Submitted:

10 March 2025

Posted:

11 March 2025

You are already at the latest version

Abstract
Freshwater scarcity is a growing concern, exacerbated by industrial effluents containing dyes and other pollutants that endanger aquatic ecosystems. This study explores the potential of biochar sorbents, derived from renewable seaweed biomass, as a sustainable and cost-effective solution for water decontamination. Seaweed biomass (Sargaço) collected from Portuguese seashores was carbonized at 300 °C and 400 °C to produce biochar. Adsorption experiments with methylene blue (MB) revealed that carbonization at 400 °C, followed by ball milling, significantly enhanced adsorption performance. Langmuir isotherm analysis demonstrated a maximum adsorption capacity of 500 mg MB/g sorbent for the optimized biochar (400 °C, ball milled), with adsorption efficiency improving at elevated temperatures and pH levels up to 12. ATR-FTIR analysis confirmed the involvement of π–π interactions and hydrogen bonding in the adsorption mechanism. These findings highlight the potential of seaweed-derived biochar as an effective and eco-friendly solution for water purification.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

40

Views

14

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated