Submitted:
14 April 2025
Posted:
15 April 2025
You are already at the latest version
Abstract
Keywords:
| Contents |
| 1. Introduction . .............................................. 1 |
| 2. SieveAsymptoticFormulas . ..................................... 2 |
| 3. TheFinalDecomposition . ...................................... 3 |
| 4. Application:Piatetski–Shapiro–VinogradovTheorem . ..................... 6 |
| 5. References . ............................................... 6 |
1. Introduction
2. Sieve Asymptotic Formulas
3. The Final Decomposition
4. Application: Piatetski–Shapiro–Vinogradov Theorem
Acknowledgments
References
- Iwaniec, H. Almost–primes represented by quadratic polynomials. Invent. Math. 1978, 47, 171–188. [Google Scholar] [CrossRef]
- Richert, H.E. Selberg’s sieve with weights. Mathmatika 1969, 16, 1–22. [Google Scholar] [CrossRef]
- Piatetski-Shapiro, I.I. On the distribution of prime numbers in sequences of the form [f(n)]. Mat. Sb. 1953, 33, 559–566. [Google Scholar]
- Rivat, J.; Sargos, P. Nombres premiers de la forme ⌊nc⌋. Canad. J. Math. Vol. 2001, 53, 414–433. [Google Scholar] [CrossRef]
- Rivat, J. Autour d’un théorème de Piatetski–Shapiro (Nombres premiers dans la suite [nc]). Thèse de Doctorat, Université de Paris–Sud. 1992. [Google Scholar]
- Jia, C. On Piatetski–Shapiro prime number theorem I. Chinese Ann. Math. Ser. B. 1994, 15, 9–22. [Google Scholar]
- Baker, R.C.; Harman, G.; Rivat, J. Primes of the form [nc]. J. Number Theory 1995, 50, 261–277. [Google Scholar] [CrossRef]
- Jia, C. On Piatetski–Shapiro prime number theorem II. Science in China 1993, 36, 913–926. [Google Scholar]
- Kumchev, A. On the distribution of prime numbers of the form [nc]. Glasgow Math. J. 1999, 41, 85–102. [Google Scholar] [CrossRef]
- Rivat, J.; Wu, J. Prime numbers of the form [nc]. Glasgow Math. J. 2001, 43, 237–254. [Google Scholar] [CrossRef]
- Li, R. Primes in almost all short intervals. arXiv 2024, arXiv:2407.05651. [Google Scholar] [CrossRef]
- Li, R. The number of primes in short intervals and numerical calculations for Harman’s sieve. arXiv 2025, arXiv:2308.04458. [Google Scholar] [CrossRef]
- Balog, A.; Friedlander, J. A hybrid of theorems of Vinogradov and Piatetski–Shapiro. Pacific J. Math. 1992, 156, 45–62. [Google Scholar] [CrossRef]
- Cai, Y. A remark on the Piatetski–Shapiro–Vinogradov theorem. Acta Arith. 2003, 110, 73–75. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).