Submitted:
18 April 2025
Posted:
21 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Computational Strategies with the Ability to Predict Repositioning of Known Drugs to Antimicrobials
2.1. Machine Learning
2.2. Molecular Docking
2.3. Molecular Dynamics
2.4. Genomic and Proteomic Sequencing Methods
2.5. Quantitative Structure-Activity Relationship Models
3. Future directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial intelligence |
| AMR | Antimicrobial resistance |
| Cho1 | Fungal phosphatidylserine synthase |
| CYP51 | Sterol 14-demethylase |
| DHFR | Dihydrofolate reductase |
| DL | Deep learning |
| DTI | Drug–target interactions |
| FAERS | FDA Adverse Event Reporting System |
| FDA | Food and Drug Administration |
| LGA | Lamarckian genetic algorithm |
| MD | Molecular Docking |
| ML | Machine Learning |
| MRSA | Methicillin-resistant Staphylococcus aureus |
| NDM-1 | New Delhi metallo- β -lactamase |
| PASS | Prediction of Activity Spectra for Substance |
| PBP3 | Penicillin-binding protein 3 |
| PDB | Protein Data Bank |
| QS | Quorum sensing |
| QSAR | Quantitative Structure–Activity Relationship |
| RND | Resistance nodulation division |
References
- GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199-1226.
- Tarín-Pelló, A.; Suay-García, B.; Pérez-Gracia, M.T. Antibiotic resistant bacteria: current situation and treatment options to accelerate the development of a new antimicrobial arsenal. Expert Rev Anti Infect Ther 2022, 20, 1095–1108. [Google Scholar] [CrossRef] [PubMed]
- Lorente-Torres, B.; Llano-Verdeja, J.; Castañera, P.; Ferrero, H.Á.; Fernández-Martínez, S.; Javadimarand, F.; Mateos, L.M.; Letek, M.; Mourenza, Á. Innovative Strategies in Drug Repurposing to Tackle Intracellular Bacterial Pathogens. Antibiotics (Basel) 2024, 13, 834. [Google Scholar] [CrossRef]
- Kaur, H.; Kalia, M.; Chaudhary, N.; Singh, V.; Yadav, V.K.; Modgil, V.; Kant, V.; Mohan, B.; Bhatia, A.; Taneja, N. Repurposing of FDA approved drugs against uropathogenic Escherichia coli: In silico, in vitro, and in vivo analysis. Microb Pathog 2022, 169, 105665. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Gu, Y.; Gu, Y.; Zhao, Y.; Li, L.; Wang, M.; Jiang, R.; Yu, X.; Chen, T.; Li, J. Machine learning-enabled virtual screening indicates the anti-tuberculosis activity of aldoxorubicin and quarfloxin with verification by molecular docking, molecular dynamics simulations, and biological evaluations. Brief Bioinform 2024, 26, 696. [Google Scholar] [CrossRef]
- Mongia, M.; Guler, M.; Mohimani, H. An interpretable machine learning approach to identify mechanism of action of antibiotics. Sci Rep 2022, 12, 10342. [Google Scholar] [CrossRef]
- da Rosa, T.F.; Foletto, V.S.; Serafin, M.B.; Bottega, A.; Hörner, R. Anti-infective properties of proton pump inhibitors: perspectives. Int Microbiol 2022, 25, 217–222. [Google Scholar] [CrossRef]
- Vieira, T.F.; Leitão, M.M.; Cerqueira, N.M.F.S.A.; Sousa, S.F.; Borges, A.; Simões, M. Montelukast and cefoperazone act as antiquorum sensing and antibiofilm agents against Pseudomonas aeruginosa. J Appl Microbiol 2024, 135, lxae088. [Google Scholar] [CrossRef]
- Tarín-Pelló, A.; Suay-García, B.; Falcó, A.; Pérez-Gracia, M. T. Big Data to Expand the Antimicrobial Therapeutic Arsenal: De Novo Discovery and Drug Repurposing. In Encyclopedia of Information Science and Technology, 6th ed.; Mehdi Khosrow-Pour, D.B.A., Ed.; IGI Global: Hershey, United States, Advance online publication; 2025. [Google Scholar] [CrossRef]
- Glajzner, P.; Bernat, A.; Jasińska-Stroschein, M. Improving the treatment of bacterial infections caused by multidrug-resistant bacteria through drug repositioning. Front Pharmacol 2024, 15, 1397602. [Google Scholar] [CrossRef]
- Cantrell, J.M.; Chung, C.H.; Chandrasekaran, S. Machine learning to design antimicrobial combination therapies: Promises and pitfalls. Drug Discov Today 2022, 27, 1639–1651. [Google Scholar] [CrossRef]
- Shehadeh, F.; Felix, L.; Kalligeros, M.; Shehadeh, A.; Fuchs, B.B.; Ausubel, F.M.; Sotiriadis, P.P.; Mylonakis, E. Machine Learning-Assisted High-Throughput Screening for Anti-MRSA Compounds. IEEE/ACM Trans Comput Biol Bioinform. 2024, 21, 1911–1921. [Google Scholar] [CrossRef]
- Chung, C.H.; Chandrasekaran, S. A flux-based machine learning model to simulate the impact of pathogen metabolic heterogeneity on drug interactions. PNAS Nexus 2022, 1, pgac132. [Google Scholar] [CrossRef]
- Morris, G.M.; Lim-Wilby, M. Molecular Docking. In Molecular Modeling of Proteins. Methods Molecular Biology™; Kubol, A., Ed.; Publisher: Publisher Location, Country, 2008; Volume 443, pp. 365–382, Humana Press. doi: 10.1007/978-1-59745-177-2_19. Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol Biol 2008, 443, 365-382. [Google Scholar] [CrossRef]
- Gangopadhyay, A.; Chakraborty, H.J.; Datta, A. Protein Docking and Drug Design. In Biotechnology: Concepts, Methodologies, Tools, and Applications; Information Resources Management, Association, Ed.; IGI Global: Hershey, United States, 2019; Volume X, pp. 889–922. [Google Scholar] [CrossRef]
- Battah, B.; Chemi, G.; Butini, S.; Campiani, G.; Brogi, S.; Delogu, G.; Gemma, S. A Repurposing Approach for Uncovering the Anti-Tubercular Activity of FDA-Approved Drugs with Potential Multi-Targeting Profiles. Molecules, 2019, 24, 4373. [Google Scholar] [CrossRef] [PubMed]
- Madugula, S.S.; Nagamani, S.; Jamir, E.; Priyadarsinee, L.; Sastry, GN. Drug repositioning for anti-tuberculosis drugs: an in silico polypharmacology approach. Mol Divers. 2022, 26, 1675–1695. [Google Scholar] [CrossRef] [PubMed]
- Tolba, M.S.; Hamed, M.M.; Sayed, M.; Kamal El-Dean, A.M.; Abdel-Mohsen, S.A.; Ibrahim, O.A.; Elgaher, A.A.M. , Hirsch, A.K.H., Saddik, A.A. Design, Synthesis, Antimicrobial Activity, and Molecular Docking of Some New Diclofenac Derivatives. Polycyclic Aromatic Compounds, 2022, 43, 5437–5452. [Google Scholar] [CrossRef]
- Zhou, Y.; Phelps, G.A.; Mangrum, M.M.; McLeish, J.; Phillips, E.K.; Lou, J.; Ancajas, C.F.; Rybak, J.M.; Oelkers, P.M.; Lee, R.E.; et al. The small molecule CBR-5884 inhibits the Candida albicans phosphatidylserine synthase. mBio. 2024, 15, e0063324. [Google Scholar] [CrossRef]
- Mullarky, E.; Lucki, N.C.; Beheshti Zavareh, R.; Anglin, J.L.; Gomes, A.P.; Nicolay, B.N.; Wong, J.C.; Christen, S.; Takahashi, H.; Singh, P.K.; et al. Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc Natl Acad Sci U S A. 2016, 113, 1778–83, doi: 10.1073/pnas.1521548113. Erratum in: Proc Natl Acad Sci U S A. 2016, 113, E1585. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.A.; Patel, B.; Priyadarsini, I.K.; Vavilala, S.L. Combating planktonic and biofilm growth of Serratia marcescens by repurposing ebselen. Int Microbiol. 2023, 26, 693–704. [Google Scholar] [CrossRef]
- Barbarossa, A.; Rosato, A.; Carrieri, A.; Fumarola, L.; Tardugno, R; Corbo, F.; Fracchiolla, G.; Carocci, A. Exploring the Antibiofilm Effect of Sertraline in Synergy with Cinnamomum verum Essential Oil to Counteract Candida Species. Pharmaceuticals (Basel). 2024, 17, 1109. [CrossRef]
- Cussotto, S.; Strain, C.R.; Fouhy, F.; Strain, R.G.; Peterson, V.L.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Differential effects of psychotropic drugs on microbiome composition and gastrointestinal function. Psychopharmacology 2019, 236, 1671–1685. [Google Scholar] [CrossRef]
- Ding, P.; Lu, J.; Wang, Y.; Schembri, M.A.; Guo, J. Antidepressants promote the spread of antibiotic resistance via horizontally conjugative gene transfer. Environ Microbiol. 2022, 24, 5261–5276. [Google Scholar] [CrossRef]
- Shi, D.; Hao, H.; Wei, Z.; Yang, D.; Yin, J.; Li, H.; Chen, Z.; Yang, Z.; Chen, T.; Zhou, S. Combined exposure to non-antibiotic pharmaceutics and antibiotics in the gut synergistically promote the development of multi-drug-resistance in Escherichia coli. Gut Microbes. 2022, 14, 2018901. [Google Scholar] [CrossRef]
- Yang, J.; Xu, L.; Zhou, Y.; Cui, M.; Liu, D.; Wang, J.; Wang, Y.; Deng, X. Repurposing harmaline as a novel approach to reverse tmexCD1-toprJ1-mediated tigecycline resistance against klebsiella pneumoniae infections. Microb Cell Fact. 2024, 23, 152. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, T.; Peng, K.; Peng, J.; Liu, X.; Xia, Z.; Chi, L.; Zhao, X.; Li, S.; Chen, S.; et al. Conjugative plasmids facilitate the transmission of tmexCD2-toprJ2 among carbapenem-resistant Klebsiella pneumoniae. Sci Total Environ. 2024, 906, 167373. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.Z.; You, C.; Wang, Y.J.; Dar, O.I.; Yin, L.J.; Xiang, S.L.; Jia, A.Q. Repurposing promethazine hydrochloride to inhibit biofilm formation against Burkholderia thailandensis. Med Microbiol Immunol. 2024, 213, 16. [Google Scholar] [CrossRef]
- Rodríguez-Carlos, A.; Jacobo-Delgado, Y.; Santos-Mena, A.O.; García-Hernández, M.H.; De Jesus-Gonzalez, L.A.; Lara-Ramirez, E.E.; Rivas-Santiago, B. Histone deacetylase (HDAC) inhibitors- based drugs are effective to control Mycobacterium tuberculosis infection and promote the sensibility for rifampicin in MDR strain. Mem Inst Oswaldo Cruz. 2023, 118, e230143. [Google Scholar] [CrossRef]
- Gracia, J.; Perumal, D.; Dhandapani, P.; Ragunathan, P. Systematic identification and repurposing of FDA-approved drugs as antibacterial agents against Streptococcus pyogenes: In silico and in vitro studies. Int J Biol Macromol. 2024, 257, 128667. [Google Scholar] [CrossRef]
- Li, J.; Han, N.; Li, Y.; Zhao, F.; Xiong, W.; Zeng, Z. Evaluating the Antibacterial and Antivirulence Activities of Floxuridine against Streptococcus suis. Int J Mol Sci. 2023, 24, 14211. [Google Scholar] [CrossRef]
- Sharma, R.; Muthu, S.A.; Agarwal, M.; Mehto, N.K.; Pahuja, I.; Grover, A.; Dwivedi, V.P.; Ahmad, B.; Grover, S. Atosiban and Rutin exhibit anti-mycobacterial activity - An integrated computational and biophysical insight toward drug repurposing strategy against Mycobacterium tuberculosis targeting its essential enzyme HemD. Int J Biol Macromol. 2023, 253, 127208. [Google Scholar] [CrossRef]
- Peng, M.; Zhang, C.; Duan, Y.Y.; Liu, H.B.; Peng, X.Y.; Wei, Q.; Chen, Q.Y.; Sang, H.; Kong, Q.T. Antifungal activity of the repurposed drug disulfiram against Cryptococcus neoformans. Front Pharmacol. 2024, 14, 1268649. [Google Scholar] [CrossRef]
- Tovar-Nieto, A.M.; Flores-Padilla, L.E.; Rivas-Santiago, B.; Trujillo-Paez, J.V.; Lara-Ramirez, E.E.; Jacobo-Delgado, Y.M.; López-Ramos, J.E.; Rodríguez-Carlos, A. The Repurposing of FDA-Approved Drugs as FtsZ Inhibitors against Mycobacterium tuberculosis: An In Silico and In Vitro Study. Microorganisms, 2024, 12, 1505. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.M.; Nandekar, P.; Saini, R. Computational identification of natural product inhibitors against EGFR double mutant (T790M/L858R) by integrating ADMET, machine learning, molecular docking and a dynamics approach. RSC Adv. 2022, 12, 16779–16789. [Google Scholar] [CrossRef] [PubMed]
- Das, A.P.; Agarwal, S.M. Recent advances in the area of plant-based anti-cancer drug discovery using computational approaches. Mol Divers. 2024, 28, 901–925. [Google Scholar] [CrossRef]
- Ohra, S.; Sharma, R.; Kumar, A. Repurposing of drugs against bacterial infections: A pharmacovigilance-based data mining approach. Drug Dev Res. 2024, 85, e22211. [Google Scholar] [CrossRef] [PubMed]
- Shailaja, S.; Harshitha, N.; Fasim, A.; More, S.S.; Das Mitra, S. Identification of a potential inhibitor for New Delhi metallo-β-lactamase 1 (NDM-1) from FDA approved chemical library- a drug repurposing approach to combat carbapenem resistance. J Biomol Struct Dyn. 2023, 41, 7700–7711. [Google Scholar] [CrossRef]
- Medha; Joshi H. ; Sharma, S.; Sharma, M. Elucidating the function of hypothetical PE_PGRS45 protein of Mycobacterium tuberculosis as an oxido-reductase: a potential target for drug repurposing for the treatment of tuberculosis. J Biomol Struct Dyn. 2023, 41, 10009–10025. [Google Scholar] [CrossRef]
- Ezquerra-Aznárez, J.M.; Degiacomi, G.; Gašparovič, H.; Stelitano, G.; Sammartino, J. C.; Korduláková, J.; Governa, P.; Manetti, F.; Pasca, M.R.; Chiarelli, L.R.; Ramón-García, S. The Veterinary Anti-Parasitic Selamectin Is a Novel Inhibitor of the Mycobacterium tuberculosis DprE1 Enzyme. Int. J. Mol. Sci. 2022, 23, 771. [Google Scholar] [CrossRef]
- Ngidi, N.T.P.; Machaba, K.E.; Mhlongo, N.N. In Silico Drug Repurposing Approach: Investigation of Mycobacterium tuberculosis FadD32 Targeted by FDA-Approved Drugs. Molecules, 2022, 27(3), 668. [CrossRef]
- Dwivedi M, Mukhopadhyay S, Yadav S, Dubey KD. A multidrug efflux protein in Mycobacterium tuberculosis; tap as a potential drug target for drug repurposing. Comput Biol Med. 2022 Jul;146:105607. [CrossRef]
- Borgio, J.F.; Almandil, N.B.; Selvaraj, P.; John, J.S.; Alquwaie, R.; AlHasani, E.; Alhur, N.F.; Aldahhan, R.; AlJindan, R.; Almohazey, D.; et al. The Potential of Dutasteride for Treating Multidrug-Resistant Candida auris Infection. Pharmaceutics. 2024, 16, 810. [Google Scholar] [CrossRef]
- David, H.; Vasudevan, S.; Solomon, A.P. Mitigating candidiasis with acarbose by targeting Candida albicans α-glucosidase: in-silico, in-vitro and transcriptomic approaches. Sci Rep. 2024, 14, 11890. [Google Scholar] [CrossRef] [PubMed]
- Singh A, Kumar S, Gupta VK, Singh S, Dwivedi VD, Mina U. Computational assessment of Withania somnifera phytomolecules as putative inhibitors of Mycobacterium tuberculosis CTP synthase PyrG. J Biomol Struct Dyn. 2023, 41, 4903-4916. [CrossRef]
- Tarín-Pelló, A.; Suay-García, B.; Forés-Martos, J.; Falcó, A.; Pérez-Gracia, M.T. Computer-aided drug repurposing to tackle antibiotic resistance based on topological data analysis. Comput Biol Med. 2023, 166, 107496. [Google Scholar] [CrossRef]
- Narimisa, N.; Razavi, S.; Khoshbayan, A.; Gharaghani, S.; Jazi, F.M. Targeting lon protease to inhibit persister cell formation in Salmonella Typhimurium: a drug repositioning approach. Front Cell Infect Microbiol. 2024, 14, 1427312. [Google Scholar] [CrossRef]
- Hossain, S.; Rafi, R.H.; Ripa, F.A.; Khan, M.R.I.; Hosen, M.E.; Molla, M.K.I.; Faruqe, M.O.; Al-Bari, M.A.A.; Das, S. Modulating the antibacterial effect of the existing antibiotics along with repurposing drug metformin. Arch Microbiol. 2024, 206, 190, doi: 10.1007/s00203-024-03917-5. Erratum in: Arch Microbiol. 2024, 206, 274. [Google Scholar] [CrossRef]
- Neves, B.J.; Braga, R.C.; Bezerra, J.C.B.; Cravo, P.V.L.; Andrade, C.H. In silico repositioning-chemogenomics strategy identifies new drugs with potential activity against multiple life stages of Schistosoma mansoni. PLoS Negl Trop Dis. 2015, 9, e3435, doi: 10.1371/journal.pntd.0003435. Erratum in: PLoS Negl Trop Dis. 2015, 9, e0003554. [Google Scholar] [CrossRef]
- March-Vila, E.; Pinzi, L.; Sturm, N.; Tinivella, A.; Engkvist, O.; Chen, H.; Rastelli, G. On the integration of in silico drug design methods for drug repurposing. Front Pharmacol. 2017, 8, 298. [Google Scholar] [CrossRef]
- Riaz, R.; Khan, K.; Aghayeva, S.; Uddin, R. Combatting antibiotic resistance in Gardnerella vaginalis: A comparative in silico investigation for drug target identification. PLoS One. 2025, 20, e0314465. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Khan, K.; Tauseef, S.; Jalal, K.; Haroon, U.; Uddin, R.; Abdellattif, M.H.; Khan, A.; Al-Harrasi, A. Identification of therapeutic drug target of Shigella Flexneri serotype X through subtractive genomic approach and in-silico screening based on drug repurposing. Infect Genet Evol. 2024, 122, 105611. [Google Scholar] [CrossRef]
- Borges, K.C.M.; Costa, V.A.F.; Neves, B.; Kipnis, A.; Junqueira-Kipnis, A.P. New antibacterial candidates against Acinetobacter baumannii discovered by in silico-driven chemogenomics repurposing. PLoS One. 2024, 19, e0307913. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.S.; Costa, V.A.F.; Freitas, V.A.Q.; Dos Anjos; L.R.B.; de Almeida Santos E.S.; Arantes, T.D.; Costa, C.R.; de Sene Amâncio Zara, A.L.; Rodrigues Silva, M.R.; Neves, B.J. Drug to genome to drug: a computational large-scale chemogenomics screening for novel drug candidates against sporotrichosis. Braz J Microbiol 2024, 55, 2655–2667. doi: 10.1007/s42770-024-01406-x. Erratum in: Braz J Microbiol 2024, 55, 4229. [CrossRef]
- Goswami, D.; Prajapati, J.; Dabhi, M.; Sharkey, LKR; Pidot, S.J. MurG as a potential target of quercetin in Staphylococcus aureus supported by evidence from subtractive proteomics and molecular dynamics. Sci Rep. 2025, 15, 7309. [CrossRef]
- Urra, G.; Valdés-Muñoz, E.; Suardiaz, R.; Hernández-Rodríguez, E.W.; Palma, J.M.; Ríos-Rozas, S.E.; Flores-Morales, C.A.; Alegría-Arcos, M.; Yáñez, O.; Morales-Quintana, L.; et al. From Proteome to Potential Drugs: Integration of Subtractive Proteomics and Ensemble Docking for Drug Repurposing against Pseudomonas aeruginosa RND Superfamily Proteins. Int J Mol Sci. 2024, 25, 8027. [Google Scholar] [CrossRef]
- Verma, S.; Gazara, R.K. Chapter 3 - Next-generation sequencing: an expedition from workstation to clinical applications. In Translational Bioinformatics in Healthcare and Medicine.; Raza, K., Dey, N., Eds, Eds.; Academic Press: San Diego, United States of America, 2021; Volume 13, pp. 29–47. [Google Scholar] [CrossRef]
- Das, S.; Singh, S.; Satpathy, S.; Bhasin, M.; Kumar, A. Transcriptomics and systems biology identify non-antibiotic drugs for the treatment of ocular bacterial infection. IScience 2022, 25, 104862–1. [Google Scholar] [CrossRef]
- Putra, G.S.; Putri, A.O.; Gunawan, S.N.F.; Anwari, F.; Sulistyowaty, M.I. The QSAR study of pyridothienopyrimidine derivatives as antimicrobial activities against pseudomonas aeruginosa. Pharmacy Education 2024, 24, 363–369. [Google Scholar] [CrossRef]
- Suay-García, B.; Bueso-Bordils, J.I.; Falcó, A.; Antón-Fos, G.M.; Alemán-López, P.A. Virtual Combinatorial Chemistry and Pharmacological Screening: A Short Guide to Drug Design. Int J Mol Sci. 2022, 23, 1620. [Google Scholar] [CrossRef]
- Nandi, S.; Kumar, M.; Kumari, R.; Saxena, A. Exploring the inhibitory mechanisms of indazole compounds against SAH/MTAN-mediated quorum sensing utilizing QSAR and docking. Drug Target Insights. 2022, 16, 54–68. [Google Scholar] [CrossRef]
- Ye, J.; Yang, X.; Ma, C. QSAR, Docking, and Molecular Dynamics Simulation Studies of Sigmacidins as Antimicrobials against Streptococci. Int J Mol Sci. 2022, 23, 4085. [Google Scholar] [CrossRef] [PubMed]
- Bueso-Bordils, J.I.; Antón-Fos, G.M.; Falcó, A. Duart, M.J.; Martín-Algarra, R.; Alemán-López, P.A. New Pharmacokinetic and Microbiological Prediction Equations to Be Used as Models for the Search of Antibacterial Drugs. Pharmaceuticals (Basel). 2022, 15, 122. [Google Scholar] [CrossRef]
- Kamble, S.; Singh, S.; Suresh, A.; Singothu, S.; Dandesena, D.; Bhandari, V.; Sharma, P. Epidrugs: alternative chemotherapy targeting Theileria annulata schizont stage parasites. Microbiol Spectr. 2024, 12, e0325823. [Google Scholar] [CrossRef]
- Bennett, R.L. , Licht J.D. Targeting Epigenetics in Cancer. Annu Rev Pharmacol Toxicol. 2018, 58, 187–207. [Google Scholar] [CrossRef]
- Murugan, N.; Malathi, J.; Therese, K.L.; Madhavan, H.N. Application of six multiplex PCR's among 200 clinical isolates of Pseudomonas aeruginosa for the detection of 20 drug resistance encoding genes. Kaohsiung J Med Sci. 2018, 34, 79–88. [Google Scholar] [CrossRef]
- Ngidi, N.T.P.; Machaba, K.E.; Mhlongo, N.N. In Silico Drug Repurposing Approach: Investigation of Mycobacterium tuberculosis FadD32 Targeted by FDA-Approved Drugs. Molecules 2022, 27, 668. [Google Scholar] [CrossRef]
- Gohain, B.B.; Mazumder, B.; Rajkhowa, S.; Al-Hussain, S.A.; Zaki, M.E.A. Subtractive genomics and drug repurposing strategies for targeting Streptococcus pneumoniae: insights from molecular docking and dynamics simulations. Front Microbiol. 2025, 16, 1534659. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Cang, Z.; Wei, G.W. A review of mathematical representations of biomolecular data. Phys Chem Chem Phys. 2020, 22, 4343–4367. [Google Scholar] [CrossRef]
- Chazal, F.; Michel, B. An introduction to topological data analysis: fundamental and practical aspects for data scientists. Front Artif Intell. 2021, 4, 667963. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Moraga, R.; Forés-Martos, J.; Suay-García, B.; Duval, J.L.; Falcó, A.; Climent, J. A COVID-19 drug repurposing strategy through quantitative homological similarities using a topological Data analysis-based framework. Pharmaceutics 2021, 13, 488. [Google Scholar] [CrossRef] [PubMed]
- Suay-García, B.; Climent, J.; Pérez-Gracia, M.T.; Falcó, A. A comprehensive update on the use of molecular topology applications for anti-infective drug discovery. Expert Opinion on Drug Discovery 2025, 20, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, T.; Liu, Q.; Sutcharitchan, C.; Zhou, Z.; Zhang, D.; Li, S. Elucidating the role of artificial intelligence in drug development from the perspective of drug-target interactions. J Pharm Anal 2025, 15, 101144. [Google Scholar] [CrossRef] [PubMed]
- Joshi, T.; Sharma, P.; Joshi, T.; Mathpal, S.; Pande, V.; Chandra, S. Repurposing of FDA approved drugs against Salmonella enteric serovar Typhi by targeting dihydrofolate reductase: an in silico study. J Biomol Struct Dyn 2022, 40, 3731–3744, doi: 10.1080/07391102.2020.1850356. Erratum in: J Biomol Struct Dyn 2024, 22, 1-3. [Google Scholar] [CrossRef]
- Chen, J. , Woldring, D.R.; Huang, F.; Huang, X.; Wei, G.W.l. Topological deep learning based deep mutational scanning. Comput Biol Med 2023, 164, 107258. [Google Scholar] [CrossRef]
- Zhang, O.; Wang, T.; Weng, G.; Jiang, D.; Wang, N.; Wang, X.; Zhao, H.; Wu, J.; Wang, E.; Chen, G.; et al. Learning on topological surface and geometric structure for 3D molecular generation. Nat Comp Sci 2023, 3, 849–859. [Google Scholar] [CrossRef]

| Molecules | Class of drug | New Indication Predicted | Reference |
|---|---|---|---|
| Promethazine | First-generation antihistamine | Biofilm formation inhibition and lipase activity by supression of quorum sensing of Burkholderia thailandensis | [28] |
| Derivates of entinostat | Antitumorals | Metabolism inhibitors, antimicrobial peptides promotors and rifampicine adyuvants against Mycobacterium tuberculosis | [29] |
| Nitrofural, stavudine, quinine, quinidine and others | Antitumorals, antivirals, treatments of degenerative diseases and others | Inhibition of different targets of M. tuberculosis | [17] |
| Amlodipine | Calcium channel blocker. Antihypertensive | Inhibition of RpoC of Streptococcus pyogenes | [30] |
| Ranitidine | Histamine H2 antagonist | ||
| Floxuridine | Antitumoral | Hemolytic activity and expression levels of virulence-related genes of Streptococcus suis | [31] |
| Atovaquone | Antipaludic | Inhibition of FTsZ of M. tuberculosis | [34] |
| Paroxetine | Selective serotonin reuptake inhibitor | ||
| Nebivolol | Antihypertensive | ||
| Atosiban | Inhibitor of oxytocin and vasopressin Delays preterm birth in pregnancy | Inhibition of HemD of M. tuberculosis | [32] |
| Rutin | Flavonoid. Vitamin supplement | ||
| Disulfiram | Treatment of alcohol dependence | Inhibition of aldehyde dehydrogenase of Cryptococcus neoformans | [33] |
| Molecules | Class of drug | New indication predicted | References | |
|---|---|---|---|---|
| Lisinopril | Antihypertensive | Inhibition of 3-deoxy-manno-octulosonate cytidylyltransferase, UDP-2,3-diacylglucosamine hydrolase and PBP3 of P. aeruginosa | [37] | |
| Olmesartan | Antihypertensive | Inhibition of lipotheichoic acids flippase LtaA of S. aureus | ||
| Atorvastatin | Lipid-lowering drug. Statin | |||
| Inhibition of CDP-activated ribitol for teichoic acid precursors of S. pneumoniae | ||||
| Rosiglitazone | Anti-diabetic | Inhibition of d-alanine ligase of S. aureus | ||
| Varenicline | Aid in smoking cessation | |||
| Valsartan | Antihypertensive | Inhibition of peptidoglycan deacetylase of S. pneumoniane | ||
| Verapamil | Antihypertensive | Inhibition of protein PE_PGRS45 of M. tuberculosis | [39] | |
| Entacapone and tolcapone | Treatment of Parkinson’s disease | |||
| Dutasteride | Antiandrogenic. Treatment of prostate cancer | Inhibition of 1,3-β-glucanosyltranferase from Candida auris | [43] | |
| Digoxin | Cardiac glycoside. Treatment of heart failure | |||
| Ergotamine | Vasoconstrictor. Treatment of cluster headaches and migraines | |||
| Paritaprevir | Antiviral. Treatment of infections caused by the hepatitis C virus | |||
| Acarbose | Hypoglucemic | Inhibition of alfa-glucosidase of Candida albicans | [44] | |
| Adapalene | Treatment of acne. Retinoid | Inhibition of NDM-1 enzyme of Escherichia coli and Klebsiella pneumoniae alone or in combination with meropenem | [38] | |
| Selamectin | Parasiticide and antihelminthic in veterinary | Inhibition of DprE1 enzyme of M. tuberculosis. Possible multitarget antibacterial compound. | [40] | |
| Accolate | Prophylactic and treatment of asthma | Inhibition of FadD32 protein of M. tuberculosis | [41] | |
| Sorafenib | Antitumoral | |||
| Mefloquina | Antimalarial | |||
| Loperamida | Antidiarrheal | |||
| Phytochemicals of Withania somnifera | Complement in anti-inflammatory, anti-diabetic, antimicrobial, analgesic, anti-tumoral, anti-stressed, neuroprotective, cardioprotective, rejuvenating and immunomodulatory treatments | Inhibition PyrG protein of M. tuberculosis | [45] | |
| Glimepiride | Hypoglucemic agent | Inhibition of Tap protein of M. tuberculosis | [42] | |
| Flecainide | Antiarrhytmic agent | |||
| Flupirtine | Investigated for treatment in fibromyalgia | |||
| Nimodipine | Calcium channel blocker. Improve of neurological outcomes. | |||
| Amlodipine | Calcium channel blocker. Antihypertensive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
