Submitted:
09 April 2025
Posted:
09 April 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Results
2.1. Structure-Activity Relationships
2.1.1. Donor-Acceptor
2.1.2. Conjugation Tunning
2.1.3. Band-Gap Modulation and Band Positioning for Optimal Photocatalysis
2.2. General Photocatalytic Mechanisms
2.2.1. Electron Transfer: Reductive Quenching vs Oxidative Quenching

2.2.2. Generation of Radical Species: Superoxide, Hydroxyl, Organic Radicals

2.2.3. Energy Transfer: Singlet Oxygen and Direct Energy Transfer

2.3. Pollutants Tackled
| Pollutant | COF name (linkage type) | Design principle | ROS involved | Ref. |
|---|---|---|---|---|
| Tetracycline | COF-R (imine) | Donor-acceptor COFs | ·O2-/·OH | [60] |
| sp2c-COF (olefin) | Extended conjugation of COFs | ·OH | [61] | |
| MoS2/COF (imine) | MoS2/COF heterojunction | ·OH/·O2- | [62] | |
| Acetaminophen | COF-TD1 (imine) | Donor-acceptor COFs | ·O2- | [63] |
| COF-PD/AgI (imine) | COF/AgI heterojunction | ·O2- | [36] | |
| Heptazine-COF@TiO2 (imine) | COF/TiO2 heterojunction | ·O2- | [64] | |
| Sulfamethazine | SQ-COF-1 (imine) | Extended conjugation of COFs | ·O2- | [65] |
| COF/CN-3 (C-N bond) | COF/g-C3N4 heterojunction | ·O2-/1O2/·OH | [66] | |
| Sulfamethoxazole | COF-909(Cu) (imine) | COF(Cu) | ·O2-/·OH | [67] |



| Pollutant | COF name (linkage type) | Design principle | ROS involved | Ref. |
|---|---|---|---|---|
| Rhodamine B | COF-PD/AgI (imine) | COF/AgI heterojunction | ·O2- | [36] |
| MoS2/COF (imine) | MoS2/COF heterojunction | ·O2- / ·OH | [62] | |
| COF-HFeTBD (imine) | Donor-acceptor COFs | 1O2 | [76] | |
| HDU-105-COF (olefin) | Donor-acceptor COFs | ·O2- / ·OH | [48] | |
| Methylene blue | HDU-105-COF (olefin) | Donor-acceptor COFs | ·O2- / ·OH | [48] |
| C6-TRZ-TPA COF (imine) | Donor-acceptor COFs | ·O2- / ·OH | [77] | |
| TTO-COF (olefin) | Extended conjugation of COFs | ·O2- | [78] | |
| Methyl Orange | TTO-COF (olefin) | Extended conjugation of COFs | ·O2- | [78] |
| COFA+C (imine) | N-rich COFs | ·O2- / ·OH | [79] | |
| Rose Bengal | C6-TRZ-TPA COF (imine) | Donor-acceptor COFs | ·O2- / ·OH | [77] |
| Mordant black 17 | TpBD-COF (imine) | Pure COF | ·O2- / 1O2 / ·OH | [80] |
| Eriochrome black T | TpBD-COF (imine) | Pure COF | ·O2- / 1O2 / ·OH | [80] |
| TFA-TTA-COF (imine) | Fluorinated COF | ·O2- / 1O2 | [81] | |
| Eriochrome black A | TFA-TTA-COF (imine) | Fluorinated COF | ·O2- / 1O2 | [81] |
| Methyl green | CuO/COF (imine) | CuO/COF heterojunction | ·O2- | [82] |


| Pollutant | COF name (linkage type) | Design principle | ROS involved | Ref. |
|---|---|---|---|---|
| Diazinon and parathion | PS@COF-366 (imine) | Sulphured COF | ·O2- / 1O2 / ·OH | [83] |
| Imidacloprid | Fe3O4@HMN-COF (imine) | Fe3O4/COF heterojunction | - | [84] |
| Pymetrozine | Ag3PO4/TpPa-1-COF (imine) | Ag3PO4/COF heterojunction | ·O2- / ·OH | [85] |

| Pollutant | COF name (linkage type) | Design principle | ROS involved | Ref. |
|---|---|---|---|---|
| Phenol | COFA+C (imine) | N-rich COFs | ·O2- / ·OH | [79] |
| GCN/TD-COF (imine) | GCN/COF heterojunction | ·O2- / ·OH | [86] | |
| Bisphenol-A | CdS/TFp-Azo-COF (imine) | CdS/COF heterojunction | ·O2- / ·OH | [87] |
| NM-125(Ti)0.4@TpTta-COF (imine) | MOF/COF heterojunction | ·O2- / 1O2 / ·OH | [34] | |
| MIL-101-NH2@COF-TpMA (imine) | MOF/COF heterojunction | ·OH | [88] | |
| 4-chlorophenol | Bi/TP-BDDA-COF (imine) | Bi/COF heterojunction | ·O2- / ·OH | [89] |

3. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| COF | Covalent Organic Frameworks |
| ROS | Reactive Oxygen Species |
| VB | Valence band |
| CB | Conduction band |
| ISC | InterSystem Crossing |
| EIS | Electrochemical Impedance Spectroscopy |
| XPS | X-ray Photoelectron Spectroscopy |
| UPS | Ultraviolet Photoelectron Spectroscopy |
| D-A | Donor-Acceptor |
| BPA | Bisphenol A |
| MOF | Metal Organic Frameworks |
| Vfb | Flat band potential |
| Ef | Fermi level |
| HOMO | Highest Occupied Molecular Orbital |
| LUMO | Lowest Unoccupied Molecular Orbital |
| SET | Single Electron Transfer |
| EnT | Energy Transfer |
| PC | Photocatalyst |
| SED | Sacrificial Electron Donor |
| FRET | Förster Resonance Energy Transfer |
| Ered | Reduction Potential |
| Eox | Oxidation Potential |
| EPR | Electron Paramagnetic Resonance |
| TC | Tetracycline |
| ACTP | Acetaminophen |
| SMT | Sulfamethazine |
| SMX | Sulfamethoxazole |
| RhB | Rhodamine B |
| MB | Methylene blue |
| MO | Methyl Orange |
| MB17 | Mordant Black 17 |
| EBA | Eriochrome Black A |
| EBT | Eriochrome Black T |
| RB | Rose bengal |
| MG | Methyl Green |
References
- https://www.worldbank.org/en/topic/water.
- Semrany, S.; Favier, L.; Djelal, H.; Taha, S.; Amrane, A. Bioaugmentation: Possible Solution in the Treatment of Bio-Refractory Organic Compounds (Bio-ROCs). Biochemical Engineering Journal 2012, 69, 75–86. [Google Scholar] [CrossRef]
- Samarasinghe, L.V.; Muthukumaran, S.; Baskaran, K. Recent Advances in Visible Light-Activated Photocatalysts for Degradation of Dyes: A Comprehensive Review. Chemosphere 2024, 349, 140818. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Kumar, S.; Saxena, N.; Nafees, A. Photocatalytic Degradation of Dyes Present in Industrial Effluents: A Review. ChemistrySelect 2023, 8, e202301048. [Google Scholar] [CrossRef]
- Ruziwa, D.T.; Oluwalana, A.E.; Mupa, M.; Meili, L.; Selvasembian, R.; Nindi, M.M.; Sillanpaa, M.; Gwenzi, W.; Chaukura, N. Pharmaceuticals in Wastewater and Their Photocatalytic Degradation Using Nano-Enabled Photocatalysts. Journal of Water Process Engineering 2023, 54, 103880. [Google Scholar] [CrossRef]
- Vaya, D.; Surolia, P.K. Semiconductor Based Photocatalytic Degradation of Pesticides: An Overview. Environmental Technology & Innovation 2020, 20, 101128. [Google Scholar] [CrossRef]
- Shoneye, A.; Sen Chang, J.; Chong, M.N.; Tang, J. Recent Progress in Photocatalytic Degradation of Chlorinated Phenols and Reduction of Heavy Metal Ions in Water by TiO2-Based Catalysts. International Materials Reviews 2022, 67, 47–64. [Google Scholar] [CrossRef]
- Arora, R. Adsorption of Heavy Metals–A Review. Materials Today: Proceedings 2019, 18, 4745–4750. [Google Scholar] [CrossRef]
- Okoli, B.J.; Modise, J.S. Sequestration of Pb(II) and Cr(VI) from Aqueous Environment Using Low-Cost Immobilised Tannin Resin. SN Applied Sciences 2019, 1, 194. [Google Scholar] [CrossRef]
- Chu, C.; Ryberg, E.C.; Loeb, S.K.; Suh, M.-J.; Kim, J.-H. Water Disinfection in Rural Areas Demands Unconventional Solar Technologies. Acc. Chem. Res. 2019, 52, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Joseph, L.; Jun, B.-M.; Flora, J.R.V.; Park, C.M.; Yoon, Y. Removal of Heavy Metals from Water Sources in the Developing World Using Low-Cost Materials: A Review. Chemosphere 2019, 229, 142–159. [Google Scholar] [CrossRef]
- Younis, S.A.; Kim, K.-H. Heterogeneous Photocatalysis Scalability for Environmental Remediation: Opportunities and Challenges. Catalysts 2020, 10, 1109. [Google Scholar] [CrossRef]
- Gaya, U.I.; Abdullah, A.H. Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2008, 9, 1–12. [Google Scholar] [CrossRef]
- Moya, A.; Cherevan, A.; Marchesan, S.; Gebhardt, P.; Prato, M.; Eder, D.; Vilatela, J.J. Oxygen Vacancies and Interfaces Enhancing Photocatalytic Hydrogen Production in Mesoporous CNT/TiO2 Hybrids. Applied Catalysis B: Environmental 2015, 179, 574–582. [Google Scholar] [CrossRef]
- Côté, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef]
- López-Magano, A.; Jiménez-Almarza, A.; Alemán, J.; Mas-Ballesté, R. Metal–Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) Applied to Photocatalytic Organic Transformations. Catalysts 2020, 10, 720. [Google Scholar] [CrossRef]
- López-Magano, A.; Salaverri, N.; Marzo, L.; Mas-Ballesté, R.; Alemán, J. Synergistic Combination of Triazine and Phenanthroline Moieties in a Covalent Triazine Framework Tailored for Heterogeneous Photocatalytic Metal-Free C-Br and C-Cl Activation. Applied Catalysis B: Environmental 2022, 317, 121791. [Google Scholar] [CrossRef]
- Liu, F.; Ma, Z.; Deng, Y.; Wang, M.; Zhou, P.; Liu, W.; Guo, S.; Tong, M.; Ma, D. Tunable Covalent Organic Frameworks with Different Heterocyclic Nitrogen Locations for Efficient Cr(VI) Reduction, Escherichia Coli Disinfection, and Paracetamol Degradation under Visible-Light Irradiation. Environ. Sci. Technol. 2021, 55, 5371–5381. [Google Scholar] [CrossRef] [PubMed]
- Fávaro, M.A.; Yang, J.; Ditz, D.; Küçükkeçeci, H.; Alkhurisi, M.H.; Bergwinkl, S.; Thomas, A.; Quadrelli, E.A.; Palkovits, R.; Canivet, J.; et al. Pyrene- and Bipyridine-Based Covalent Triazine Framework as Versatile Platform for Photocatalytic Solar Fuels Production. ChemCatChem 2023, 15, e202300197. [Google Scholar] [CrossRef]
- Zhao, J.; Ren, J.; Zhang, G.; Zhao, Z.; Liu, S.; Zhang, W.; Chen, L. Donor-Acceptor Type Covalent Organic Frameworks. Chemistry – A European Journal 2021, 27, 10781–10797. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, W. Organic Donor-Acceptor Systems for Photocatalysis. Advanced Science 2024, 11, 2307227. [Google Scholar] [CrossRef]
- Chen, W.; Wang, L.; Mo, D.; He, F.; Wen, Z.; Wu, X.; Xu, H.; Chen, L. Modulating Benzothiadiazole-Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting. Angewandte Chemie International Edition 2020, 59, 16902–16909. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, L.; Li, Y.; Dai, L.; Liu, C.; Liu, Y.; Li, J.; Lv, J.; Li, P.; Wang, B. Fully Conjugated Donor–Acceptor Covalent Organic Frameworks for Photocatalytic Oxidative Amine Coupling and Thioamide Cyclization. ACS Catal. 2020, 10, 8717–8726. [Google Scholar] [CrossRef]
- Qin, C.; Wu, X.; Tang, L.; Chen, X.; Li, M.; Mou, Y.; Su, B.; Wang, S.; Feng, C.; Liu, J.; et al. Dual Donor-Acceptor Covalent Organic Frameworks for Hydrogen Peroxide Photosynthesis. Nature Communications 2023, 14, 5238. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-R.; Cui, W.-R.; Liang, R.-P.; Zhang, C.-R.; Xu, R.-H.; Jiang, W.; Qiu, J.-D. Band Gap Engineering in Vinylene-Linked Covalent Organic Frameworks for Enhanced Photocatalytic Degradation of Organic Contaminants and Disinfection of Bacteria. ACS Appl. Bio Mater. 2021, 4, 6502–6511. [Google Scholar] [CrossRef]
- Deng, M.; Wang, L.; Wen, Z.; Chakraborty, J.; Sun, J.; Wang, G.; Van Der Voort, P. Donor–Acceptor Sp2 Covalent Organic Frameworks for Photocatalytic H2O2 Production and Tandem Bisphenol-A Degradation. Green Chem. 2024, 26, 3239–3248. [Google Scholar] [CrossRef]
- Lin, Q.; Yusran, Y.; Xing, J.; Li, Y.; Zhang, J.; Su, T.; Yang, L.; Suo, J.; Zhang, L.; Li, Q.; et al. Structural Conjugation Tuning in Covalent Organic Frameworks Boosts Charge Transfer and Photocatalysis Performances. ACS Appl. Mater. Interfaces 2024, 16, 5869–5880. [Google Scholar] [CrossRef]
- Deng, M.; Sun, J.; Laemont, A.; Liu, C.; Wang, L.; Bourda, L.; Chakraborty, J.; Van Hecke, K.; Morent, R.; De Geyter, N.; et al. Extending the π-Conjugation System of Covalent Organic Frameworks for More Efficient Photocatalytic H2O2 Production. Green Chem. 2023, 25, 3069–3076. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Hao, M.; Xie, Y.; Liu, X.; Yang, H.; Waterhouse, G.I.N.; Wang, X.; Ma, S. Tuning Excited State Electronic Structure and Charge Transport in Covalent Organic Frameworks for Enhanced Photocatalytic Performance. Nature Communications 2023, 14, 1106. [Google Scholar] [CrossRef]
- Cai, Y.; Ling, Q.; Yi, Y.; Chen, Z.; Yang, H.; Hu, B.; Liang, L.; Wang, X. Application of Covalent Organic Frameworks in Environmental Pollution Management. Applied Catalysis A: General 2022, 643, 118733. [Google Scholar] [CrossRef]
- Krishna, D.N.G.; Philip, J. Review on Surface-Characterization Applications of X-Ray Photoelectron Spectroscopy (XPS): Recent Developments and Challenges. Applied Surface Science Advances 2022, 12, 100332. [Google Scholar] [CrossRef]
- Whitten, J.E. Ultraviolet Photoelectron Spectroscopy: Practical Aspects and Best Practices. Applied Surface Science Advances 2023, 13, 100384. [Google Scholar] [CrossRef]
- He, R.; Xue, K.; Wang, J.; Yang, T.; Sun, R.; Wang, L.; Yu, X.; Omeoga, U.; Wang, W.; Yang, T.; et al. Design and Synthesis of La3+-, Sb3+-Doped MOF-In2S3@FcDc-TAPT COFs Hybrid Materials with Enhanced Photocatalytic Activity. Journal of Materials Science 2019, 54, 14690–14706. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Yuan, J.; Wang, G.; Cao, Q.; Fei, H.; Li, M.; Shao, J.; Li, H.; Lu, J. Construction of Covalent-Integrated MOFs@COFs Composite Material for Efficient Synergistic Adsorption and Degradation of Pollutants. Chemical Engineering Journal 2022, 446, 137095. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Zhao, J.; Park, E.; Jin, Y.; Liu, Q.; Zhang, W. Covalent Organic Framework-Supported Fe–TiO2 Nanoparticles as Ambient-Light-Active Photocatalysts. J. Mater. Chem. A 2019, 7, 16364–16371. [Google Scholar] [CrossRef]
- Liu, F.; Nie, C.; Dong, Q.; Ma, Z.; Liu, W.; Tong, M. AgI Modified Covalent Organic Frameworks for Effective Bacterial Disinfection and Organic Pollutant Degradation under Visible Light Irradiation. Journal of Hazardous Materials 2020, 398, 122865. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Karuppasamy, L.; Gurusamy, L.; Yang, H.-J.; Liu, C.-H.; Dong, J.; Wu, J.J. Facile Sonochemical Synthesis of CdS/COF Heterostructured Nanocomposites and Their Enhanced Photocatalytic Degradation of Bisphenol-A. Separation and Purification Technology 2021, 271, 118873. [Google Scholar] [CrossRef]
- Liu, J.; Ren, X.; Li, C.; Wang, M.; Li, H.; Yang, Q. Assembly of COFs Layer and Electron Mediator on Silica for Visible Light Driven Photocatalytic NADH Regeneration. Applied Catalysis B: Environmental 2022, 310, 121314. [Google Scholar] [CrossRef]
- Yao, Y.; Hu, Y.; Hu, H.; Chen, L.; Yu, M.; Gao, M.; Wang, S. Metal-Free Catalysts of Graphitic Carbon Nitride–Covalent Organic Frameworks for Efficient Pollutant Destruction in Water. Journal of Colloid and Interface Science 2019, 554, 376–387. [Google Scholar] [CrossRef]
- Xu, J.; Yang, C.; Bi, S.; Wang, W.; He, Y.; Wu, D.; Liang, Q.; Wang, X.; Zhang, F. Vinylene-Linked Covalent Organic Frameworks (COFs) with Symmetry-Tuned Polarity and Photocatalytic Activity. Angewandte Chemie International Edition 2020, 59, 23845–23853. [Google Scholar] [CrossRef]
- Wang, L.; Lian, R.; Zhang, Y.; Ma, X.; Huang, J.; She, H.; Liu, C.; Wang, Q. Rational Preparation of Cocoon-like g-C3N4/COF Hybrids: Accelerated Intramolecular Charge Delivery for Photocatalytic Hydrogen Evolution. Applied Catalysis B: Environmental 2022, 315, 121568. [Google Scholar] [CrossRef]
- Mohamadpour, F.; Amani, A.M. Photocatalytic Systems: Reactions, Mechanism, and Applications. RSC Adv. 2024, 14, 20609–20645. [Google Scholar] [CrossRef]
- Kandoth, N.; Pérez Hernández, J.; Palomares, E.; Lloret-Fillol, J. Mechanisms of Photoredox Catalysts: The Role of Optical Spectroscopy. Sustainable Energy Fuels 2021, 5, 638–665. [Google Scholar] [CrossRef]
- Zhou, Q.-Q.; Zou, Y.-Q.; Lu, L.-Q.; Xiao, W.-J. Visible-Light-Induced Organic Photochemical Reactions through Energy-Transfer Pathways. Angewandte Chemie International Edition 2019, 58, 1586–1604. [Google Scholar] [CrossRef] [PubMed]
- Romero, N.A.; Nicewicz, D.A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075–10166. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; de la Lastra, P.; Manuel, J.; Andrés Juan, C.; Plou, F.J.; Pérez-Lebeña, E. Superoxide Anion Chemistry—Its Role at the Core of the Innate Immunity. International Journal of Molecular Sciences 2023, 24, 1841. [Google Scholar] [CrossRef]
- Song, J.; Lei, H.; Zhai, Y.; Dou, Z.; Ding, Y.; Han, X.; Cui, F.; Tian, Y.; Zhu, G. Exclusive Generation of a Superoxide Radical by a Porous Aromatic Framework for Fast Photocatalytic Decontamination of Mustard Gas Simulant in Room Air. Chem. Sci. 2024, 15, 15717–15724. [Google Scholar] [CrossRef]
- Wang, C.; Lu, W.; Song, W.; Zhang, Z.; Xie, C.; Ji, Z.; Li, Y.; Wang, J. Dual Application of a Cyano-Containing Covalent Organic Framework: Photocatalytic Degradation of Dyes with Fluorescence Detection Studies. Applied Catalysis A: General 2023, 666, 119433. [Google Scholar] [CrossRef]
- Xie, J.; Pan, X.; Jiang, C.; Zhao, L.; Gong, X.; Liu, Y. Enhanced Conversion of Superoxide Radical to Singlet Oxygen in Peroxymonosulfate Activation by Metal-Organic Frameworks Derived Heteroatoms Dual-Doped Porous Carbon Catalyst. Environmental Research 2023, 236, 116745. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Wang, H.; Li, L.; Zhao, Z.; Wang, C.; Zhang, X.; Xie, Y. Enhanced Photostability in Protonated Covalent Organic Frameworks for Singlet Oxygen Generation. Matter 2022, 5, 1004–1015. [Google Scholar] [CrossRef]
- Zhang, J.; Nosaka, Y. Mechanism of the OH Radical Generation in Photocatalysis with TiO2 of Different Crystalline Types. J. Phys. Chem. C 2014, 118, 10824–10832. [Google Scholar] [CrossRef]
- Nosaka, Y.; Komori, S.; Yawata, K.; Hirakawa, T.; Nosaka, A.Y. Photocatalytic ˙OH Radical Formation in TiO2 Aqueous Suspension Studied by Several Detection Methods. Phys. Chem. Chem. Phys. 2003, 5, 4731–4735. [Google Scholar] [CrossRef]
- Nosaka, Y.; Nosaka, A. Understanding Hydroxyl Radical (•OH) Generation Processes in Photocatalysis. ACS Energy Lett. 2016, 1, 356–359. [Google Scholar] [CrossRef]
- Jiang, D. Covalent Organic Frameworks: An Amazing Chemistry Platform for Designing Polymers. Chem 2020, 6, 2461–2483. [Google Scholar] [CrossRef]
- Lin, C.; Shan, Z.; Dong, C.; Lu, Y.; Meng, W.; Zhang, G.; Cai, B.; Su, G.; Park, J.H.; Zhang, K. Covalent Organic Frameworks Bearing Ni Active Sites for Free Radical-Mediated Photoelectrochemical Organic Transformations. Science Advances 2023, 9, eadi9442. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Fuente, M.; Jimenez-Almarza, A.; Alemán, J.; Mas-Ballesté, R. Solvent-Free Visible Light Photocatalytic Oxidation Processes Mediated by Transparent Films of an Imine-Based Organic Polymer. Catalysts 2021, 11, 1426. [Google Scholar] [CrossRef]
- Luo, J.; Lu, J.; Zhang, J. Carbazole–Triazine Based Donor–Acceptor Porous Organic Frameworks for Efficient Visible-Light Photocatalytic Aerobic Oxidation Reactions. J. Mater. Chem. A 2018, 6, 15154–15161. [Google Scholar] [CrossRef]
- Zhi, Y.; Li, K.; Xia, H.; Xue, M.; Mu, Y.; Liu, X. Robust Porous Organic Polymers as Efficient Heterogeneous Organo-Photocatalysts for Aerobic Oxidation Reactions. J. Mater. Chem. A 2017, 5, 8697–8704. [Google Scholar] [CrossRef]
- Qian, Y.; Li, D.; Han, Y.; Jiang, H.-L. Photocatalytic Molecular Oxygen Activation by Regulating Excitonic Effects in Covalent Organic Frameworks. J. Am. Chem. Soc. 2020, 142, 20763–20771. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Dong, S.; Duan, X.; Zhu, D.; Ni, B.-J.; Lyu, C. Regulating Energy Band Structures of Triazine Covalent Organic Frameworks with Electron-Donating/Withdrawing Substituents for Visible-Light-Responsive Photocatalytic Tetracycline Degradation and Cr(VI) Reduction. Journal of Hazardous Materials 2023, 446, 130756. [Google Scholar] [CrossRef]
- Hu, Z.; Luo, Y.; Wang, L.; Wang, Y.; Wang, Q.; Jiang, G.; Zhang, Q.; Cui, F. Synthesis of Pyrene-Based Covalent Organic Frameworks for Photocatalytic Tetracycline Degradation. ACS Appl. Polym. Mater. 2023, 5, 9263–9273. [Google Scholar] [CrossRef]
- Khaing, K.K.; Yin, D.; Ouyang, Y.; Xiao, S.; Liu, B.; Deng, L.; Li, L.; Guo, X.; Wang, J.; Liu, J.; et al. Fabrication of 2D–2D Heterojunction Catalyst with Covalent Organic Framework (COF) and MoS2 for Highly Efficient Photocatalytic Degradation of Organic Pollutants. Inorg. Chem. 2020, 59, 6942–6952. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Liu, F.; Zhang, B.; Tong, M. Thiadiazole-Based Covalent Organic Frameworks with a Donor–Acceptor Structure: Modulating Intermolecular Charge Transfer for Efficient Photocatalytic Degradation of Typical Emerging Contaminants. Environ. Sci. Technol. 2022, 56, 16303–16314. [Google Scholar] [CrossRef]
- Ge, S.; Cai, Y.; Deng, L.; Jin, M.; Qu, X.; Liu, H.; Wang, H.; Wang, B. Constructing Heptazine-COF@TiO2 Heterojunction Photocatalysts for Efficient Photodegradation of Acetaminophen under Visible Light. ChemPlusChem 2024, 89, e202400139. [Google Scholar] [CrossRef] [PubMed]
- Ben, H.; Yan, G.; Liu, H.; Ling, C.; Fan, Y.; Zhang, X. Local Spatial Polarization Induced Efficient Charge Separation of Squaraine-Linked COF for Enhanced Photocatalytic Performance. Advanced Functional Materials 2022, 32, 2104519. [Google Scholar] [CrossRef]
- Qi, L.; Xiao, C.; Lu, W.; Zhang, H.; Zhou, Y.; Qi, J.; Yang, Y.; Zhu, Z.; Li, J. Triazine-Based Covalent Organic Framework/ g-C3N4 Heterojunction toward Highly Efficient Photoactivation of Peroxydisulfate for Sulfonamides Degradation. Separation and Purification Technology 2025, 354, 128758. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, L.; Gong, J.; Zhao, Q. Covalent Organic Framework Nanorods Bearing Single Cu Sites for Efficient Photocatalysis. Chemical Engineering Journal 2021, 403, 126383. [Google Scholar] [CrossRef]
- Zhong, X.; Ling, Q.; Ren, Z.; Hu, B. Immobilization of U(VI) onto Covalent Organic Frameworks with the Different Periodic Structure by Photocatalytic Reduction. Applied Catalysis B: Environmental 2023, 326, 122398. [Google Scholar] [CrossRef]
- Ling, Q.; Kuang, P.; Zhong, X.; Hu, B. 2D Redox-Active COF with the Anthraquinone Structure for Photocatalytic Reduction of Uranium. Applied Surface Science 2023, 639, 158220. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, H.; Yang, H.; Yu, Z.; Xu, Z.; Li, Z.; Gao, Z.; Zou, J.-P. Site Engineering of Covalent Organic Frameworks to Increase Charge Transfer Channels and Provide Hydrogen Bond toward Enhanced Photocatalytic Reduction of U(VI). Applied Catalysis B: Environment and Energy 2025, 362, 124721. [Google Scholar] [CrossRef]
- Hao, M.; Chen, Z.; Liu, X.; Liu, X.; Zhang, J.; Yang, H.; Waterhouse, G.I.N.; Wang, X.; Ma, S. Converging Cooperative Functions into the Nanospace of Covalent Organic Frameworks for Efficient Uranium Extraction from Seawater. CCS Chemistry 2022, 4, 2294–2307. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Dong, S.; Duan, X.; Zhu, D.; Ni, B.-J.; Lyu, C. Regulating Energy Band Structures of Triazine Covalent Organic Frameworks with Electron-Donating/Withdrawing Substituents for Visible-Light-Responsive Photocatalytic Tetracycline Degradation and Cr(VI) Reduction. Journal of Hazardous Materials 2023, 446, 130756. [Google Scholar] [CrossRef]
- Chen, W.; Yang, Z.; Xie, Z.; Li, Y.; Yu, X.; Lu, F.; Chen, L. Benzothiadiazole Functionalized D–A Type Covalent Organic Frameworks for Effective Photocatalytic Reduction of Aqueous Chromium(VI). J. Mater. Chem. A 2019, 7, 998–1004. [Google Scholar] [CrossRef]
- Lu, W.; Wang, C.; Bai, Y.; Xie, C.; Zhang, Z.; Song, W.; Wang, J. A Novel Covalent Organic Framework for Efficient Photocatalytic Reduction of Cr(VI) and Synergistic Removal of Organic Pollutants under Visible Light Irradiation. Environ. Sci.: Nano 2024, 11, 229–240. [Google Scholar] [CrossRef]
- Cao, D.; Guan, J.; Du, J.; Sun, Q.; Ma, J.; Li, J.; Liu, J.; Sheng, G. Halogen-Functionalized Covalent Organic Frameworks for Photocatalytic Cr(VI) Reduction under Visible Light. Journal of Hazardous Materials 2024, 476, 134956. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, M.; Li, H.; Shi, Q.; Feng, Y.; Zhang, B. Crystalline Covalent Organic Frameworks Based on Mixed Metallo- and Tetrahydroporphyrin Monomers for Use as Efficient Photocatalysts in Dye Pollutant Removal. Crystal Growth & Design 2022, 22, 4745–4756. [Google Scholar] [CrossRef]
- Ruidas, S.; Chowdhury, A.; Ghosh, A.; Ghosh, A.; Mondal, S.; Wonanke, A.D.D.; Addicoat, M.; Das, A.K.; Modak, A.; Bhaumik, A. Covalent Organic Framework as a Metal-Free Photocatalyst for Dye Degradation and Radioactive Iodine Adsorption. Langmuir 2023, 39, 4071–4081. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Niu, H.; Xu, L.; Zhang, H.; Cai, Y. Triazine Functionalized Fully Conjugated Covalent Organic Framework for Efficient Photocatalysis. Applied Catalysis B: Environmental 2020, 269, 118799. [Google Scholar] [CrossRef]
- He, S.; Yin, B.; Niu, H.; Cai, Y. Targeted Synthesis of Visible-Light-Driven Covalent Organic Framework Photocatalyst via Molecular Design and Precise Construction. Applied Catalysis B: Environmental 2018, 239, 147–153. [Google Scholar] [CrossRef]
- Xue, H.; Xiong, S.; Mi, K.; Wang, Y. Visible-Light Degradation of Azo Dyes by Imine-Linked Covalent Organic Frameworks. Green Energy & Environment 2023, 8, 194–199. [Google Scholar] [CrossRef]
- Fluorinated Covalent Organic Framework Materials for Photocatalytically Driven Benzylamine Coupling and Azo Dyes Degradation. Journal of Photochemistry and Photobiology A: Chemistry 2023, 437, 114502. [CrossRef]
- Wang, A.; Chen, X.; Tang, H.; Huang, F.; Yao, D. Removal of Methyl Green by CuO/COF Photocatalysts with Enhanced Adsorption and Photocatalytic Activity. ChemistrySelect 2024, 9, e202404454. [Google Scholar] [CrossRef]
- Karimi, D.; Khajeh, M.; Oveisi, A.R.; Bohlooli, M.; Khatibi, A.; Neyband, R.S.; Luque, R. Sulfur-Functionalized Porphyrin-Based Covalent Organic Framework as a Metal-Free Dual-Functional Catalyst for Photodegradation of Organophosphorus Pesticides under Visible-LED-Light. Environmental Pollution 2023, 334, 122109. [Google Scholar] [CrossRef]
- AlNeyadi, S.S.; Alhassani, M.T.; Mukhtar, M.R.; Alblooshi, H.K.; Jama, S.A.; Al Mujaini, I.; Aleissaee, A.S. Hydrophilic Magnetic COFs: The Answer to Photocatalytic Degradation and Removal of Imidacloprid Insecticide. Heliyon 2024, 10, e39042. [Google Scholar] [CrossRef]
- Liu, J.; Feng, C.; Li, Y.; Zhang, Y.; Liang, Q.; Xu, S.; Li, Z.; Wang, S. Photocatalytic Detoxification of Hazardous Pymetrozine Pesticide over Two-Dimensional Covalent-Organic Frameworks Coupling with Ag3PO4 Nanospheres. Separation and Purification Technology 2022, 288, 120644. [Google Scholar] [CrossRef]
- Hu, H.; Hu, Y.; Kong, W.; Tao, Y.; Jiang, Q.; Wang, J.; Li, C.; Xie, H.; Shi, Y.; Li, Y.; et al. The Photocatalytic Mineralization of Phenolic Wastewater via Self-Generation and -Activation of H2O2 Technology. Journal of Environmental Chemical Engineering 2023, 11, 111108. [Google Scholar] [CrossRef]
- Sun, C.; Karuppasamy, L.; Gurusamy, L.; Yang, H.-J.; Liu, C.-H.; Dong, J.; Wu, J.J. Facile Sonochemical Synthesis of CdS/COF Heterostructured Nanocomposites and Their Enhanced Photocatalytic Degradation of Bisphenol-A. Separation and Purification Technology 2021, 271, 118873. [Google Scholar] [CrossRef]
- Lv, S.-W.; Liu, J.-M.; Li, C.-Y.; Zhao, N.; Wang, Z.-H.; Wang, S. Two Novel MOFs@COFs Hybrid-Based Photocatalytic Platforms Coupling with Sulfate Radical-Involved Advanced Oxidation Processes for Enhanced Degradation of Bisphenol A. Chemosphere 2020, 243, 125378. [Google Scholar] [CrossRef]
- Ma, S.-H.; Jin, W.-L.; Li, W.; Wang, H.-Y.; Zhu, L.-N.; Zeng, M.; Kong, D.-M. Plasmonic Bi/COF Nanoheterojunctions for Visible-Light Photodegradation of Phenolic Pollutants. ACS Appl. Nano Mater. 2023, 6, 14151–14164. [Google Scholar] [CrossRef]





| Pollutant | COF name (linkage type) | Design principle | ROS involved | Ref. |
|---|---|---|---|---|
| U(VI) | TpTt-COF (imine) | Donor-acceptor COFs | ·O2- | [68] |
| DQTP-COF (imine) | Donor-acceptor COFs | ·O2- | [69] | |
| COF-AQ (imine) | Donor-acceptor COFs | - | [70] | |
| COF-4-Pd-AO (imine) | COF/Pd heterojunction | - | [71] | |
| Cr(VI) | COFs-OMe (imine) | Donor-acceptor COFs | ·O2- | [72] |
| TPB-BT-COF (imine) | Donor-acceptor COFs | - | [73] | |
| HDU-26-COF (imine) | Donor-acceptor COFs | ·O2- | [74] | |
| TAPP-2F-COF (imine) | Halogenated COFs | ·O2- | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
