Submitted:
13 March 2025
Posted:
14 March 2025
You are already at the latest version
Abstract
In this paper, we demonstrate that the Maxwell eigenvalue problem can be solved by a nonconforming finite element and multigrid method. By using an appropriate operator, the eigenvalue problem can be viewed as a curl-curl problem. We obtain the approximate optimal error estimates on graded mesh. We also prove the convergence of the W-cycle and full multigrid algorithms for the corresponding discrete problem. The performance of these algorithms is illustrated by numerical experiments.
Keywords:
1. Introduction
2. Discrete Problems Based on Graded Meshes
2.1. Construction of Maxwell Eigensolver
2.2. Hodge Decomposition
- label=
- Compute the numerical approximation of by solving problem (2.2).
- lbbel=
- Replace with and solve for the numerical approximation of by using (2.7).
- lcbel=
- Compute the approximations of by solving the boundary value problems (2.6).
- ldbel=
- Obtain the approximations of by solving the symmetric positive problem (2.8).
- lebel=
- Compute the numerical approximation of as
2.3. A Nonconforming Finite Element Method
2.4. Error Analysis
3. Multigrid Methods
- (a)
- If any vertex of is not a reentrant corner, then is divided uniformly by connecting midpoints of the edges of T.
- (b)
- Suppose are the vertexes of . For the midpoint of the edge , we denote as m. If is a reentrant corner, then is divided by connecting and m, where is a point on the edge (cf. Figure 1) such that
3.1. W-Cycle Multigrid Algorithm
3.1.1. The k-th Level Multigrid Algorithm
3.1.2. Full Multigrid Methods
3.2. Error Analysis
4. Numerical Experiments
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boffi, D. Fortin operator and discrete compactness for edge elements. Numer. Math. 2000, 87, 229–246. [Google Scholar] [CrossRef]
- Caorsi, S.; Fernandes, P.; Raffetto, M. On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 2000, 38, 580–607. [Google Scholar] [CrossRef]
- Caorsi, S.; Fernandes, P.; Raffetto, M. Spurious-free approximations of electromagnetic eigenproblems by means of Nédélec-type elements. M2AN 2001, 35, 331–358. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, X.; Zhong, L.; Shu, S.; Chen, L. Two-grid methods for Maxwell eigenvalue problems. SIAM J. Numer. Anal. 2014, 52, 2027–2047. [Google Scholar] [CrossRef] [PubMed]
- P. Monk, Finite Element Methods for Maxwell’s Equations,Oxford University Press, New York, 2003.
- Boffi, D.; Kikuchi, F.; Schöberl, J. Edge element computation of Maxwell’s eigenvalues on general quadrilateral meshes. Math. Models Methods Appl. Sci. 2006, 16, 265–273. [Google Scholar] [CrossRef]
- Buffa, A.; Perugia, I. Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 2006, 44, 2198–2226. [Google Scholar] [CrossRef]
- Hesthaven, J.S.; Warburton, T. High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Philos. Trans. Roy. Soc. London Ser. A 2004, 362, 493–524. [Google Scholar] [CrossRef]
- Warburton, T.; Embree, M. The role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem. Comput. Methods Appl. Mech. Eng. 2006, 195, 3205–3223. [Google Scholar] [CrossRef]
- Boffi, D.; Fernandes, P.; Gastaldi, L.; Perugia, I. Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 1999, 36, 1264–1290. [Google Scholar] [CrossRef]
- Brenner, S.C.; Li, F.; Sung, L.Y. Nonconforming Maxwell eigensolvers. J. Sci. Comput. 2009, 40, 51–85. [Google Scholar] [CrossRef]
- Brenner, S.C.; Cui, J.; Li, F.; Sung, L.Y. A nonconforming finite element method for a two-dimensional curl–curl and grad-div problem. Numer. Math. 2008, 109, 509–533. [Google Scholar] [CrossRef]
- Chaumont-Frelet, T. An equilibrated estimator for mixed finite element discretizations of the curl-curl problem, IMA J. Numer. Anal. 2024, drae007. [Google Scholar]
- Brenner, S.C.; Li, F.; Sung, L.Y. A nonconforming penalty method for a two-dimensional curl-curl problem. Math. Models Methods Appl. Sci. 2009, 19, 651–668. [Google Scholar] [CrossRef]
- Brenner, S.C.; Li, F.; Sung, L.Y. A locally divergence-free interior penalty method for two-dimensional curl-curl problems. SIAM J. Numer. Anal Anal. 2008, 46, 1190–1211. [Google Scholar] [CrossRef]
- Brenner, S.C.; Li, F.; Sung, L.Y. A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations. Math. Comput. 2007, 76, 573–595. [Google Scholar] [CrossRef]
- Brenner, S.C.; Cavanaugh, C.; Sung, L.Y. A Hodge decomposition finite element method for the quad-curl problem on polyhedral domains. J. Sci. Comput. 2024, 100, 80. [Google Scholar] [CrossRef]
- Brenner, S.C.; Cui, J.; Nan, Z.; Sung, L.Y. Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell’s equations. Math. Comput. 2012, 81, 643–659. [Google Scholar] [CrossRef]
- Brenner, S.C.; Joscha, G.; Sung, L.Y. Hodge decomposition for two-dimensional time-harmonic Maxwell’s equations: impedance boundary condition. Math. Methods Appl. Sci. 2017, 40, 370–390. [Google Scholar] [CrossRef]
- W. Hackbusch, Multi-grid Methods and Applications, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985.
- Xu, F.; Wang, B.; Luo, F. Adaptive multigrid method for quantum eigenvalue problems. J. Comput. Appl. Math. 2024, 436, 115445. [Google Scholar] [CrossRef]
- Xu, F.; Xie, M.; Yue, M. Multigrid method for nonlinear eigenvalue problems based on Newton iteration. J. Sci. Comput. 2023, 94, 42. [Google Scholar] [CrossRef]
- Xu, F.; Ma, H.; Zhai, J. Multigrid method for coupled semilinear elliptic equation. Math. Methods Appl. Sci. 2019, 42, 2707–2720. [Google Scholar] [CrossRef]
- Babuška, I.; Kellogg, R.B.; Pitkäranta, J. Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 1979, 33, 447–471. [Google Scholar] [CrossRef]
- Brenner, S.C.; Cui, J.; Sung, L.Y. Multigrid methods for the symmetric interior penalty method on graded meshes. Numer. Linear Algebra Appl. 2009, 16, 481–501. [Google Scholar]
- Cui, J. Multigrid methods for two-dimensional Maxwell’s equations on graded meshes. J. Comput. Appl. Math. 2014, 255, 231–247. [Google Scholar]
- Brenner, S.C. The Mathematical Theory of Finite Element Methods, 3rd ed.; Springer-Verlag: New York, 2008. [Google Scholar]
- Brannick, J.J.; Li, H.; Zikatanov, L.T. Uniform convergence of the multigrid V-cycle on graded meshes for corner singularities. Numer. Linear Algebra Appl. 2008, 15, 291–306. [Google Scholar] [CrossRef]
- Brenner, S.C. An optimal-order multigrid method for nonconforming finite elements. Math. Comput. 1989, 52, 1–15. [Google Scholar]


| order | order | |||
|---|---|---|---|---|
| 1/2 | 3.94E-03 | 1.2896 | 4.05E-03 | 1.0477 |
| 1/4 | 1.82E-03 | 1.1099 | 2.17E-03 | 0.9038 |
| 1/8 | 1.02E-03 | 0.8399 | 1.13E-03 | 0.9406 |
| 1/16 | 6.03E-04 | 0.7554 | 5.73E-04 | 0.9794 |
| 1/32 | 3.23E-04 | 0.9030 | 2.87E-04 | 0.9957 |
| 1/64 | 1.67E-04 | 0.9506 | 1.44E-04 | 0.9992 |
| order | order | c | ||||
|---|---|---|---|---|---|---|
| 1/8 | 1.91E-02 | 0.58 | 7.93E-02 | 0.72 | -0.3062 | -0.3059 |
| 1/16 | 1.23E-02 | 0.64 | 4.17E-02 | 0.93 | -0.3224 | -0.3040 |
| 1/32 | 7.13E-03 | 0.79 | 2.04E-02 | 1.03 | -0.2984 | -0.3036 |
| 1/64 | 3.63E-03 | 0.98 | 9.66E-03 | 1.08 | -0.2913 | -0.3037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).