity. J Alzheimers Dis. 2021;83(1):407-421. [CrossRef]
- Park M, Moon WJ. Structural MR Imaging in the Diagnosis of Alzheimer’s Disease and Other Neurodegenerative Dementia: Current Imaging Approach and Future Perspectives. Korean J Radiol. Nov-Dec 2016;17(6):827-845. [CrossRef]
- Nelson PT, Alafuzoff I, Bigio EH, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. May 2012;71(5):362-81. [CrossRef]
- John A, Reddy PH. Synaptic basis of Alzheimer’s disease: Focus on synaptic amyloid beta, P-tau and mitochondria. Ageing Res Rev. Jan 2021;65:101208. [CrossRef]
- Scheff SW, Price DA, Schmitt FA, Mufson EJ. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. Oct 2006;27(10):1372-84. [CrossRef]
- Kashyap G, Bapat D, Das D, et al. Synapse loss and progress of Alzheimer’s disease -A network model. Sci Rep. Apr 25 2019;9(1):6555. [CrossRef]
- Gasiorowska A, Wydrych M, Drapich P, et al. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Review. Frontiers in Aging Neuroscience. 2021-July-13 2021;13. [CrossRef]
- Roostaei T, Nazeri A, Felsky D, et al. Genome-wide interaction study of brain beta-amyloid burden and cognitive impairment in Alzheimer’s disease. Mol Psychiatry. Feb 2017;22(2):287-295. [CrossRef]
- Pan X, Kaminga AC, Wen SW, Wu X, Acheampong K, Liu A. Dopamine and Dopamine Receptors in Alzheimer’s Disease: A Systematic Review and Network Meta-Analysis. Front Aging Neurosci. 2019;11:175. [CrossRef]
- Al-Ezzi A, Arechavala RJ, Butler R, et al. Disrupted brain functional connectivity as early signature in cognitively healthy individuals with pathological CSF amyloid/tau. Communications Biology. 2024/08/23 2024;7(1):1037. [CrossRef]
- Fathian A, Jamali Y, Raoufy MR, et al. The trend of disruption in the functional brain network topology of Alzheimer’s disease. Scientific Reports. 2022/09/02 2022;12(1):14998. [CrossRef]
- Nabizadeh F, Initiative AsDN. Disruption in functional networks mediated tau spreading in Alzheimer’s disease. Brain Communications. 2024;6(4). [CrossRef]
- Stockhorst U, de Fries D, Steingrueber H-J, Scherbaum WA. Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans. Physiology & behavior. 2004;83(1):47-54. [CrossRef]
- Terzo S, Amato A, Mulè F. From obesity to Alzheimer’s disease through insulin resistance. Journal of Diabetes and its Complications. 2021/11/01/ 2021;35(11):108026. [CrossRef]
- Neth BJ, Craft S. Insulin Resistance and Alzheimer’s Disease: Bioenergetic Linkages. Front Aging Neurosci. 2017;9:345. [CrossRef]
- Glover HL, Schreiner A, Dewson G, Tait SW. Mitochondria and cell death. Nature cell biology. 2024;26(9):1434-1446. [CrossRef]
- Reiss AB, Gulkarov S, Jacob B, et al. Mitochondria in Alzheimer’s disease pathogenesis. Life. 2024;14(2):196. [CrossRef]
- Swerdlow RH. The mitochondrial hypothesis: dysfunction, bioenergetic defects, and the metabolic link to Alzheimer’s disease. International review of neurobiology. 2020;154:207-233. [CrossRef]
- Nasb M, Tao W, Chen N. Alzheimer’s disease puzzle: delving into pathogenesis hypotheses. Aging and Disease. 2024;15(1):43. [CrossRef]
- Turner RS, Thomas RG, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology. Oct 20 2015;85(16):1383-91. [CrossRef]
- Tapia-Monsalves C, Olesen MA, Villavicencio-Tejo F, Quintanilla RA. Cyclosporine A (CsA) prevents synaptic impairment caused by truncated tau by caspase-3. Mol Cell Neurosci. Jun 2023;125:103861. [CrossRef]
- Di Rita A, Maiorino T, Bruqi K, Volpicelli F, Bellenchi GC, Strappazzon F. miR-218 Inhibits Mitochondrial Clearance by Targeting PRKN E3 Ubiquitin Ligase. Int J Mol Sci. Jan 5 2020;21(1). [CrossRef]
- Arroum T, Hish GA, Burghardt KJ, et al. Mitochondria Transplantation: Rescuing Innate Muscle Bioenergetic Impairment in a Model of Aging and Exercise Intolerance. J Strength Cond Res. Jul 1 2024;38(7):1189-1199. [CrossRef]
- Li W, Peng X, Mei X, Dong M, Li Y, Dong H. Multifunctional DNA Tetrahedron for Alzheimer’s Disease Mitochondria-Targeted Therapy by MicroRNA Regulation. ACS Applied Materials & Interfaces. 2023/05/17 2023;15(19):22977-22984. [CrossRef]
- Han Y, Chu X, Cui L, et al. Neuronal mitochondria-targeted therapy for Alzheimer’s disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems. Drug Deliv. Dec 2020;27(1):502-518. [CrossRef]
- McManus MJ, Murphy MP, Franklin JL. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci. Nov 2 2011;31(44):15703-15. [CrossRef]
- Young ML, Franklin JL. The mitochondria-targeted antioxidant MitoQ inhibits memory loss, neuropathology, and extends lifespan in aged 3xTg-AD mice. Mol Cell Neurosci. Dec 2019;101:103409. [CrossRef]
- Hou Y, Chu X, Park JH, et al. Urolithin A improves Alzheimer’s disease cognition and restores mitophagy and lysosomal functions. Alzheimers Dement. Jun 2024;20(6):4212-4233. [CrossRef]
- Ryu D, Mouchiroud L, Andreux PA, et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nature Medicine. 2016/08/01 2016;22(8):879-888. [CrossRef]
- Heneka MT, van der Flier WM, Jessen F, et al. Neuroinflammation in Alzheimer disease. Nature Reviews Immunology. 2024/12/09 2024. [CrossRef]
- Suresh S, Singh SA, Rushendran R, Vellapandian C, Prajapati B. Alzheimer’s disease: the role of extrinsic factors in its development, an investigation of the environmental enigma. Front Neurol. 2023;14:1303111. [CrossRef]
- Rim C, You MJ, Nahm M, Kwon MS. Emerging role of senescent microglia in brain aging-related neurodegenerative diseases. Transl Neurodegener. Feb 20 2024;13(1):10. [CrossRef]
- Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduction and Targeted Therapy. 2023/07/12 2023;8(1):267. [CrossRef]
- Ting KK, Coleman P, Kim HJ, et al. Vascular senescence and leak are features of the early breakdown of the blood-brain barrier in Alzheimer’s disease models. Geroscience. Dec 2023;45(6):3307-3331. [CrossRef]
- Buccellato FR, D’Anca M, Serpente M, Arighi A, Galimberti D. The Role of Glymphatic System in Alzheimer’s and Parkinson’s Disease Pathogenesis. Biomedicines. Sep 13 2022;10(9). [CrossRef]
- Govindpani K, McNamara LG, Smith NR, et al. Vascular Dysfunction in Alzheimer’s Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med. May 10 2019;8(5). [CrossRef]
- Mattsson N, Tosun D, Insel PS, et al. Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer’s disease and mild cognitive impairment. Brain. 2014;137(5):1550-1561. [CrossRef]
- Vidoni ED, Morris JK, Watts A, et al. Effect of aerobic exercise on amyloid accumulation in preclinical Alzheimer’s: A 1-year randomized controlled trial. PloS one. 2021;16(1):e0244893. [CrossRef]
- Vidoni ED, Morris JK, Palmer JA, et al. Dementia risk and dynamic response to exercise: A non-randomized clinical trial. PloS one. 2022;17(7):e0265860. [CrossRef]
- Sisante JV, Vidoni ED, Kirkendoll K, et al. Blunted cerebrovascular response is associated with elevated beta-amyloid. J Cereb Blood Flow Metab. Jan 2019;39(1):89-96. [CrossRef]
- Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease - one peptide, two pathways. Nat Rev Neurol. Jan 2020;16(1):30-42. [CrossRef]
- Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim Biophys Acta. May 2016;1862(5):887-900. [CrossRef]
- Steinman J, Sun HS, Feng ZP. Microvascular Alterations in Alzheimer’s Disease. Front Cell Neurosci. 2020;14:618986. [CrossRef]
- Montagne A, Barnes SR, Sweeney MD, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. Jan 21 2015;85(2):296-302. [CrossRef]
- Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci. Jul 2017;18(7):419-434. [CrossRef]
- Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. Nov 3 2011;12(12):723-38. [CrossRef]
- Zacchigna S, Lambrechts D, Carmeliet P. Neurovascular signalling defects in neurodegeneration. Nat Rev Neurosci. Mar 2008;9(3):169-81. [CrossRef]
- Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. May 19 2011;473(7347):298-307. [CrossRef]
- Albert MS. Changes in cognition. Neurobiol Aging. Dec 2011;32 Suppl 1(0 1):S58-63. [CrossRef]
- Wilson RS, Bacon LD, Fox JH, Kaszniak AW. Primary memory and secondary memory in dementia of the Alzheimer type. J Clin Neuropsychol. Dec 1983;5(4):337-44. [CrossRef]
- Petersen RC, Smith GE, Ivnik RJ, Kokmen E, Tangalos EG. Memory function in very early Alzheimer’s disease. Neurology. May 1994;44(5):867-72. [CrossRef]
- Spaan PEJ, W. RJG, and Jonker C. Alzheimer’s Disease Versus Normal Ageing: A Review of the Efficiency of Clinical and Experimental Memory Measures. Journal of Clinical and Experimental Neuropsychology. 2003/04/01 2003;25(2):216-233. [CrossRef]
- Stopford CL, Thompson JC, Neary D, Richardson AM, Snowden JS. Working memory, attention, and executive function in Alzheimer’s disease and frontotemporal dementia. Cortex. 2012;48(4):429-446. [CrossRef]
- Ferman TJ, E. SG, F. BB, et al. Neuropsychological Differentiation of Dementia with Lewy Bodies from Normal Aging and Alzheimer’s Disease. The Clinical Neuropsychologist. 2006/12/01 2006;20(4):623-636. [CrossRef]
- Baudic S, Dalla Barba G, Thibaudet MC, Smagghe A, Remy P, Traykov L. Executive function deficits in early Alzheimer’s disease and their relations with episodic memory. Archives of clinical neuropsychology. 2006;21(1):15-21. [CrossRef]
- Kirova A-M, Bays RB, Lagalwar S. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease. BioMed research international. 2015;2015(1):748212. [CrossRef]
- Storandt M. Cognitive Deficits in the Early Stages of Alzheimer’s Disease. Current Directions in Psychological Science. 2008;17(3):198-202. [CrossRef]
- Almor A, Kempler D, MacDonald MC, Andersen ES, Tyler LK. Why do Alzheimer patients have difficulty with pronouns? Working memory, semantics, and reference in comprehension and production in Alzheimer’s disease. Brain and language. 1999;67(3):202-227. [CrossRef]
- Altmann LJ, McClung JS. Effects of semantic impairment on language use in Alzheimer’s disease. Semin Speech Lang. Feb 2008;29(1):18-31. [CrossRef]
- Karrasch M, Sinervä E, Grönholm P, Rinne J, Laine M. CERAD test performances in amnestic mild cognitive impairment and Alzheimer’s disease. Acta Neurol Scand. Mar 2005;111(3):172-9. [CrossRef]
- Rouleau I, Salmon DP, Butters N, Kennedy C, McGuire K. Quantitative and qualitative analyses of clock drawings in Alzheimer’s and Huntington’s disease. Brain Cogn. Jan 1992;18(1):70-87. [CrossRef]
- Rouleau I, Salmon DP, Butters N. Longitudinal analysis of clock drawing in Alzheimer’s disease patients. Brain Cogn. Jun 1996;31(1):17-34. [CrossRef]
- Cacciamani F, Houot M, Gagliardi G, et al. Awareness of Cognitive Decline in Patients With Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Front Aging Neurosci. 2021;13:697234. [CrossRef]
- Cloak N, Al Khalili Y. Behavioral and psychological symptoms in dementia. 2019.
- Heilman KM, Nadeau SE. Emotional and Neuropsychiatric Disorders Associated with Alzheimer’s Disease. Neurotherapeutics. 2022/01/01/ 2022;19(1):99-116. [CrossRef]
- Cerejeira J, Lagarto L, Mukaetova-Ladinska E. Behavioral and Psychological Symptoms of Dementia. Review. Frontiers in Neurology. 2012-May-07 2012;3. [CrossRef]
- Kwon C-Y, Lee B. Prevalence of Behavioral and Psychological Symptoms of Dementia in Community-Dwelling Dementia Patients: A Systematic Review. Systematic Review. Frontiers in Psychiatry. 2021-October-21 2021;12. [CrossRef]
- Villa C, Ferini-Strambi L, Combi R. The synergistic relationship between Alzheimer’s disease and sleep disorders: an update. Journal of Alzheimer’s Disease. 2015;46(3):571-580. [CrossRef]
- Guarnieri B, Sorbi S. Sleep and cognitive decline: a strong bidirectional relationship. It is time for specific recommendations on routine assessment and the management of sleep disorders in patients with mild cognitive impairment and dementia. European neurology. 2015;74(1-2):43-48. [CrossRef]
- Rechtschaffen A. Current perspectives on the function of sleep. Perspectives in biology and medicine. 1998;41(3):359-390. [CrossRef]
- Ju Y-ES, Ooms SJ, Sutphen C, et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain. 2017;140(8):2104-2111. [CrossRef]
- Barthélemy NR, Liu H, Lu W, Kotzbauer PT, Bateman RJ, Lucey BP. Sleep deprivation affects tau phosphorylation in human cerebrospinal fluid. Annals of neurology. 2020;87(5):700-709. [CrossRef]
- Xiong X, Hu T, Yin Z, Zhang Y, Chen F, Lei P. Research advances in the study of sleep disorders, circadian rhythm disturbances and Alzheimer’s disease. Review. Frontiers in Aging Neuroscience. 2022-August-17 2022;14. [CrossRef]
- Grundman M, Corey-Bloom J, Jernigan T, Archibald S, Thal L. Low body weight in Alzheimer’s disease is associated with mesial temporal cortex atrophy. Neurology. 1996;46(6):1585-1591. [CrossRef]
- Hu X, Okamura N, Arai H, et al. Neuroanatomical correlates of low body weight in Alzheimer’s disease: a PET study. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2002;26(7-8):1285-1289. [CrossRef]
- Edahiro A, Hirano H, Yamada R, Chiba Y, Watanabe Y. Comparative study of eating behavior in elderly patients with Alzheimer’s disease and vascular dementia: a first report.-Comparison of disturbed eating behavior. Nihon Ronen Igakkai zasshi Japanese Journal of Geriatrics. 2013;50(5):651-660. [CrossRef]
- Enomoto R, Kikutani T, Suzuki A, Inaba S. Relationship between eating dysfunction and life span and mortality in institutionalized elderly people. Nihon Ronen Igakkai zasshi Japanese Journal of Geriatrics. 2007;44(1):95-101. [CrossRef]
- Shinagawa S, Ikeda M, Nestor P, et al. Characteristics of abnormal eating behaviours in frontotemporal lobar degeneration: a cross-cultural survey. Journal of Neurology, Neurosurgery & Psychiatry. 2009;80(12):1413-1414. [CrossRef]
- Bozeat S, Gregory CA, Ralph MAL, Hodges JR. Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer’s disease? Journal of Neurology, Neurosurgery & Psychiatry. 2000;69(2):178-186. [CrossRef]
- Ikeda M, Brown J, Holland AJ, Fukuhara R, Hodges J. Changes in appetite, food preference, and eating habits in frontotemporal dementia and Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry. 2002;73(4):371-376. [CrossRef]
- Kai K, Hashimoto M, Amano K, Tanaka H, Fukuhara R, Ikeda M. Relationship between eating disturbance and dementia severity in patients with Alzheimer’s disease. PLoS One. 2015;10(8):e0133666. [CrossRef]
- Livingston G, Huntley J, Liu KY, et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet. Aug 10 2024;404(10452):572-628. [CrossRef]
- Reed B, Villeneuve S, Mack W, DeCarli C, Chui HC, Jagust W. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol. Feb 2014;71(2):195-200. [CrossRef]
- Iadecola C, Yaffe K, Biller J, et al. Impact of Hypertension on Cognitive Function: A Scientific Statement From the American Heart Association. Hypertension. Dec 2016;68(6):e67-e94. [CrossRef]
- Arnold SE, Arvanitakis Z, Macauley-Rambach SL, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol. Mar 2018;14(3):168-181. [CrossRef]
- Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. Oct 2018;14(10):591-604. [CrossRef]
- Huang YY, Gan YH, Yang L, Cheng W, Yu JT. Depression in Alzheimer’s Disease: Epidemiology, Mechanisms, and Treatment. Biol Psychiatry. Jun 1 2024;95(11):992-1005. [CrossRef]
- Wheeler MJ, Dempsey PC, Grace MS, et al. Sedentary behavior as a risk factor for cognitive decline? A focus on the influence of glycemic control in brain health. Alzheimers Dement (N Y). Sep 2017;3(3):291-300. [CrossRef]
- Cunningham C, R OS, Caserotti P, Tully MA. Consequences of physical inactivity in older adults: A systematic review of reviews and meta-analyses. Scand J Med Sci Sports. May 2020;30(5):816-827. [CrossRef]
- Topiwala A, Ebmeier KP. Effects of drinking on late-life brain and cognition. Evid Based Ment Health. Feb 2018;21(1):12-15. [CrossRef]
- Baranowski BJ, Marko DM, Fenech RK, Yang AJT, MacPherson REK. Healthy brain, healthy life: a review of diet and exercise interventions to promote brain health and reduce Alzheimer’s disease risk. Applied Physiology, Nutrition, and Metabolism. 2020;45(10):1055-1065. [CrossRef]
- Key MN, Szabo-Reed AN. Impact of Diet and Exercise Interventions on Cognition and Brain Health in Older Adults: A Narrative Review. Nutrients. 2023;15(11):2495. [CrossRef]
- He Q, Bennett AN, Zhang C, Zhang JY, Tong S, Chan KHK. Nutritional interventions for preventing cognitive decline in patients with mild cognitive impairment and Alzheimer’s disease: A comprehensive network meta-analysis and Mendelian Randomization study. Clin Nutr ESPEN. Mar 25 2025;67:555-566. [CrossRef]
- Testad I, Kajander M, Froiland CT, Corbett A, Gjestsen MT, Anderson JG. Nutritional Interventions for Persons With Early-Stage Dementia or Alzheimer’s Disease: An Integrative Review. Res Gerontol Nurs. Sep 1 2019;12(5):259-268. [CrossRef]
- Thunborg C, Wang R, Rosenberg A, et al. Integrating a multimodal lifestyle intervention with medical food in prodromal Alzheimer’s disease: the MIND-AD(mini) randomized controlled trial. Alzheimers Res Ther. May 30 2024;16(1):118. [CrossRef]
- Healy E. Impact of the MIND Diet on Cognition in Individuals with Dementia. J Alzheimers Dis. 2023;96(3):967-977. [CrossRef]
- Rong L, Peng Y, Shen Q, Chen K, Fang B, Li W. Effects of ketogenic diet on cognitive function of patients with Alzheimer’s disease: a systematic review and meta-analysis. J Nutr Health Aging. Aug 2024;28(8):100306. [CrossRef]
- Grammatikopoulou MG, Goulis DG, Gkiouras K, et al. To Keto or Not to Keto? A Systematic Review of Randomized Controlled Trials Assessing the Effects of Ketogenic Therapy on Alzheimer Disease. Adv Nutr. Nov 16 2020;11(6):1583-1602. [CrossRef]
- Seshadri S, Beiser A, Selhub J, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. Feb 14 2002;346(7):476-83. [CrossRef]
- Seshadri S. Elevated plasma homocysteine levels: risk factor or risk marker for the development of dementia and Alzheimer’s disease? J Alzheimers Dis. Aug 2006;9(4):393-8. [CrossRef]
- Wang Z, Zhu W, Xing Y, Jia J, Tang Y. B vitamins and prevention of cognitive decline and incident dementia: a systematic review and meta-analysis. Nutr Rev. Mar 10 2022;80(4):931-949. [CrossRef]
- Chen LJ, Sha S, Stocker H, Brenner H, Schöttker B. The associations of serum vitamin D status and vitamin D supplements use with all-cause dementia, Alzheimer’s disease, and vascular dementia: a UK Biobank based prospective cohort study. Am J Clin Nutr. Apr 2024;119(4):1052-1064. [CrossRef]
- Gil Martínez V, Avedillo Salas A, Santander Ballestín S. Vitamin Supplementation and Dementia: A Systematic Review. Nutrients. Feb 28 2022;14(5). [CrossRef]
- Kouba BR, Camargo A, Rodrigues ALS. Neuroinflammation in Alzheimer’s disease: potential beneficial effects of vitamin D. Metab Brain Dis. Mar 2023;38(3):819-829. [CrossRef]
- Shea MK, Xuan AY, Booth SL. Vitamin D, Alzheimer’s disease and related dementia. Adv Food Nutr Res. 2024;109:185-219. [CrossRef]
- Littlejohns TJK, K; Henley, W.E.; Kuźma, E.; Llewellyn, D.J. Vitamin D and Dementia. Journal of Prevention of Alzheimer’s Disease. 2015;3(1):43-52. [CrossRef]
- Raz N, Daugherty AM. Pathways to Brain Aging and Their Modifiers: Free-Radical-Induced Energetic and Neural Decline in Senescence (FRIENDS) Model - A Mini-Review. Gerontology. 2018;64(1):49-57. [CrossRef]
- Cardoso BR, Roberts BR, Malpas CB, et al. Supranutritional Sodium Selenate Supplementation Delivers Selenium to the Central Nervous System: Results from a Randomized Controlled Pilot Trial in Alzheimer’s Disease. Neurotherapeutics. Jan 2019;16(1):192-202. [CrossRef]
- Huhn S, Kharabian Masouleh S, Stumvoll M, Villringer A, Witte AV. Components of a Mediterranean diet and their impact on cognitive functions in aging. Front Aging Neurosci. 2015;7:132. [CrossRef]
- Wu S, Ding Y, Wu F, Li R, Hou J, Mao P. Omega-3 fatty acids intake and risks of dementia and Alzheimer’s disease: a meta-analysis. Neurosci Biobehav Rev. Jan 2015;48:1-9. [CrossRef]
- Brainard JS, Jimoh OF, Deane KHO, et al. Omega-3, Omega-6, and Polyunsaturated Fat for Cognition: Systematic Review and Meta-analysis of Randomized Trials. J Am Med Dir Assoc. Oct 2020;21(10):1439-1450.e21. [CrossRef]
- Lin PY, Cheng C, Satyanarayanan SK, et al. Omega-3 fatty acids and blood-based biomarkers in Alzheimer’s disease and mild cognitive impairment: A randomized placebo-controlled trial. Brain Behav Immun. Jan 2022;99:289-298. [CrossRef]
- Voulgaropoulou SD, van Amelsvoort T, Prickaerts J, Vingerhoets C. The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studies. Brain Res. Dec 15 2019;1725:146476. [CrossRef]
- Zeng M, Zhang K, Yang J, et al. Effects of Ginseng on Cognitive Function: A Systematic Review and Meta-Analysis. Phytother Res. Dec 2024;38(12):6023-6034. [CrossRef]
- Vyas CM, Manson JE, Sesso HD, et al. Effect of multivitamin-mineral supplementation versus placebo on cognitive function: results from the clinic subcohort of the COcoa Supplement and Multivitamin Outcomes Study (COSMOS) randomized clinical trial and meta-analysis of 3 cognitive studies within COSMOS. Am J Clin Nutr. Mar 2024;119(3):692-701. [CrossRef]
- Shim Y, Yoon B, Na S, Lim EY, Hong YJ, Yang DW. A systematic review and meta-analysis of the clinical effects of Souvenaid in patients with Alzheimer’s disease. Asia Pac J Clin Nutr. 2021;30(1):30-41. [CrossRef]
- Chung JY, Kim OY, Song J. Role of ketone bodies in diabetes-induced dementia: sirtuins, insulin resistance, synaptic plasticity, mitochondrial dysfunction, and neurotransmitter. Nutr Rev. Mar 10 2022;80(4):774-785. [CrossRef]
- Castro CB, Dias CB, Hillebrandt H, et al. Medium-chain fatty acids for the prevention or treatment of Alzheimer’s disease: a systematic review and meta-analysis. Nutr Rev. Aug 10 2023;81(9):1144-1162. [CrossRef]
- Elias A, Padinjakara N, Lautenschlager NT. Effects of intermittent fasting on cognitive health and Alzheimer’s disease. Nutr Rev. Aug 10 2023;81(9):1225-1233. [CrossRef]
- Ooi TC, Meramat A, Rajab NF, et al. Intermittent Fasting Enhanced the Cognitive Function in Older Adults with Mild Cognitive Impairment by Inducing Biochemical and Metabolic changes: A 3-Year Progressive Study. Nutrients. Aug 30 2020;12(9). [CrossRef]
- Corbin CB, Pangrazi RP, Franks BD. Definitions: Health, fitness, and physical activity. President’s Council on Physical Fitness and Sports Research Digest. 2000.
- Sandvik L, Erikssen J, Thaulow E, Erikssen G, Mundal R, Rodahl K. Physical Fitness as a Predictor of Mortality among Healthy, Middle-Aged Norwegian Men. The New England Journal of Medicine. 1993;328(8):533-537. [CrossRef]
- Laukkanen JA, Lakka TA, Rauramaa R, et al. Cardiovascular Fitness as a Predictor of Mortality in Men. Archives of internal medicine. 2001;161(6):825-831. [CrossRef]
- Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. Jul 2009;41(7):1510-30. [CrossRef]
- De la Rosa A, Olaso-Gonzalez G, Arc-Chagnaud C, et al. Physical exercise in the prevention and treatment of Alzheimer’s disease. Journal of Sport and Health Science. 2020/09/01/ 2020;9(5):394-404. [CrossRef]
- van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(23):13427-13431. [CrossRef]
- Barde YA. Neurotrophins: a family of proteins supporting the survival of neurons. ProgClin Biol Res. 1994;390:45-56.
- Lu B, Chow A. Neurotrophins and hippocampal synaptic transmission and plasticity. J Neurosci Res. 1999;58(1):76-87.
- Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci U S A. Jul 1990;87(14):5568-72. [CrossRef]
- Isaacs KR, Anderson BJ, Alcantara AA, Black JE, Greenough WT. Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. Journal Of Cerebral Blood Flow And Metabolism: Official Journal Of The International Society Of Cerebral Blood Flow And Metabolism. 1992;12(1):110-119. [CrossRef]
- Liang KY, Mintun MA, Fagan AM, et al. Exercise and Alzheimer’s disease biomarkers in cognitively normal older adults. Ann Neurol. Sep 2010;68(3):311-8. [CrossRef]
- Brown BM, Peiffer JJ, Martins RN. Multiple effects of physical activity on molecular and cognitive signs of brain aging: can exercise slow neurodegeneration and delay Alzheimer’s disease? Molecular Psychiatry. 2013/08/01 2013;18(8):864-874. [CrossRef]
- Head D, Bugg JM, Goate AM, et al. Exercise Engagement as a Moderator of the Effects of APOE Genotype on Amyloid Deposition. Arch Neurol. May 2012;69(5):636-43. [CrossRef]
- Ford ES. Does exercise reduce inflammation? Physical activity and C-reactive protein among U.S. adults. Epidemiology. Sep 2002;13(5):561-8. [CrossRef]
- Nichol K, Deeny SP, Seif J, Camaclang K, Cotman CW. Exercise improves cognition and hippocampal plasticity in APOE epsilon4 mice. Alzheimers Dement. Jul 2009;5(4):287-94. [CrossRef]
- García-Mesa Y, López-Ramos JC, Giménez-Llort L, et al. Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J Alzheimers Dis. 2011;24(3):421-54. [CrossRef]
- Colcombe SJ, Erickson KI, Raz N, et al. Aerobic Fitness Reduces Brain Tissue Loss in Aging Humans. Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2003;58(2):M176-M180. [CrossRef]
- Burns JM, Mayo MS, Anderson HS, Smith H, Donnelly JE. Cardiorespiratory Fitness in Early-Stage Alzheimer’s Disease. Alzheimer Dis Assoc Disord. 2008;22(1):39-46. [CrossRef]
- Honea RA, Thomas GP, Harsha A, et al. Cardiorespiratory fitness and preserved medial temporal lobe volume in Alzheimer’s Disease. Alzheimer Dis Assoc Disord. 2009; In Press. [CrossRef]
- Borst SE, De Hoyos DV, Garzarella L, et al. Effects of resistance training on insulin-like growth factor-I and IGF binding proteins. Med Sci Sports Exerc. Apr 2001;33(4):648-53. [CrossRef]
- Liu CJ, Latham NK. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev. Jul 8 2009;2009(3):Cd002759. [CrossRef]
- Liu-Ambrose T, Donaldson MG, Ahamed Y, et al. Otago home-based strength and balance retraining improves executive functioning in older fallers: a randomized controlled trial. J Am Geriatr Soc. Oct 2008;56(10):1821-30. [CrossRef]
- Suzuki T, Shimada H, Makizako H, et al. Effects of multicomponent exercise on cognitive function in older adults with amnestic mild cognitive impairment: a randomized controlled trial. BMC Neurol. Oct 31 2012;12:128. [CrossRef]
- Fiatarone Singh MA, Gates N, Saigal N, et al. The Study of Mental and Resistance Training (SMART) study—resistance training and/or cognitive training in mild cognitive impairment: a randomized, double-blind, double-sham controlled trial. J Am Med Dir Assoc. Dec 2014;15(12):873-80. [CrossRef]
- Tarazona-Santabalbina FJ, Gómez-Cabrera MC, Pérez-Ros P, et al. A Multicomponent Exercise Intervention that Reverses Frailty and Improves Cognition, Emotion, and Social Networking in the Community-Dwelling Frail Elderly: A Randomized Clinical Trial. J Am Med Dir Assoc. May 1 2016;17(5):426-33. [CrossRef]
- Church TS, Blair SN, Cocreham S, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. Jama. Nov 24 2010;304(20):2253-62. [CrossRef]
- Davidson LE, Hudson R, Kilpatrick K, et al. Effects of exercise modality on insulin resistance and functional limitation in older adults: a randomized controlled trial. Archives of internal medicine. Jan 26 2009;169(2):122-31. [CrossRef]
- Donges CE, Duffield R, Guelfi KJ, Smith GC, Adams DR, Edge JA. Comparative effects of single-mode vs. duration-matched concurrent exercise training on body composition, low-grade inflammation, and glucose regulation in sedentary, overweight, middle-aged men. Appl Physiol Nutr Metab. Jul 2013;38(7):779-88. [CrossRef]
- Sigal RJ, Kenny GP, Boulé NG, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. Sep 18 2007;147(6):357-69. [CrossRef]
- Sillanpää E, Häkkinen A, Punnonen K, Häkkinen K, Laaksonen DE. Effects of strength and endurance training on metabolic risk factors in healthy 40-65-year-old men. Scand J Med Sci Sports. Dec 2009;19(6):885-95. [CrossRef]
- Szabo-Reed A, Clutton J, White S, et al. COMbined Exercise Trial (COMET) to improve cognition in older adults: Rationale and methods. Contemporary Clinical Trials. 2022/07/01/ 2022;118:106805. [CrossRef]
- Bhattacharyya KK, Andel R, Small BJ. Effects of yoga-related mind-body therapies on cognitive function in older adults: A systematic review with meta-analysis. Archives of Gerontology and Geriatrics. 2021/03/01/ 2021;93:104319. [CrossRef]
- Gothe NP, Khan I, Hayes J, Erlenbach E, Damoiseaux JS. Yoga Effects on Brain Health: A Systematic Review of the Current Literature. Brain Plast. Dec 26 2019;5(1):105-122. [CrossRef]
- Liu F, Chen X, Nie P, et al. Can Tai Chi Improve Cognitive Function? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. The Journal of Alternative and Complementary Medicine. 2021;27(12):1070-1083. [CrossRef]
- Howe L, Yasser S, Eric A, Hao L. Brain Structural Response and Neurobehavior Changes in the Elderly after Tai Chi Practice - A Literature Review. Traditional and Integrative Medicine. 01/11 2023;0(0). [CrossRef]
- Leahy AA, Mavilidi MF, Smith JJ, et al. Review of high-intensity interval training for cognitive and mental health in youth. Medicine & Science in Sports & Exercise. 2020;52(10):2224-2234. [CrossRef]
- Jiménez-Maldonado A, Rentería I, García-Suárez PC, Moncada-Jiménez J, Freire-Royes LF. The Impact of High-Intensity Interval Training on Brain Derived Neurotrophic Factor in Brain: A Mini-Review. Mini Review. Frontiers in Neuroscience. 2018-November-14 2018;12. [CrossRef]
- Hugues N, Pellegrino C, Rivera C, Berton E, Pin-Barre C, Laurin J. Is High-Intensity Interval Training Suitable to Promote Neuroplasticity and Cognitive Functions after Stroke? International Journal of Molecular Sciences. 2021;22(6):3003. [CrossRef]
- Mekari S, Neyedli HF, Fraser S, et al. High-Intensity Interval Training Improves Cognitive Flexibility in Older Adults. Brain Sciences. 2020;10(11):796. [CrossRef]
- Seldeen KL, Lasky G, Leiker MM, Pang M, Personius KE, Troen BR. High Intensity Interval Training Improves Physical Performance and Frailty in Aged Mice. The Journals of Gerontology: Series A. 2017;73(4):429-437. [CrossRef]
- Seldeen KL, Redae YZ, Thiyagarajan R, Berman RN, Leiker MM, Troen BR. High intensity interval training improves physical performance in aged female mice: A comparison of mouse frailty assessment tools. Mechanisms of Ageing and Development. 2019/06/01/ 2019;180:49-62. [CrossRef]
- Cass SP. Alzheimer’s Disease and Exercise: A Literature Review. Current Sports Medicine Reports. 2017;16(1):19-22. [CrossRef]
- Feter N, Mielke GI, Leite JS, Brown WJ, Coombes JS, Rombaldi AJ. Physical activity in later life and risk of dementia: Findings from a population-based cohort study. Experimental Gerontology. 2021/01/01/ 2021;143:111145. [CrossRef]
- Iso-Markku P, Kujala UM, Knittle K, Polet J, Vuoksimaa E, Waller K. Physical activity as a protective factor for dementia and Alzheimer’s disease: systematic review, meta-analysis and quality assessment of cohort and case–control studies. British Journal of Sports Medicine. 2022;56(12):701. [CrossRef]
- Cámara-Calmaestra R, Martínez-Amat A, Aibar-Almazán A, Hita-Contreras F, de Miguel Hernando N, Achalandabaso-Ochoa A. Effectiveness of Physical Exercise on Alzheimer’s disease. A Systematic Review. The Journal of Prevention of Alzheimer’s Disease. 2022/10/01/ 2022;9(4):601-616. [CrossRef]
- Pitkälä KH, Pöysti MM, Laakkonen M-L, et al. Effects of the Finnish Alzheimer disease exercise trial (FINALEX): a randomized controlled trial. JAMA internal medicine. 2013;173(10):894-901. [CrossRef]
- Enette L, Vogel T, Merle S, et al. Effect of 9 weeks continuous vs. interval aerobic training on plasma BDNF levels, aerobic fitness, cognitive capacity and quality of life among seniors with mild to moderate Alzheimer’s disease: a randomized controlled trial. European Review of Aging and Physical Activity. 2020;17:1-16. [CrossRef]
- Pedrinolla A, Venturelli M, Fonte C, et al. Exercise training improves vascular function in patients with Alzheimer’s disease. European Journal of Applied Physiology. 2020;120:2233-2245. [CrossRef]
- Venturelli M, Scarsini R, Schena F. Six-month walking program changes cognitive and ADL performance in patients with Alzheimer. American Journal of Alzheimer’s Disease & Other Dementias®. 2011;26(5):381-388. [CrossRef]
- Sobol NA, Hoffmann K, Frederiksen KS, et al. Effect of aerobic exercise on physical performance in patients with Alzheimer’s disease. Alzheimer’s & Dementia. 2016;12(12):1207-1215. [CrossRef]
- Hoffmann K, Sobol NA, Frederiksen KS, et al. Moderate-to-high intensity physical exercise in patients with Alzheimer’s disease: a randomized controlled trial. Journal of Alzheimer’s Disease. 2016;50(2):443-453. [CrossRef]
- Vreugdenhil A, Cannell J, Davies A, Razay G. A community-based exercise programme to improve functional ability in people with Alzheimer’s disease: A randomized controlled trial. Scandinavian journal of caring sciences. 2012;26(1):12-19. [CrossRef]
- Zhou S, Chen S, Liu X, Zhang Y, Zhao M, Li W. Physical Activity Improves Cognition and Activities of Daily Living in Adults with Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. International Journal of Environmental Research and Public Health. 2022;19(3):1216. [CrossRef]
- Boyle CP, Raji CA, Erickson KI, et al. Physical activity, body mass index, and brain atrophy in Alzheimer’s disease. Neurobiology of Aging. 2015/01/01/ 2015;36:S194-S202. [CrossRef]
- Honea RA, Thomas GP, Harsha A, et al. Cardiorespiratory Fitness and Preserved Medial Temporal Lobe Volume in Alzheimer Disease. Alzheimer Disease & Associated Disorders. 2009;23(3):188-197. [CrossRef]
- Kress GT, Popa ES, Merrill DA, Bramen JE, Siddarth P. The impact of physical exercise on hippocampal atrophy in mild cognitive impairment and Alzheimer’s disease: a meta-analysis. NeuroReport. 2024;35(8):529-535. [CrossRef]
- Morris JK, Vidoni ED, Johnson DK, et al. Aerobic exercise for Alzheimer’s disease: A randomized controlled pilot trial. PLOS ONE. 2017;12(2):e0170547. [CrossRef]
- Vidoni ED, Morris JK, Watts A, et al. Effect of aerobic exercise on amyloid accumulation in preclinical Alzheimer’s: A 1-year randomized controlled trial. PLoS One. 2021;16(1):e0244893. [CrossRef]
- Deeny SP, Winchester J, Nichol K, et al. Cardiovascular fitness is associated with altered cortical glucose metabolism during working memory in ε4 carriers. Alzheimer’s & Dementia. 2012;8(4):352-356. [CrossRef]
- Deeny SP, Poeppel D, Zimmerman JB, et al. Exercise, APOE, and working memory: MEG and behavioral evidence for benefit of exercise in epsilon4 carriers. Biological Psychology. 2008/05/01/ 2008;78(2):179-187. [CrossRef]
- Sugarman MA, Woodard JL, Nielson KA, et al. Functional magnetic resonance imaging of semantic memory as a presymptomatic biomarker of Alzheimer’s disease risk. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2012;1822(3):442-456. [CrossRef]
- Woodard JL, Seidenberg M, Nielson KA, et al. Prediction of cognitive decline in healthy older adults using fMRI. Journal of Alzheimer’s Disease. 2010;21(3):871-885. [CrossRef]
- Vasconcelos-Filho FSL, da Rocha Oliveira LC, de Freitas TBC, et al. Effect of involuntary chronic physical exercise on beta-amyloid protein in experimental models of Alzheimer’s disease: Systematic review and meta-analysis. Experimental Gerontology. 2021/10/01/ 2021;153:111502. [CrossRef]
- Tan Z-X, Dong F, Wu L-Y, Feng Y-S, Zhang F. The Beneficial Role of Exercise on Treating Alzheimer’s Disease by Inhibiting β-Amyloid Peptide. Molecular Neurobiology. 2021/11/01 2021;58(11):5890-5906. [CrossRef]
- Elahi M, Motoi Y, Matsumoto S-E, Hasan Z, Ishiguro K, Hattori N. Short-term treadmill exercise increased tau insolubility and neuroinflammation in tauopathy model mice. Neuroscience letters. 2016;610:207-212. [CrossRef]
- Andrade-Guerrero J, Rodríguez-Arellano P, Barron-Leon N, et al. Advancing Alzheimer’s Therapeutics: Exploring the Impact of Physical Exercise in Animal Models and Patients. Cells. 2023;12(21):2531. [CrossRef]
- Pucci IM, Aguiar AF, Pucci RM, Casonatto J, Borghi SM. Systematic review and meta-analysis of randomized controlled trials on the effects of exercise interventions on amyloid beta levels in humans. Experimental Brain Research. 2024/05/01 2024;242(5):1011-1024. [CrossRef]
- Huang X, Zhao X, Li B, et al. Biomarkers for evaluating the effects of exercise interventions in patients with MCI or dementia: A systematic review and meta-analysis. Experimental Gerontology. 2021/08/01/ 2021;151:111424. [CrossRef]
- Frederiksen KS, Gjerum L, Waldemar G, Hasselbalch SG, Burns J. Effects of Physical Exercise on Alzheimer’s Disease Biomarkers: A Systematic Review of Intervention Studies. Journal of Alzheimer’s Disease. 2018;61(1):359-372. [CrossRef]
- Gómez-Pinilla F, Ying Z, Roy RR, Molteni R, Edgerton VR. Voluntary Exercise Induces a BDNF-Mediated Mechanism That Promotes Neuroplasticity. Journal of Neurophysiology. 2002;88(5):2187-2195. [CrossRef]
- Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience. 2004;20(10):2580-2590. [CrossRef]
- Ribeiro D, Petrigna L, Pereira FC, Muscella A, Bianco A, Tavares P. The Impact of Physical Exercise on the Circulating Levels of BDNF and NT 4/5: A Review. International Journal of Molecular Sciences. 2021;22(16):8814. [CrossRef]
- Titus J, Bray NW, Kamkar N, et al. The role of physical exercise in modulating peripheral inflammatory and neurotrophic biomarkers in older adults: A systematic review and meta-analysis. Mechanisms of Ageing and Development. 2021/03/01/ 2021;194:111431. [CrossRef]
- Ayari S, Abellard A, Carayol M, Guedj E, Gavarry O. A systematic review of exercise modalities that reduce pro-inflammatory cytokines in humans and animals’ models with mild cognitive impairment or dementia. Experimental Gerontology. 2023;175:112141. [CrossRef]
- Zhou Y, Wu W, Zou Y, et al. Benefits of different combinations of aerobic and resistance exercise for improving plasma glucose and lipid metabolism and sleep quality among elderly patients with metabolic syndrome: a randomized controlled trial. Endocrine journal. 2022;69(7):819-830. [CrossRef]
- O’Reilly CL, Miller BF, Lewis TL. Exercise and mitochondrial remodeling to prevent age-related neurodegeneration. Journal of Applied Physiology. 2023;134(1):181-189. [CrossRef]
- Ho RT, Fong TC, Chan WC, et al. Psychophysiological effects of dance movement therapy and physical exercise on older adults with mild dementia: a randomized controlled trial. The Journals of Gerontology: Series B. 2020;75(3):560-570. [CrossRef]
- Feng L, Li B, Yong SS, Wen X, Tian Z. The emerging role of exercise in Alzheimer’s disease: Focus on mitochondrial function. Ageing Research Reviews. 2024/11/01/ 2024;101:102486. [CrossRef]
- Brisendine MH, Drake JC. Early-stage Alzheimer’s disease: are skeletal muscle and exercise the key? Journal of Applied Physiology. 2023;134(3):515-520. [CrossRef]
- Alves L, Hashiguchi D, Loss CM, van Praag H, Longo BM. Vascular dysfunction in Alzheimer’s disease: Exploring the potential of aerobic and resistance exercises as therapeutic strategies. Journal of Alzheimer’s Disease. 0(0):13872877251321118. [CrossRef]
- Palmer JA, Kaufman CS, Vidoni ED, et al. Sex Differences in Resilience and Resistance to Brain Pathology and Dysfunction Moderated by Cerebrovascular Response to Exercise and Genetic Risk for Alzheimer’s Disease. Journal of Alzheimer’s Disease. 2022;90(2):535-542. [CrossRef]
- Liu Y, Perdomo SJ, Ward J, et al. Vascular Health is Associated with Amyloid-β in Cognitively Normal Older Adults. Journal of Alzheimer’s Disease. 2019;70(2):467-475. [CrossRef]
- Pedrinolla A, Venturelli M, Fonte C, et al. Exercise training improves vascular function in patients with Alzheimer’s disease. European Journal of Applied Physiology. 2020/10/01 2020;120(10):2233-2245. [CrossRef]
- Demurtas J, Schoene D, Torbahn G, et al. Physical Activity and Exercise in Mild Cognitive Impairment and Dementia: An Umbrella Review of Intervention and Observational Studies. Journal of the American Medical Directors Association. 2020;21(10):1415-1422.e6. [CrossRef]
- Liang Y-J, Su Q-W, Sheng Z-R, et al. Effectiveness of Physical Activity Interventions on Cognition, Neuropsychiatric Symptoms, and Quality of Life of Alzheimer’s Disease: An Update of a Systematic Review and Meta-Analysis. Systematic Review. Frontiers in Aging Neuroscience. 2022-March-02 2022;14. [CrossRef]
- McCartney A, J. C, B. RS, and Hoe J. The effectiveness of structured physical activity on agitation in people with dementia: a rapid review. Aging & Mental Health. 2024/08/02 2024;28(8):1067-1077. [CrossRef]
- Driver HS, Taylor SR. Exercise and sleep. Sleep Medicine Reviews. 2000/08/01/ 2000;4(4):387-402. [CrossRef]
- Uchida S, Shioda K, Morita Y, Kubota C, Ganeko M, Takeda N. Exercise Effects on Sleep Physiology. Mini Review. Frontiers in Neurology. 2012-April-02 2012;3. [CrossRef]
- King AC, Oman RF, Brassington GS, Bliwise DL, Haskell WL. Moderate-intensity exercise and self-rated quality of sleep in older adults. A randomized controlled trial. Jama. Jan 1 1997;277(1):32-7.
- Jøranson N, Olsen C, Calogiuri G, Ihlebæk C, Pedersen I. Effects on sleep from group activity with a robotic seal for nursing home residents with dementia: a cluster randomized controlled trial. International Psychogeriatrics. 2021;33(10):1045-1056. [CrossRef]
- Zhang S, Zhen K, Su Q, Chen Y, Lv Y, Yu L. The Effect of Aerobic Exercise on Cognitive Function in People with Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. International Journal of Environmental Research and Public Health. 2022;19(23):15700. [CrossRef]
- Yu F, Salisbury D, Mathiason MA. Inter-individual differences in the responses to aerobic exercise in Alzheimer’s disease: Findings from the FIT-AD trial. Journal of Sport and Health Science. 2021/01/01/ 2021;10(1):65-72. [CrossRef]
- Smith C, Woessner MN, Sim M, Levinger I. Sarcopenia definition: Does it really matter? Implications for resistance training. Ageing Research Reviews. 2022/06/01/ 2022;78:101617. [CrossRef]
- Lopez P, Pinto RS, Radaelli R, et al. Benefits of resistance training in physically frail elderly: a systematic review. Aging Clinical and Experimental Research. 2018/08/01 2018;30(8):889-899. [CrossRef]
- Vital TM, Hernández SSS, Pedroso RV, et al. Effects of weight training on cognitive functions in elderly with Alzheimer’s disease. Dement Neuropsychol. Oct-Dec 2012;6(4):253-259. [CrossRef]
- Sepúlveda-Lara A, Sepúlveda P, Marzuca-Nassr GN. Resistance Exercise Training as a New Trend in Alzheimer’s Disease Research: From Molecular Mechanisms to Prevention. International Journal of Molecular Sciences. 2024;25(13):7084. [CrossRef]
- Ye M, Wang L, Xiong J, Zheng G. The effect of mind–body exercise on memory in older adults: a systematic review and meta-analysis. Aging Clinical and Experimental Research. 2021/05/01 2021;33(5):1163-1173. [CrossRef]
- Hüttenrauch M, Castro-Obregón S. How mind-body therapies might reduce pathological features of Alzheimer’s disease. Neural Regeneration Research. 2022;17(8):1757-1758. [CrossRef]
- Smith PJ. Pathways of Prevention: A Scoping Review of Dietary and Exercise Interventions for Neurocognition. Brain Plast. Dec 26 2019;5(1):3-38. [CrossRef]
- Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective. Alzheimers Dement. Jun 2015;11(6):718-26. [CrossRef]
- López-Ortiz S, Lista S, Valenzuela PL, et al. Effects of physical activity and exercise interventions on Alzheimer’s disease: an umbrella review of existing meta-analyses. Journal of Neurology. 2023/02/01 2023;270(2):711-725. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
