Submitted:
19 March 2025
Posted:
19 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
- measurements with standard deviation of SWH exceeding 0.4 m;
- measurements carried out less than 10 km offshore;
- measurements with SWH below 0.1 m.
3. Results and Discussion
3.1. Spatial Distribution of Extreme Wave Heights
3.2. Spatial Distribution of Extreme Wave Heights’ Linear Trends
3.3. Assessing Monthly Extreme Wave Heights’ Linear Trends
3.3. Discussion of Results and Conclusion
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valchev, N.N.; Trifonova, E.V.; Andreeva, N.K. Past and Recent Trends in the Western Black Sea Storminess. Nat. Hazards Earth Syst. Sci. 2012, 12, 961–977. [Google Scholar] [CrossRef]
- Arkhipkin, V.S.; Gippius, F.N.; Koltermann, K.P.; Surkova, G.V. Wind Waves in the Black Sea: Results of a Hindcast Study. Nat. Hazards Earth Syst. Sci. 2014, 14, 2883–2897. [Google Scholar] [CrossRef]
- Saprykina, Y.; Kuznetsov, S.; Valchev, N. Multidecadal Fluctuations of Storminess of Black Sea Due to Teleconnection Patterns on the Base of Modelling and Field Wave Data. In; Springer Singapore, 2019; pp. 773–781. ISBN 9789811331190.
- Causio, S.; Federico, I.; Jansen, E.; Mentaschi, L.; Ciliberti, S.A.; Coppini, G.; Lionello, P. The Black Sea Near-Past Wave Climate and Its Variability: A Hindcast Study. Front Mar Sci 2024, 11, 1–16. [Google Scholar] [CrossRef]
- Akpınar, A.; Bingölbali, B. Long-Term Variations of Wind and Wave Conditions in the Coastal Regions of the Black Sea. Nat. Hazards 2016, 84, 69–92. [Google Scholar] [CrossRef]
- Zăinescu, F.I.; Tătui, F.; Valchev, N.N.; Vespremeanu-Stroe, A. Storm Climate on the Danube Delta Coast: Evidence of Recent Storminess Change and Links with Large-Scale Teleconnection Patterns. Nat. Hazards 2017, 87, 599–621. [Google Scholar] [CrossRef]
- Aydoğan, B.; Ayat, B. Spatial Variability of Long-Term Trends of Significant Wave Heights in the Black Sea. Appl. Ocean Res. 2018, 79, 20–35. [Google Scholar] [CrossRef]
- Bernardino, M.; Rusu, L.; Guedes Soares, C. Evaluation of Extreme Storm Waves in the Black Sea. J. Oper. Oceanogr. 2020, 1–15. [Google Scholar] [CrossRef]
- Divinsky, B.V.; Saprykina, Y.V. Extreme Wind Waves on the Northeastern Shelf of the Black Sea. Dokl. Earth Sci. 2024, 517, 1224–1233. [Google Scholar] [CrossRef]
- Bingölbali, B.; Akpınar, A.; Jafali, H.; Vledder, G.P. Van Downscaling of Wave Climate in the Western Black Sea. Ocean Eng. 2019, 172, 31–45. [Google Scholar] [CrossRef]
- Saprykina, Y. Climatic Variability of Wave Heights in the Shelf Zone of the North-Eastern Part of the Black Sea According Field Data. Reg Stud Mar Sci 2024, 79, 103808. [Google Scholar] [CrossRef]
- Bilyay, E.; Ozbahceci, B.O.; Yalciner, A.C. Extreme Waves at Filyos, Southern Black Sea. Nat. Hazards Earth Syst. Sci. 2011, 11, 659–666. [Google Scholar] [CrossRef]
- Ivanov, V.; Dotsenko, S.; Shokurov, M.; Malinovsky, V.; Dulov, V.; Kuznetsov, S.; Saprykina, Y.; Polnikov, V. Risk Assessment of Encountering Killer Waves in the Black Sea. Geogr. Environ. Sustain. 2012, 5, 84–111. [Google Scholar] [CrossRef]
- Bukhanovskij, A.W. , Lopatukhin, L.I., Chernisheva, E.S., and Kolesov, A.M. The storm on the Black Sea on 11 November 2007 and statistics of extreme storms of the sea. Proc. Russ. Georg. Soc. 2009, 141, 71–80. (in Russian). [Google Scholar]
- Dulov, V.A.; Yurovskaya, M.V.; Fomin, V.V.; Shokurov, M.V.; Yurovsky, Y.Y.; Barabanov, V.S.; Garmashov, A.V. Extreme Black Sea Storm in November, 2023. Phys. Oceanogr. 2024, 31, 295–316. [Google Scholar]
- Yurovskaya, M.V.; Shokurov, M.V.; Barabanov, V.S.; Yurovsky, Y.Y.; Kudryavtsev, V.N.; Kamenev, O.T. Wind and Wave Hindcast and Observations During the Black Sea Storms in November 2023. Pure Appl Geophys 2024, 181, 3149–3171. [Google Scholar] [CrossRef]
- Rusu, E. Modelling of Wave-Current Interactions at the Mouths of the Danube. J Mar Sci Technol 2010, 15, 143–159. [Google Scholar] [CrossRef]
- Dan, S.; Stive, M.J.F.; Walstra, D.J.R.; Panin, N. Wave Climate, Coastal Sediment Budget and Shoreline Changes for the Danube Delta. Mar Geol 2009, 262, 39–49. [Google Scholar] [CrossRef]
- Krylenko, V.V. Seashore Dynamics of the Anapa Bay-Bar. Oceanol. (Wash D C) 2015, 55, 742–749. [Google Scholar] [CrossRef]
- Divinsky, B.V.; Kosyan, R.D. Influence of the Climatic Variations in the Wind Waves Parameters on the Alongshore Sediment Transport. Oceanologia 2020, 62, 190–199. [Google Scholar] [CrossRef]
- Tătui, F.; Pîrvan, M.; Popa, M.; Aydogan, B.; Ayat, B.; Görmüș, T.; Korzinin, D.; Văidianu, N.; Vespremeanu-Stroe, A.; Zăinescu, F.; et al. The Black Sea Coastline Erosion: Index-Based Sensitivity Assessment and Management-Related Issues. Ocean Coast Manag 2019, 182. [Google Scholar] [CrossRef]
- Chirosca, A.M.; Rusu, L. Projections of Wind and Wave Climate on the Main Routes of the Mediterranean and Black Seas. J Ocean Eng Mar Energy 2025, 149–167. [Google Scholar] [CrossRef]
- Çakmak, R.E.; Amarouche, K.; Akpınar, A.; Otay, E.N. Projected Changes in Wave Storm Patterns near Key Ports and Shipping Routes in the Black Sea. Ocean Coast Manag 2025, 261, 107537. [Google Scholar] [CrossRef]
- Holthuijsen, L.H. Waves in Oceanic and Coastal Waters; Cambridge University Press, 2007; ISBN 9780521860284.
- Myslenkov, S.; Chernyshova, A. Comparing Wave Heights Simulated in the Black Sea by the SWAN Model with Satellite Data and Direct Wave Measurements. Russ. J. Earth Sci. 2016, 16, 1–12. [Google Scholar] [CrossRef]
- Amarouche, K.; Akpınar, A.; Rybalko, A.; Myslenkov, S. Assessment of SWAN and WAVEWATCH-III Models Regarding the Directional Wave Spectra Estimates Based on Eastern Black Sea Measurements. Ocean Eng. 2023, 272, 113944. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A Third-Generation Wave Model for Coastal Regions 1. Model Description and Validation. J Geophys Res Ocean. 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Ris, R.C.; Holthuijsen, L.H.; Booij, N. A Third-Generation Wave Model for Coastal Regions: 2. Verification. J Geophys Res Ocean. 1999, 104, 7667–7681. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull Am Meteorol Soc 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V.; et al. The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation. Bull Am Meteorol Soc 2001, 82, 247–267. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull Am Meteorol Soc 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.Y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J Clim 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Staneva, J. , Ricker, M., & Behrens, A. (2022). Black Sea Waves Reanalysis (CMEMS BS-Waves, EAS4 system) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). [CrossRef]
- Staneva, J.; Behrens, A.; Wahle, K. Wave Modelling for the German Bight Coastal-Ocean Predicting System. J Phys Conf Ser 2015, 633, 3–9. [Google Scholar] [CrossRef]
- Staneva, J.; Alari, V.; Breivik, Ø.; Bidlot, J.R.; Mogensen, K. Effects of Wave-Induced Forcing on a Circulation Model of the North Sea. Ocean Dyn 2017, 67, 81–101. [Google Scholar] [CrossRef]
- Staneva, J.; Wahle, K.; Koch, W.; Behrens, A.; Fenoglio-Marc, L.; Stanev, E.V. Coastal Flooding: Impact of Waves on Storm Surge during Extremes – A Case Study for the German Bight. Nat. Hazards Earth Syst. Sci. 2016, 16, 2373–2389. [Google Scholar] [CrossRef]
- Gippius, F.N.; Myslenkov, S.A. Black Sea Wind Wave Climate with a Focus on Coastal Regions. Ocean Eng. 2020, 218, 108199. [Google Scholar] [CrossRef]
- Steunou, N.; Desjonquères, J.D.; Picot, N.; Sengenes, P.; Noubel, J.; Poisson, J.C. AltiKa Altimeter: Instrument Description and In Flight Performance. Mar. Geod. 2015, 38, 22–42. [Google Scholar] [CrossRef]
- Radar Altimeter Database System. Available online: http://rads.tudelft.nl/rads/rads.shtml (accessed on 19 March 2025).
- Abdalla, S.; Janssen, P.A.E.M.; Bidlot, J.R. Altimeter near Real Time Wind and Wave Products: Random Error Estimation. Mar. Geod. 2011, 34, 393–406. [Google Scholar] [CrossRef]
- Polonsky, A.; Evstigneev, V.; Naumova, V.; Voskresenskaya, E. Low-Frequency Variability of Storms in the Northern Black Sea and Associated Processes in the Ocean–Atmosphere System. Reg Env. Change 2014, 14, 1861–1871. [Google Scholar] [CrossRef]
- Silvestrova, K.; Myslenkov, S.; Puzina, O.; Mizyuk, A.; Bykhalova, O. Water Structure in the Utrish Nature Reserve (Black Sea) during 2020–2021 According to Thermistor Chain Data. J Mar Sci Eng 2023, 11. [Google Scholar] [CrossRef]
- Ostrovskii, A.G.; Emelianov, M.V.; Kochetov, O.Y.; Kremenetskiy, V.V.; Shvoev, D.A.; Volkov, S.V.; Zatsepin, A.G.; Korovchinsky, N.M.; Olshanskiy, V.M.; Olchev, A.V. Automated Tethered Profiler for Hydrophysical and Bio-Optical Measurements in the Black Sea Carbon Observational Site. J Mar Sci Eng 2022, 10. [Google Scholar] [CrossRef]
- Rusu, L. Application of Numerical Models to Evaluate Oil Spills Propagation in the Coastal Environment of the Black Sea. J. Environ. Eng. Landsc. Manag. 2010, 18, 288–295. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, 1975. [Google Scholar]
- Marineregions.org. Available online: https://www.marineregions.org (accessed on 19 March 2025).






| Parameter | Jason satellite altimetry | in situ buoy measurements |
| R | 0.94 | 0.96 |
| MAE | 0.02 m | 0.12 m |
| SI | 0.21 m | 0.21 m |
| Parameter | Value |
| R | 0.92 |
| MAE | 0.17 m |
| SI | 0.26 m |
| RMSE | 0.23 m |
| Bias | 0.02 m |
| Point # | Point name | Latitude, N | Longitude, E | Specific feature |
| 1 | Karkinit pltf. | 45.7231 | 31.8378 | Offshore oil & gas extraction; previously used in [38]. |
| 2 | Tarkhankut | 45.3460 | 32.4433 | Westernmost point of the Crimean Peninsula |
| 3 | Khersones | 44.5833 | 33.3343 | Vicinity of a major harbor (Sevastopol); key point for several previous studies (e. g., [42]). |
| 4 | Katziveli | 44.3557 | 33.9787 | Vicinity of southernmost point of the Crimean Peninsula; key point for several previous studies (e. g., [13]); previously used in [38]. |
| 5 | Meganom | 44.7633 | 35.0979 | Approximately equal distance between adjacent points |
| 6 | Kerch Srait | 44.9639 | 36.5532 | Intense shipping route connecting the Black Sea and the Sea of Azov; previously used in [38]. |
| 7 | Utrish | 44.7078 | 37.3953 | Vicinity of the maritime natural reserve «Utrish»; key point for several previous studies (e. g., [26,43]). |
| 8 | Gelendzhik | 44.5053 | 37.9783 | Major resort area; key point for several previous studies (e. g., [9,44]); previously used in [38]. |
| 9 | Tuapse | 44.0637 | 39.0567 | Major port and industrial area |
| 10 | Sochi | 43.5476 | 39.7275 | Major resort area; previously used in [38]. |
| 11 | Sirius | 43.3712 | 39.9387 | Major port and resort area; vicinity of several river mouths (Mzymta and Psou). |
| 12 | Hopa | 41.4233 | 41.3833 | Major city and port; key point for several previous studies (e. g., [10]); previously used in [38]. |
| 13 | Giresun | 40.9393 | 38.3891 | Major city and port; previously used in [38]. |
| 14 | Sinop | 42.1233 | 35.0867 | Major city and port; key point for several previous studies (e. g., [10]); previously used in [38]. |
| 15 | Zonguldak | 41.4829 | 31.7596 | Major city and port; previously used in [38]. |
| 16 | Bosphorus | 41.2665 | 29.1520 | Intense shipping route connecting the Black Sea and the Sea of Marmara; previously used in [38]. |
| 17 | Galata | 43.0124 | 28.0759 | Major city and port (Varna); previously used in [38]. |
| 18 | Gloria | 44.5200 | 29.5700 | Offshore oil & gas extraction; key point for several previous studies (e. g., [10,45]); previously used in [38]. |
| 19 | Danube | 45.1828 | 29.8111 | Delta of the Black Sea’s most significant river; key point for several previous studies (e. g., [6,17,18]). |
| Point # | Point name | Maximal SWH trend | 99.9th percentile of SWH trend | 99th percentile of SWH trend | 95th percentile of SWH trend | ||||
| value | Significance level | value | Significance level | value | Significance level | value | Significance level | ||
| 1 | Karkinit pltf. | -0.12 | no | -0.30 | no | -0.20 | no | -0.18 | 95 % |
| 2 | Tarkhankut | 0.00 | no | -0.09 | no | -0.16 | no | -0.07 | no |
| 3 | Khersones | 0.34 | no | 0.01 | no | -0.09 | no | -0.08 | no |
| 4 | Katziveli | 0.34 | no | 0.00 | no | -0.12 | no | -0.13 | no |
| 5 | Meganom | 0.24 | no | -0.06 | no | -0.11 | no | -0.10 | no |
| 6 | Kerch Strait | 0.29 | no | 0.16 | no | -0.05 | no | -0.08 | no |
| 7 | Utrish | 0.11 | no | 0.19 | no | 0.00 | no | 0.02 | no |
| 8 | Gelendzhik | 0.30 | no | 0.20 | no | 0.00 | no | -0.01 | no |
| 9 | Tuapse | 0.46 | no | 0.39 | no | 0.00 | no | -0.03 | no |
| 10 | Sochi | 0.35 | no | 0.34 | no | 0.06 | no | -0.07 | no |
| 11 | Sirius | 0.42 | no | 0.35 | no | 0.04 | no | -0.08 | no |
| 12 | Hopa | -0.11 | no | -0.13 | no | -0.07 | no | -0.02 | no |
| 13 | Giresun | -0.01 | no | -0.08 | no | -0.07 | no | -0.11 | no |
| 14 | Sinop | 0.32 | no | 0.20 | no | -0.13 | no | -0.16 | no |
| 15 | Zonguldak | 0.79 | 90 % | 0.44 | no | -0.09 | no | -0.12 | no |
| 16 | Bosphorus | 0.28 | no | 0.42 | no | -0.07 | no | -0.20 | 90 % |
| 17 | Galata | -0.31 | no | -0.38 | no | -0.08 | no | -0.10 | no |
| 18 | Gloria | -0.01 | no | -0.05 | no | -0.12 | no | -0.09 | no |
| 19 | Danube | -0.12 | no | -0.20 | no | -0.13 | no | -0.09 | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
