Preprint
Article

This version is not peer-reviewed.

On the Largest Prime Factor of Integers in Short Intervals

Submitted:

16 October 2025

Posted:

16 October 2025

You are already at the latest version

Abstract
The author sharpens a result of Jia and Liu (2000), showing that for sufficiently large \( x \), the interval \( [x, x+x^{\frac{1}{2}+\varepsilon}] \) contains an integer with a prime factor larger than \( x^{\frac{51}{53}-\varepsilon} \). This gives a solution with \( \gamma = \frac{2}{53} \) to the Exercise 5.1 in Harman's monograph.
Keywords: 
;  ;  

1. Introduction

The Legendre’s conjecture, which states that there is always a prime number between consecutive squares, is one of Landau’s problems on prime numbers. Clearly this means that there is always a prime number in the interval [ x , x + x 1 2 ] . However, we cannot prove it even on the Riemann Hypothesis. Assuming RH, one can only show that there is always a prime number in the interval [ x , x + x 1 2 log x ] . The best unconditional result is due to Li [1], where he showed the interval [ x , x + x 0.52 ] contains primes.
Instead of relaxing the length of the short interval, one can attack this conjecture by relaxing our restriction of primes. A number with a large prime factor is a good approximation of prime numbers. Thus, we can try to find numbers with a large prime factor in three intervals [ x , x + x 1 2 ] , [ x , x + x 1 2 ( log x ) A ] and [ x , x + x 1 2 + ε ] .
For the first interval, Ramachandra [2] showed in 1969 that this interval contains a number with a prime factor larger than x 0.576 . The exponent 0.576 has been improved to
0.625 , 0.662 , 0.675225 , 0.692 , 0.7 , 0.71 , 0.723 , 0.728 , 0.732 , 0.738 , 0.74 and 0.7428
by Ramachandra [3], Graham [4], Zhu [5], Jia [6], Baker [7], Jia [8], Jia [9] (and Liu [10]), Jia [11], Baker and Harman [12], Liu and Wu [13], Harman [14] Chapter 6, and Baker and Harman [15] respectively. For the second interval, Balog, Harman and Pintz [16] showed that this interval contains a number with a prime factor larger than x 0.712 , and the exponent 0.712 has been improved to 5 6 by Lou [17] and 18 19 by Merikoski [18].
In this paper we shall focus on the third interval. In 1973, Jutila [19] showed that this interval contains a number with a prime factor larger than x 2 3 ε . The exponent 2 3 has been improved to
0.73 , 0.7338 , 0.772 , 0.82 , 11 12 , 17 18 , 19 20 , 24 25 and 25 26
by Balog [20,21], Balog, Harman and Pintz [22], Heath-Brown [23], Heath-Brown and Jia [24], Harman [14] Chapter 5, Haugland [25] and Jia and Liu [26] respectively. In his monograph, Harman [14] Exercise 5.1, encouraged us to reduce this exponent as much as we can. In this paper, we obtain the following result.
Theorem 1.1.
For sufficiently large x, the interval [ x , x + x 1 2 + ε ] contains an integer with a prime factor larger than x 51 53 ε .
Of course, our proof is much simpler than the similar arguments used in [24,25,26]. Throughout this paper, we always suppose that ε is a sufficiently small positive constant and B = B ( ε ) is a sufficiently large positive constant. We choose ε such that K = 8 ε ( 1 26.5 + ε 2 ) is an integer. The letter p, with or without subscript, is reserved for prime numbers. Let v = x 51 53 ε 2 , P = x ε 8 and T 0 = x 1 2 ε 6 . Let c 0 , c 1 and c 2 denote positive constants which may have different values at different places, and we write m M to mean that c 1 M < m c 2 M . We use M ( s ) , N ( s ) and some other capital letters to denote the Dirichlet polynomials
M ( s ) = m M a ( m ) m s , N ( s ) = n N b ( n ) n s
where a ( m ) , b ( n ) are complex numbers with a ( m ) = O ( 1 ) and b ( n ) = O ( 1 ) . We also use P ( s ) to denote
P ( s ) = P < p 2 P p s .

2. Arithmetic Information

In this section we provide some arithmetic information (i.e. mean value bounds for some Dirichlet polynomials) which will help us prove the asymptotic formulas for sieve functions.
Lemma 2.1.
Suppose that M N = v where M ( s ) , N ( s ) are Dirichlet polynomials and v 49 102 M v 53 102 . Let b = 1 + 1 log x , T 1 = ( log x ) 2 B , then for T 1 T T 0 we have
T 2 T | M ( b + i t ) N ( b + i t ) P K ( b + i t ) | d t ( log x ) B .
Proof. 
The proof is similar to that of [26], Lemma 1. □
Lemma 2.2.
Suppose that M N L = v where M ( s ) , N ( s ) are Dirichlet polynomials and L ( s ) = l L l s . Let b = 1 + 1 log x , T 2 = L . Assume that M v 53 102 and N v 53 204 , then for T 2 T T 0 we have
T 2 T | M ( b + i t ) N ( b + i t ) L ( b + i t ) P K ( b + i t ) | d t ( log x ) B .
Proof. 
The proof is similar to that of [26], Lemma 2. □
Lemma 2.3.
Suppose that M N H L = v where M ( s ) , N ( s ) , H ( s ) are Dirichlet polynomials and L ( s ) = l L l s . Let b = 1 + 1 log x , T 2 = L . Assume that M, N and H satisfy the following conditions:
M v 53 102 , N H , N 3 4 H v 53 204 , N H 1 2 v 53 204 , N 7 4 H 3 2 v 53 102 ,
Then for T 2 T T 0 we have
T 2 T | M ( b + i t ) N ( b + i t ) H ( b + i t ) L ( b + i t ) P K ( b + i t ) | d t ( log x ) B .
Proof. 
The proof is similar to that of [26] Lemma 3, where [27] Theorem 2, is used. □

3. The Final Decomposition

Now we follow the discussion in [24,26]. Let p j = v t j and put
N ( d ) = x < p p 1 p K x + x 1 2 P < p i 2 P 1 , A = { n : 2 K v < n 2 v , n repeats N ( n ) times } ,
B = { n : v < n 2 v } , A d = { a : a A , d a } , P ( z ) = p < z p , S ( A , z ) = a A ( a , P ( z ) ) = 1 1 .
Then we only need to show that S A , ( 2 v ) 1 2 > 0 . Our aim is to show that the sparser set A contains the expected proportion of primes compared to the bigger set B , which requires us to decompose S A , ( 2 v ) 1 2 and prove asymptotic formulas of the form
S A , z = v 1 x 1 2 + ε P < p 2 P 1 p K ( 1 + o ( 1 ) ) S B , z
for some parts of it, and drop the other positive parts.
Let ω ( u ) denote the Buchstab function determined by the following differential-difference equation
ω ( u ) = 1 u , 1 u 2 , ( u ω ( u ) ) = ω ( u 1 ) , u 2 .
Moreover, we have the upper and lower bounds for ω ( u ) :
ω ( u ) ω 0 ( u ) = 1 u , 1 u < 2 , 1 + log ( u 1 ) u , 2 u < 3 , 1 + log ( u 1 ) u + 1 u 2 u 1 log ( t 1 ) t d t 0.5607 , 3 u < 4 , 0.5612 , u 4 ,
ω ( u ) ω 1 ( u ) = 1 u , 1 u < 2 , 1 + log ( u 1 ) u , 2 u < 3 , 1 + log ( u 1 ) u + 1 u 2 u 1 log ( t 1 ) t d t 0.5644 , 3 u < 4 , 0.5617 , u 4 .
We shall use ω 0 ( u ) and ω 1 ( u ) to give numerical bounds for some sieve functions discussed below.
Before decomposing, we define the asymptotic regions T 1 T 3 and L as
T 1 ( m , n ) : = m 53 102 , n 53 204 T 2 ( m , n , h ) : = m 53 102 , n h , 3 4 n + h 53 204 , n + 1 2 h 53 204 , 7 4 n + 3 2 h 53 102 , T 3 ( m , n ) : = 49 102 m 53 102 or 49 102 m + n 53 102 , L ( m , n ) : = ( m , n ) T 3 , ( m , n , n ) cannot be partitioned into ( α , η ) T 1 or ( α , η , γ ) T 2 , n 53 255 or m 1129 2448 or 1 2 m + n 9361 24480 .
Lemma 3.1.
We can give an asymptotic formula for
t 1 t n S A p 1 p n , v 2 51
if we can group ( t 1 , , t n ) into ( m , n ) T 1 or ( m , n , h ) T 2 .
Lemma 3.2.
We can give an asymptotic formula for
t 1 t n S A p 1 p n , p n
if we can group ( t 1 , , t n ) into ( m , n ) T 3 .
By Buchstab’s identity, we have
S A , ( 2 v ) 1 2 = S A , v 2 51 2 51 t 1 < 49 102 S A p 1 , p 1 49 102 t 1 < 1 2 S A p 1 , p 1 = S A , v 2 51 2 51 t 1 < 49 102 S A p 1 , v 2 51 49 102 t 1 < 1 2 S A p 1 , p 1 + 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) S A p 1 p 2 , p 2 = S 1 S 2 S 3 + S 4 .
By Lemma 2.1 and Lemma 2.2, we can give asymptotic formulas for S 1 , S 2 and S 3 . Before estimating S 4 , we first split it into three parts:
S 4 = 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) S A p 1 p 2 , p 2 = 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 S A p 1 p 2 , p 2 + 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) L S A p 1 p 2 , p 2 + 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 , t 2 ) can be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 S A p 1 p 2 , p 2 + 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 ) L ( t 1 , t 2 , t 2 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 S A p 1 p 2 , p 2 = S 41 + S 42 + S 43 + S 44 .
S 41 has an asymptotic formula. For S 42 , we cannot decompose further but have to discard the whole region giving the loss
2 51 49 102 2 51 min t 1 , 1 t 1 2 1 ( t 1 , t 2 ) L ω 1 t 1 t 2 t 2 t 1 t 2 2 d t 2 d t 1 < 0.687415 .
For S 43 we can use Buchstab’s identity to get
S 43 = 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 , t 2 ) can be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 S A p 1 p 2 , p 2 = 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 , t 2 ) can be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 S A p 1 p 2 , v 2 51 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 , t 2 ) can be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) ( t 1 , t 2 , t 3 ) can be partitioned into ( m , n ) T 3 S A p 1 p 2 p 3 , p 3 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 , t 2 ) can be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) ( t 1 , t 2 , t 3 ) cannot be partitioned into ( m , n ) T 3 S A p 1 p 2 p 3 , v 2 51 + 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 , t 2 ) can be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) ( t 1 , t 2 , t 3 ) cannot be partitioned into ( m , n ) T 3 2 51 t 4 < min t 3 , 1 2 ( 1 t 1 t 2 t 3 ) ( t 1 , t 2 , t 3 , t 4 ) can be partitioned into ( m , n ) T 3 S A p 1 p 2 p 3 p 4 , p 4 + 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 , t 2 ) can be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) ( t 1 , t 2 , t 3 ) cannot be partitioned into ( m , n ) T 3 2 51 t 4 < min t 3 , 1 2 ( 1 t 1 t 2 t 3 ) ( t 1 , t 2 , t 3 , t 4 ) cannot be partitioned into ( m , n ) T 3 S A p 1 p 2 p 3 p 4 , p 4 = S 431 S 432 S 433 + S 434 + S 435 .
We have asymptotic formulas for S 431 S 434 . For the remaining S 435 , we have two ways to get more possible savings: One way is to use Buchstab’s identity twice more for some parts if we can group ( t 1 , t 2 , t 3 , t 4 , t 4 ) into ( m , n ) T 1 or ( m , n , h ) T 2 . Another way is to use Buchstab’s identity in reverse to make almost-primes visible. The details of further decompositions are similar to those in [1]. Combining the cases above we get a loss from S 43 of
( t 1 , t 2 , t 3 , t 4 ) U 1 ω 1 t 1 t 2 t 3 t 4 t 4 t 1 t 2 t 3 t 4 2 d t 4 d t 3 d t 2 d t 1 + ( t 1 , t 2 , t 3 , t 4 , t 5 , t 6 ) U 2 ω 1 1 t 1 t 2 t 3 t 4 t 5 t 6 t 6 t 1 t 2 t 3 t 4 t 5 t 6 2 d t 6 d t 5 d t 4 d t 3 d t 2 d t 1 ( t 1 , t 2 , t 3 , t 4 , t 5 ) U 3 ω 1 t 1 t 2 t 3 t 4 t 5 t 5 t 1 t 2 t 3 t 4 t 5 2 d t 5 d t 4 d t 3 d t 2 d t 1 ( 0.161005 + 0.073993 0.009022 ) = 0.225976 ,
where
U 1 ( t 1 , t 2 , t 3 , t 4 ) : = ( t 1 , t 2 ) T 3 , ( t 1 , t 2 , t 2 ) can be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 , 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) , ( t 1 , t 2 , t 3 ) cannot be partitioned into ( m , n ) T 3 , 2 51 t 4 < min t 3 , 1 2 ( 1 t 1 t 2 t 3 ) , ( t 1 , t 2 , t 3 , t 4 ) cannot be partitioned into ( m , n ) T 3 , ( t 1 , t 2 , t 3 , t 4 , t 4 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 , 2 51 t 1 < 49 102 , 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) , U 2 ( t 1 , t 2 , t 3 , t 4 , t 5 , t 6 ) : = ( t 1 , t 2 ) T 3 , ( t 1 , t 2 , t 2 ) can be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 , 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) , ( t 1 , t 2 , t 3 ) cannot be partitioned into ( m , n ) T 3 , 2 51 t 4 < min t 3 , 1 2 ( 1 t 1 t 2 t 3 ) , ( t 1 , t 2 , t 3 , t 4 ) cannot be partitioned into ( m , n ) T 3 , ( t 1 , t 2 , t 3 , t 4 , t 4 ) can be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 , 2 51 t 5 < min t 4 , 1 2 ( 1 t 1 t 2 t 3 t 4 ) , ( t 1 , t 2 , t 3 , t 4 , t 5 ) cannot be partitioned into ( m , n ) T 3 , 2 51 t 6 < min t 5 , 1 2 ( 1 t 1 t 2 t 3 t 4 t 5 ) , ( t 1 , t 2 , t 3 , t 4 , t 5 , t 6 ) cannot be partitioned into ( m , n ) T 3 , 2 51 t 1 < 49 102 , 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) , U 3 ( t 1 , t 2 , t 3 , t 4 , t 5 ) : = ( t 1 , t 2 ) T 3 , ( t 1 , t 2 , t 2 ) can be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 , 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) , ( t 1 , t 2 , t 3 ) cannot be partitioned into ( m , n ) T 3 , 2 51 t 4 < min t 3 , 1 2 ( 1 t 1 t 2 t 3 ) , ( t 1 , t 2 , t 3 , t 4 ) cannot be partitioned into ( m , n ) T 3 , ( t 1 , t 2 , t 3 , t 4 , t 4 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 , t 4 < t 5 < 1 2 ( 1 t 1 t 2 t 3 t 4 ) , ( t 1 , t 2 , t 3 , t 4 , t 5 ) can be partitioned into ( m , n ) T 3 , 2 51 t 1 < 49 102 , 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) .
Next we shall decompose S 44 . By Buchstab’s identity, we have
S 44 = 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 ) L ( t 1 , t 2 , t 2 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 S A p 1 p 2 , p 2 = 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 ) L ( t 1 , t 2 , t 2 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 S A p 1 p 2 , v 2 51 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 ) L ( t 1 , t 2 , t 2 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) S A p 1 p 2 p 3 , p 3 = 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 ) L ( t 1 , t 2 , t 2 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 S A p 1 p 2 , v 2 51 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 ) L ( t 1 , t 2 , t 2 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) ( t 1 , t 2 , t 3 ) can be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 S A p 1 p 2 p 3 , p 3 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 ) L ( t 1 , t 2 , t 2 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) ( t 1 , t 2 , t 3 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 S A p 1 p 2 p 3 , p 3 = S 441 S 442 S 443 .
We have an asymptotic formula for S 441 . For S 442 we can use the same methods as above (i.e. using Buchstab’s identity twice more and making almost-primes visible) to get a loss of
( t 1 , t 2 , t 3 , t 4 ) U 4 ω 1 t 1 t 2 t 3 t 4 t 4 t 1 t 2 t 3 t 4 2 d t 4 d t 3 d t 2 d t 1 ( t 1 , t 2 , t 3 , t 4 , t 5 ) U 5 ω 1 t 1 t 2 t 3 t 4 t 5 t 5 t 1 t 2 t 3 t 4 t 5 2 d t 5 d t 4 d t 3 d t 2 d t 1 ( 0.038404 0.005445 ) = 0.032959 ,
where
U 4 ( t 1 , t 2 , t 3 , t 4 ) : = ( t 1 , t 2 ) T 3 , ( t 1 , t 2 , t 2 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 , 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) , ( t 1 , t 2 , t 3 ) can be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 , ( t 1 , t 2 , t 3 ) cannot be partitioned into ( m , n ) T 3 , 2 51 t 4 < min t 3 , 1 2 ( 1 t 1 t 2 t 3 ) , ( t 1 , t 2 , t 3 , t 4 ) cannot be partitioned into ( m , n ) T 3 , 2 51 t 1 < 49 102 , 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) , U 5 ( t 1 , t 2 , t 3 , t 4 , t 5 ) : = ( t 1 , t 2 ) T 3 , ( t 1 , t 2 , t 2 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 , 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) , ( t 1 , t 2 , t 3 ) can be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 , ( t 1 , t 2 , t 3 ) cannot be partitioned into ( m , n ) T 3 , 2 51 t 4 < min t 3 , 1 2 ( 1 t 1 t 2 t 3 ) , ( t 1 , t 2 , t 3 , t 4 ) cannot be partitioned into ( m , n ) T 3 , t 4 < t 5 < 1 2 ( 1 t 1 t 2 t 3 t 4 ) , ( t 1 , t 2 , t 3 , t 4 , t 5 ) can be partitioned into ( m , n ) T 3 , 2 51 t 1 < 49 102 , 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) .
For S 443 we can perform a role-reversal to get a small saving. For the definition of a role-reversal one can see [28] or [14] Chapter 5, and we refer the readers to [29] and [1] for more applications of role-reversals. In this way we have
S 443 = 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 ) L ( t 1 , t 2 , t 2 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) ( t 1 , t 2 , t 3 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 S A p 1 p 2 p 3 , p 3 = 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 ) L ( t 1 , t 2 , t 2 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) ( t 1 , t 2 , t 3 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 S A β p 2 p 3 , 2 v β p 2 p 3 1 2 = 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 ) L ( t 1 , t 2 , t 2 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) ( t 1 , t 2 , t 3 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 S A β p 2 p 3 , v 2 51 2 51 t 1 < 49 102 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) ( t 1 , t 2 ) T 3 ( t 1 , t 2 ) L ( t 1 , t 2 , t 2 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) ( t 1 , t 2 , t 3 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 2 51 t 4 < 1 2 t 1 S A β p 2 p 3 p 4 , p 4 ,
where β v 1 t 1 t 2 t 3 and β , P ( p 3 ) = 1 . Again, we can use Buchstab’s identity in reverse to gain a small saving on the last term. Altogether we get a loss from S 443 of
( t 1 , t 2 , t 3 , t 4 ) U 6 ω t 1 t 4 t 4 ω 1 t 1 t 2 t 3 t 3 t 2 t 3 2 t 4 2 d t 4 d t 3 d t 2 d t 1 ( t 1 , t 2 , t 3 , t 4 , t 5 ) U 7 ω t 1 t 4 t 5 t 5 ω 1 t 1 t 2 t 3 t 3 t 2 t 3 2 t 4 t 5 2 d t 5 d t 4 d t 3 d t 2 d t 1 ( 0.046566 0.007144 ) = 0.039422 ,
where
U 6 ( t 1 , t 2 , t 3 , t 4 ) : = ( t 1 , t 2 ) T 3 , ( t 1 , t 2 , t 2 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 , 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) , ( t 1 , t 2 , t 3 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 , ( t 1 , t 2 , t 3 ) cannot be partitioned into ( m , n ) T 3 , 2 51 t 4 < 1 2 t 1 , ( 1 t 1 t 2 t 3 , t 2 , t 3 , t 4 ) cannot be partitioned into ( m , n ) T 3 , 2 51 t 1 < 49 102 , 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) , U 7 ( t 1 , t 2 , t 3 , t 4 , t 5 ) : = ( t 1 , t 2 ) T 3 , ( t 1 , t 2 , t 2 ) cannot be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 , 2 51 t 3 < min t 2 , 1 2 ( 1 t 1 t 2 ) , ( t 1 , t 2 , t 3 ) can be partitioned into ( m , n ) T 1 or ( m , n , h ) T 2 , ( t 1 , t 2 , t 3 ) cannot be partitioned into ( m , n ) T 3 , 2 51 t 4 < 1 2 t 1 , ( 1 t 1 t 2 t 3 , t 2 , t 3 , t 4 ) cannot be partitioned into ( m , n ) T 3 , t 4 < t 5 < 1 2 ( t 1 t 4 ) , ( 1 t 1 t 2 t 3 , t 2 , t 3 , t 4 , t 5 ) can be partitioned into ( m , n ) T 3 , 2 51 t 1 < 49 102 , 2 51 t 2 < min t 1 , 1 2 ( 1 t 1 ) .
Finally, by (2)–(9), the total loss is less than
0.687415 + 0.225976 + 0.032959 + 0.039422 < 0.986
and the proof of Theorem 1.1 is completed.

Supplementary Materials

The following supporting information can be downloaded at the website of this paper posted on Preprints.org.

Acknowledgments

The author would like to thank Professor Chaohua Jia for his encouragement and some helpful discussions.

References

  1. Li, R. The number of primes in short intervals and numerical calculations for Harman’s sieve. arXiv e-prints 2025, p. arXiv:2308.04458v8, [arXiv:math.NT/2308.04458]. [CrossRef]
  2. Ramachandra, K. A note on numbers with a large prime factor. J. London Math. Soc. 1969, 1, 303–306.
  3. Ramachandra, K. A note on numbers with a large prime factor II. J. Indian Math. Soc. 1970, 34, 39–48.
  4. Graham, S.W. The greatest prime factor of the integers in an interval. J. London Math. Soc. 1981, 24, 427–440.
  5. Zhu, C. The greatest prime factor of the integers in an interval. Journal of Sichuan University (Natural Science Edition) 1987, 24, 126–135.
  6. Jia, C. The greatest prime factor of the integers in an interval (I). Acta Math. Sin. 1986, 29, 815–825.
  7. Baker, R.C. The greatest prime factor of the integers in an interval. Acta Arith. 1986, 47, 193–231.
  8. Jia, C. The greatest prime factor of the integers in an interval (II). Acta Math. Sin. 1989, 32, 188–199.
  9. Jia, C. The greatest prime factor of the integers in an interval (III). Acta Math. Sin. (N. S.) 1993, 9, 321–336.
  10. Liu, H.Q. The greatest prime factor of the integers in an interval. Acta Arith. 1993, 65, 301–328.
  11. Jia, C. The greatest prime factor of the integers in an interval (IV). Acta Math. Sin. (N. S.) 1996, 12, 433–445.
  12. Baker, R.C.; Harman, G. Numbers with a large prime factor. Acta Arith. 1995, 73, 119–145.
  13. Liu, H.Q.; Wu, J. Numbers with a large prime factor. Acta Arith. 1999, 89, 163–187.
  14. Harman, G. Prime-detecting Sieves; Vol. 33, London Mathematical Society Monographs (New Series), Princeton University Press, Princeton, NJ, 2007.
  15. Baker, R.C.; Harman, G. Numbers with a large prime factor II. In Analytic Number Theory–Essays in Honour of K.F. Roth; Cambridge University Press, 2009; pp. 1–14.
  16. Balog, A.; Harman, G.; Pintz, J. Numbers with a large prime factor III. Quart. J. Math. Oxford 1983, 34, 133–140.
  17. Lou, S. The largest prime factor of the integers in an interval. Ziran Zazhi 1984, 7, 948–949 (in Chinese).
  18. Merikoski, J. Large prime factors on short intervals. Math. Proc. Camb. Phil. Soc. 2021, 170, 1–50.
  19. Jutila, M. On numbers with a large prime factor. J. Indian Math. Soc. (N. S.) 1973, 37, 43–53.
  20. Balog, A. Numbers with a large prime factor. Studia Sci. Math. Hungar. 1980, 15, 139–146.
  21. Balog, A. Numbers with a large prime factor II. In Topics in Classical Number Theory; Math. Soc. János Bolyai 34, Elsevier, North Holland, Amsterdam, 1984; pp. 49–67.
  22. Balog, A.; Harman, G.; Pintz, J. Numbers with a large prime factor IV. J. London Math. Soc. 1983, 28, 218–226.
  23. Heath-Brown, D.R. The largest prime factor of the integers in an interval. Sci. China Ser. A 1996, 39, 449–476.
  24. Heath-Brown, D.R.; Jia, C. The largest prime factor of the integers in an interval, II. J. Reine Angew. Math. 1998, 498, 35–59.
  25. Haugland, J.K. Application of sieve methods to prime numbers. Ph.D. Thesis 1998, University of Oxford.
  26. Jia, C.; Liu, M.C. On the largest prime factor of integers. Acta Arith. 2000, 95, 17–48.
  27. Deshouillers, J.M.; Iwaniec, H. Power mean-values for Dirichlet’s polynomials and the Riemann zeta-function, II. Acta Arith. 1984, 43, 305–312.
  28. Baker, R.C.; Harman, G.; Pintz, J. The Difference Between Consecutive Primes, II. Proc. London Math. Soc. 2001, 83, 532–562. [CrossRef]
  29. Jia, C. On the distribution of αp modulo one (II). Sci. China Ser. A 2000, 43, 703–721.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated