Preprint
Article

SEMA-YOLO: Lightweight Small Object Detection in Remote Sensing Image via Shallow-layer Enhancement and Multi-scale Adaptation

This version is not peer-reviewed.

Submitted:

14 April 2025

Posted:

14 April 2025

You are already at the latest version

Abstract
Small object detection remains a challenge in remote sensing field due to feature loss during downsampling and interference from complex backgrounds. A novel network, termed SEMA-YOLO, is proposed in this paper as an enhanced YOLOv11-based framework incorporating three technical advancements. By fundamentally reducing information loss and incorporating a cross-scale feature fusion mechanism, the proposed framework significantly enhances small object detection performance. First, the Shallow Layer Enhancement (SLE) strategy reduces backbone depth and introduces small-object detection heads, thereby increasing feature map size and improving small object detection performance. Then, the Global Context Pooling-enhanced Adaptively Spatial Feature Fusion (GCP-ASFF) architecture is designed to optimize cross-scale feature interaction across four detection heads. Finally, the RFA-C3k2 module, which integrates Receptive Field Adaptation (RFA) with the C3k2 structure, is introduced to achieve more refined feature extraction. SEMA-YOLO demonstrates significant advantages in complex urban environments and dense target areas, while its generalization capability meets the detection requirements across diverse scenarios. Experimental results show that SEMA-YOLO achieves mAP50 scores of 72.5% on the RS-STOD dataset and 61.5% on the AI-TOD dataset, surpassing state-of-the-art models.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

33

Views

26

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated