Submitted:
28 May 2025
Posted:
29 May 2025
You are already at the latest version
Abstract
Keywords:
MSC: 46L05; 46L08
1. Introduction
- (i)
- Let be γ-equiangular lines in . Then
- (ii)
- Let be γ-equiangular lines in . Then
2. Noncommutative Equiangular Lines
- (i)
- .
- (ii)
- (i)
- .
- (ii)
- (i)
- .
- (ii)
- (iii)
- (i)
- .
- (ii)
Acknowledgments
References
- Lemmens, P.W.H.; Seidel, J.J. Equiangular lines. J. Algebra 1973, 24, 494–512. [CrossRef]
- Haantjes, J. Equilateral point-sets in elliptic two- and three-dimensional spaces. Nieuw Arch. Wiskunde (2) 1948, 22, 355–362.
- van Lint, J.H.; Seidel, J.J. Equilateral point sets in elliptic geometry. Indag. Math. 1966, 28, 335–348. Nederl. Akad. Wetensch. Proc. Ser. A 69.
- Waldron, S.F.D. An introduction to finite tight frames; Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, New York, 2018; pp. xx+587. [CrossRef]
- Glazyrin, A.; Yu, W.H. Upper bounds for s-distance sets and equiangular lines. Adv. Math. 2018, 330, 810–833. [CrossRef]
- Godsil, C.; Royle, G. Algebraic graph theory; Vol. 207, Graduate Texts in Mathematics, Springer-Verlag, New York, 2001; pp. xx+439. [CrossRef]
- Bukh, B. Bounds on equiangular lines and on related spherical codes. SIAM J. Discrete Math. 2016, 30, 549–554. [CrossRef]
- Jiang, Z.; Tidor, J.; Yao, Y.; Zhang, S.; Zhao, Y. Equiangular lines with a fixed angle. Ann. of Math. (2) 2021, 194, 729–743. [CrossRef]
- Balla, I.; Dräxler, F.; Keevash, P.; Sudakov, B. Equiangular lines and spherical codes in Euclidean space. Invent. Math. 2018, 211, 179–212. [CrossRef]
- Barg, A.; Yu, W.H. New bounds for equiangular lines. In Discrete geometry and algebraic combinatorics; Amer. Math. Soc., Providence, RI, 2014; Vol. 625, Contemp. Math., pp. 111–121. [CrossRef]
- de Caen, D. Large equiangular sets of lines in Euclidean space. Electron. J. Combin. 2000, 7, Research Paper 55, 3. [CrossRef]
- Malozemov, V.N.; Pevnyi, A.B. Equiangular tight frames. J. Math. Sci. (N.Y.) 2009, 157, 789–815. [CrossRef]
- Neumaier, A. Graph representations, two-distance sets, and equiangular lines. Linear Algebra Appl. 1989, 114/115, 141–156. [CrossRef]
- Jiang, Z.; Polyanskii, A. Forbidden subgraphs for graphs of bounded spectral radius, with applications to equiangular lines. Israel J. Math. 2020, 236, 393–421. [CrossRef]
- de Laat, D.; Machado, F.C.; de Oliveira Filho, F.M.; Vallentin, F. k-point semidefinite programming bounds for equiangular lines. Math. Program. 2022, 194, 533–567. [CrossRef]
- Greaves, G.; Koolen, J.H.; Munemasa, A.; Szöllosi, F. Equiangular lines in Euclidean spaces. J. Combin. Theory Ser. A 2016, 138, 208–235. [CrossRef]
- Greaves, G.R.W.; Syatriadi, J.; Yatsyna, P. Equiangular lines in Euclidean spaces: dimensions 17 and 18. Math. Comp. 2023, 92, 1867–1903. [CrossRef]
- Okuda, T.; Yu, W.H. A new relative bound for equiangular lines and nonexistence of tight spherical designs of harmonic index 4. European J. Combin. 2016, 53, 96–103. [CrossRef]
- Yu, W.H. New bounds for equiangular lines and spherical two-distance sets. SIAM J. Discrete Math. 2017, 31, 908–917. [CrossRef]
- King, E.J.; Tang, X. New upper bounds for equiangular lines by pillar decomposition. SIAM J. Discrete Math. 2019, 33, 2479–2508. [CrossRef]
- Conway, J.H.; Hardin, R.H.; Sloane, N.J.A. Packing lines, planes, etc.: packings in Grassmannian spaces. Experiment. Math. 1996, 5, 139–159.
- Greaves, G.R.W.; Syatriadi, J. Real equiangular lines in dimension 18 and the Jacobi identity for complementary subgraphs. J. Combin. Theory Ser. A 2024, 201, Paper No. 105812, 27. [CrossRef]
- Greaves, G.R.W.; Syatriadi, J.; Yatsyna, P. Equiangular lines in low dimensional Euclidean spaces. Combinatorica 2021, 41, 839–872. [CrossRef]
- Seidel, J.J. Discrete non-Euclidean geometry. In Handbook of incidence geometry; North-Holland, Amsterdam, 1995; pp. 843–920. [CrossRef]
- Greaves, G.R.W. Equiangular line systems and switching classes containing regular graphs. Linear Algebra Appl. 2018, 536, 31–51. [CrossRef]
- Koornwinder, T.H. A note on the absolute bound for systems of lines. Indag. Math. 1976, 38, 152–153.
- Lin, Y.c.R.; Yu, W.H. Saturated configuration and new large construction of equiangular lines. Linear Algebra Appl. 2020, 588, 272–281. [CrossRef]
- Lin, Y.C.R.; Yu, W.H. Equiangular lines and the Lemmens-Seidel conjecture. Discrete Math. 2020, 343, 111667, 18. [CrossRef]
- Zhao, Y. Equiangular lines and eigenvalue multiplicities. Notices Amer. Math. Soc. 2024, 71, 1151–1159.
- Coutinho, G.; Godsil, C.; Shirazi, H.; Zhan, H. Equiangular lines and covers of the complete graph. Linear Algebra Appl. 2016, 488, 264–283. [CrossRef]
- Jedwab, J.; Wiebe, A. Large sets of complex and real equiangular lines. J. Combin. Theory Ser. A 2015, 134, 98–102. [CrossRef]
- Jedwab, J.; Wiebe, A. Constructions of complex equiangular lines from mutually unbiased bases. Des. Codes Cryptogr. 2016, 80, 73–89. [CrossRef]
- Godsil, C.; Roy, A. Equiangular lines, mutually unbiased bases, and spin models. European J. Combin. 2009, 30, 246–262. [CrossRef]
- Sustik, M.A.; Tropp, J.A.; Dhillon, I.S.; Heath, Jr., R.W. On the existence of equiangular tight frames. Linear Algebra Appl. 2007, 426, 619–635. [CrossRef]
- Strohmer, T. A note on equiangular tight frames. Linear Algebra Appl. 2008, 429, 326–330. [CrossRef]
- Hoffman, T.R.; Solazzo, J.P. Complex equiangular tight frames and erasures. Linear Algebra Appl. 2012, 437, 549–558. [CrossRef]
- Brouwer, A.E.; Haemers, W.H. Spectra of graphs; Universitext, Springer, New York, 2012; pp. xiv+250. [CrossRef]
- Zauner, G. Quantum designs: foundations of a noncommutative design theory. Int. J. Quantum Inf. 2011, 9, 445–507. [CrossRef]
- Renes, J.M.; Blume-Kohout, R.; Scott, A.J.; Caves, C.M. Symmetric informationally complete quantum measurements. J. Math. Phys. 2004, 45, 2171–2180. [CrossRef]
- Appleby, D.M. Symmetric informationally complete-positive operator valued measures and the extended Clifford group. J. Math. Phys. 2005, 46, 052107, 29. [CrossRef]
- Appleby, M.; Bengtsson, I.; Flammia, S.; Goyeneche, D. Tight frames, Hadamard matrices and Zauner’s conjecture. J. Phys. A 2019, 52, 295301, 26. [CrossRef]
- Kopp, G.S. SIC-POVMs and the Stark conjectures. Int. Math. Res. Not. IMRN 2021, pp. 13812–13838. [CrossRef]
- Appleby, M.; Flammia, S.; McConnell, G.; Yard, J. SICs and algebraic number theory. Found. Phys. 2017, 47, 1042–1059. [CrossRef]
- Scott, A.J. Tight informationally complete quantum measurements. J. Phys. A 2006, 39, 13507–13530. [CrossRef]
- Greaves, G.R.W.; Iverson, J.W.; Jasper, J.; Mixon, D.G. Frames over finite fields: equiangular lines in orthogonal geometry. Linear Algebra Appl. 2022, 639, 50–80. [CrossRef]
- Greaves, G.R.W.; Iverson, J.W.; Jasper, J.; Mixon, D.G. Frames over finite fields: basic theory and equiangular lines in unitary geometry. Finite Fields Appl. 2022, 77, Paper No. 101954, 41. [CrossRef]
- Balla, I.; Sudakov, B. Equiangular subspaces in Euclidean spaces. Discrete Comput. Geom. 2019, 61, 81–90. [CrossRef]
- Balla, I.; Draxler, F.; Keevash, P.; Sudakov, B. Equiangular lines and subspaces in Euclidean spaces. Electronic Notes in Discrete Mathematics 2017, 61, 85–91. [CrossRef]
- Krishna, K.M. p-adic equiangular lines and p-adic van Lint–Seidel relative bound. Bulletin Polish Acad. Sci. Math 2014. [CrossRef]
- Kaplansky, I. Modules over operator algebras. Amer. J. Math. 1953, 75, 839–858. [CrossRef]
- Paschke, W.L. Inner product modules over B*-algebras. Trans. Amer. Math. Soc. 1973, 182, 443–468. [CrossRef]
- Rieffel, M.A. Induced representations of C*-algebras. Advances in Math. 1974, 13, 176–257. [CrossRef]
- Wegge-Olsen, N.E. K-theory and C*-algebras: A friendly approach; Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993; pp. xii+370.
- Gipson, P.M. Invariant basis number for C*-algebras. Illinois J. Math. 2015, 59, 85–98.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).