Submitted:
04 March 2025
Posted:
05 March 2025
You are already at the latest version
Abstract
Background: Aging is a global phenomenon closely associated to changes in cognitive function and mental health. These conditions substantially burden public health systems and adversely affect the quality of life of older adults. This study aimed to examine changes in depressive symptoms and cognitive function over a 12-month follow-up period in a cohort of Brazilian older adults attending primary care. Methods: This observational, longitudinal study included a randomized sample of individuals aged ≥60 years residing in São Paulo, Brazil, and registered at a Primary Healthcare Unit (PHU). Data collection involved administering a sociodemographic and health questionnaire along with two validated instruments: the Geriatric Depression Scale-15 (GDS-15) and the Mini-Mental State Examination (MMSE). Linear regression models were used for the analyses. Results: A total of 368 older adults were included, being 63% men and with a mean age of 74.65 years. After one year, depressive symptoms showed a notable increase, with the mean GDS-15 score rising from 5.97 to 7.48 (Cohen-d = 0.542). Likewise, there was a decrease in the mean MMSE score ranging from 19.11 to 18.88 (Cohen-d=0.216). Adjusted regression analyses revealed that depressive symptoms at baseline (B = 0.696; p = 0.048; R² = 0.19) and cognitive function at baseline (B = 0.444; p < 0.001; R² = 0.26) were predictive of their respective deteriorations over the follow-up period. Conclusion: Depressive symptoms and cognitive decline place a significant burden on public health systems in aging societies. These findings underscore the importance of continuous monitoring and early intervention strategies to mitigate their impact and enhance the quality of life for older adults.
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants and Eligibility Criteria
2.3. Sample Size
2.4. Procedures at Baseline and Follow-Up
2.5. Measures
2.5.1. Independent Variables
2.5.2. Dependent Variables
2.6. Statistical Analysis
3. Results
| Variables | 2018 (n=368) | 2019 (n=368) | p-Value |
|---|---|---|---|
| Age (M; SD) | 74.65 (7.99) | 75.36 (7.79) | 0.058 |
| Number of Medications | 3.83 (2.02) | 4.68(1.65) | <0.001 |
| n (%) | n (%) | ||
| Gender | |||
| Male | 232 (63.0) | 233 (63.3) | >0.999 |
| Female | 136 (37.0) | 135 (36.7) | |
| Self-Perceived Health | |||
| Excellent | 28 (7.60) | 16 (4.35) | |
| Good | 114 (30.97) | 97 (26.38) | 0.001 |
| Fair | 148 (40.22) | 137 (37.23) | |
| Poor | 78 (21.21) | 118 (32.03) | |
| Chronic disease | |||
| Yes | 338 (91,84) | 367 (99,72) | <0.001 |
| No | 30 (8,15) | 01 (0,27) | |
| Polypharmacy (≥5 medications) | |||
| Yes | 136 (36.95) | 247 (67.12) | <0.001 |
| No | 232 (63.05) | 121 (32.88) | |
| History of Fallsb | |||
| Yes | 251 (68.20) | 367 (99.80) | <0.001 |
| No | 148 (31.80) | 1 (0.20) |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dall, T.M.; Gallo, P.D.; Chakrabarti, R.; West, T.; Semilla, A.P.; Storm, M.V. An Aging Population and Growing Disease Burden Will Require a Large and Specialized Health Care Workforce by 2025. Health Affairs 2013, 32, 2013–2020. [Google Scholar] [CrossRef] [PubMed]
- Tramujas Vasconcellos Neumann, L.; Albert, S.M. Aging in Brazil. Gerontologist 2018, 58, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Prince, M.J.; Wu, F.; Guo, Y.; Gutierrez Robledo, L.M.; O’Donnell, M.; Sullivan, R.; Yusuf, S. The Burden of Disease in Older People and Implications for Health Policy and Practice. Lancet 2015, 385, 549–562. [Google Scholar] [CrossRef]
- GBD 2019 Dementia Forecasting Collaborators. Estimation of the Global Prevalence of Dementia in 2019 and Forecasted Prevalence in 2050: An Analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e25. [Google Scholar] [CrossRef]
- Hu, T.; Zhao, X.; Wu, M.; Li, Z.; Luo, L.; Yang, C.; Yang, F. Prevalence of Depression in Older Adults: A Systematic Review and Meta-Analysis. Psychiatry Research 2022, 311, 114511. [Google Scholar] [CrossRef]
- Chen, P.; Cai, H.; Bai, W.; Zhang, Q.; Su, Z.; Tang, Y.-L.; Ungvari, G.S.; Ng, C.H.; Xiang, Y.-T. Global Prevalence of Mild Cognitive Impairment among Older Adults Living in Nursing Homes: A Meta-Analysis and Systematic Review of Epidemiological Surveys. Transl Psychiatry 2023, 13, 88. [Google Scholar] [CrossRef] [PubMed]
- Weyerer, S.; Eifflaender-Gorfer, S.; Wiese, B.; Luppa, M.; Pentzek, M.; Bickel, H.; Bachmann, C.; Scherer, M.; Maier, W.; Riedel-Heller, S.G. Incidence and Predictors of Depression in Non-Demented Primary Care Attenders Aged 75 Years and Older: Results from a 3-Year Follow-up Study. Age and Ageing 2013, 42, 173–180. [Google Scholar] [CrossRef]
- Borelli, W.V.; Zimmer, E.R.; Bieger, A.; Coelho, B.; Pascoal, T.A.; Chaves, M.L.F.; Amariglio, R.; Castilhos, R.M. Subjective Cognitive Decline in Brazil: Prevalence and Association with Dementia Modifiable Risk Factors in a Population-Based Study. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 2022, 14. [Google Scholar] [CrossRef]
- Zenebe, Y.; Akele, B.; W/Selassie, M.; Necho, M. Prevalence and Determinants of Depression among Old Age: A Systematic Review and Meta-Analysis. Ann Gen Psychiatry 2021, 20, 55. [Google Scholar] [CrossRef]
- Bonadiman, C.S.C.; Malta, D.C.; de Azeredo Passos, V.M.; Naghavi, M.; Melo, A.P.S. Depressive Disorders in Brazil: Results from the Global Burden of Disease Study 2017. Popul Health Metr 2020, 18. [Google Scholar] [CrossRef]
- Nóbrega, I.R.A.P. da; Leal, M.C.C.; Marques, A.P. de O.; Vieira, J. de C. M. Fatores Associados à Depressão Em Idosos Institucionalizados: Revisão Integrativa. Saúde em Debate 2015, 39, 536–550. [Google Scholar] [CrossRef]
- García-Peña, C.; Espinel-Bermúdez, C.; Tella-Vega, P.; Pérez-Zepeda, M.U.; Gutiérrez-Robledo, L.M. Longitudinal Studies and Older Adults Cohorts. In Aging Research - Methodological Issues. García-Peña, C., Gutiérrez-Robledo, L.M., Pérez-Zepeda, M.U., editors. Springer International Publishing: Cham, Swisse, 2018; pp. 95–113. [CrossRef]
- Pereira, M.E.A.; Santos, G.d.S.; Almeida, C.R.d.; Nunes, K.C.S.; Silva, M.C.M.d.; José, H.; Sousa, L.; Vitorino, L.M. Association between Falls, Fear of Falling and Depressive Symptoms in Community-Dwelling Older Adults. Healthcare 2024, 12, 1638. [Google Scholar] [CrossRef] [PubMed]
- Paradela, E.M.P.; Lourenço, R.A.; Veras, R.P. Validação Da Escala de Depressão Geriátrica Em Um Ambulatório Geral. Revista de Saúde Pública 2005, 39, 918–923. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J Psychiatr Res 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Laks, J.; Baptista, E.M.R.; Contino, A.L.B.; Paula, E.O. de; Engelhardt, E. Mini-Mental State Examination Norms in a Community-Dwelling Sample of Elderly with Low Schooling in Brazil. Cadernos de Saúde Pública 2007, 23, 315–319. [Google Scholar] [CrossRef]
- Bertolucci, P.H.; Brucki, S.M.; Campacci, S.R.; Juliano, Y. The Mini-Mental State Examination in a General Population: Impact of Educational Status. Arq Neuropsiquiatr 1994, 52, 1–7. [Google Scholar]
- Schaakxs, R.; Comijs, H.C.; Lamers, F.; Beekman, A.T.F.; Penninx, B.W.J.H. Age-Related Variability in the Presentation of Symptoms of Major Depressive Disorder. Psychol Med 2017, 47, 543–552. [Google Scholar] [CrossRef]
- Wilder, M.E.; Kulie, P.; Jensen, C.; Levett, P.; Blanchard, J.; Dominguez, L.W.; Portela, M.; Srivastava, A.; Li, Y.; McCarthy, M.L. The Impact of Social Determinants of Health on Medication Adherence: A Systematic Review and Meta-Analysis. Journal of General Internal Medicine 2021, 36. [Google Scholar] [CrossRef]
- Comijs, H.C.; Nieuwesteeg, J.; Kok, R.; van Marwijk, H.W.; van der Mast, R.C.; Naarding, P.; Voshaar, R.C.O.; Verhaak, P.; de Waal, M.W.; Stek, M.L. The Two-Year Course of Late-Life Depression; Results from the Netherlands Study of Depression in Older Persons. BMC Psychiatry 2015, 15. [Google Scholar] [CrossRef]
- Vitorino, L.M.; Lopes, J.; Souza Santos, G.; Oliveira, C.; Helena, J.; Sousa, L. ; Prevalence of Polypharmacy of Older People in a Large Brazilian Urban Center and its Associated Factors. International Journal of Environmental Research and Public Health. 2023, 20. [Google Scholar]
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Geir Selbæk; Suvarna Alladi; Ames, D. ; Banerjee, S.; Burns, A.; Brayne, C.; Fox, N.C.; Ferri, C.P.; Gitlin, L.N.; Howard, R.; Kales, H.C.; Kivimäki, M.; Larson, E.B.; Noeline Nakasujja; Rockwood, K.; Samus, Q. Dementia Prevention, Intervention, and Care: 2024 Report of the Lancet Standing Commission. Lancet 2024, 404. [Google Scholar] [CrossRef]
- Yu, X.; Qian, Y.; Zhang, Y.; Chen, Y.; Wang, M. Association between Polypharmacy and Cognitive Impairment in Older Adults: A Systematic Review and Meta-Analysis. Geriatric Nurs 2024, 59, 330–337. [Google Scholar] [CrossRef]
- Xue, L.; Boudreau, R.M.; Donohue, J.M.; Zgibor, J.C.; Marcum, Z.A.; Costacou, T.; Newman, A.B.; Waters, T.M.; Strotmeyer, E.S. Persistent Polypharmacy and Fall Injury Risk: The Health, Aging and Body Composition Study. BMC Geriatrics 2021, 21. [Google Scholar] [CrossRef]
- Palapinyo, S.; Methaneethorn, J.; Leelakanok, N. Association between Polypharmacy and Depression: A Systematic Review and Meta-Analysis. J. Pharm. Pract. Res. 2021. [Google Scholar] [CrossRef]
- Wiersema, C.; Oude Voshaar, R.C.; van den Brink, R.H.S.; Wouters, H.; Verhaak, P.; Comijs, H.C.; Jeuring, H.W. Determinants and Consequences of Polypharmacy in Patients with a Depressive Disorder in Later Life. Acta Psychiatr. Scand. 2022, 146, 85–97. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO launches commission to foster social connection. World Health Organization. Available online: https://www.who.int/news/item/15-11-2023-who-launches-commission-to-foster-social-connection. (accessed on 3 March 2025).
- Maese, E. Almost a Quarter of the World Feels Lonely, 2023. Available online: Gallup.com.https://news.gallup.com/opinion/gallup/512618/almost-quarter-world-feels-lonely.aspx. (accessed on 3 March 2025).
- Beekman, A.T.F.; Geerlings, S.W.; Deeg, D.J.H.; Smit, J.H.; Schoevers, R.S.; de Beurs, E.; Braam, A.W.; Penninx, B.W.J.H.; van Tilburg, W. The Natural History of Late-Life Depression: a 6-year prospective study in the community. Arch Gen Psychiatry 2002, 59, 605. [Google Scholar] [CrossRef]
- Chui, H.; Gerstorf, D.; Hoppmann, C.A.; Luszcz, M.A. Trajectories of Depressive Symptoms in Old Age: Integrating Age-, Pathology-, and Mortality-Related Changes. Psychol Aging g 2015, 30, 940–951. [Google Scholar] [CrossRef]
- Lovett, R.M.; Bonham, M.; Julia Yoshino Benavente; Zahra Hosseinian; Greg Joseph Byrne; Maria Varela Diaz; Bass, M. ; Yao, L.; A. Adin-Cristian; Batio, S.; Kim, M.; van; Moran, M.; Buchanan, D.; Hunt, J.; Young, S.; Gershon, R.; Nowinski, C.J.; Wolf, M.S. Primary Care Detection of Cognitive Impairment Leveraging Health and Consumer Technologies in Underserved US Communities: Protocol for a Pragmatic Randomised Controlled Trial of the MyCog Paradigm. BMJ Open 2023, 13, e080101. [Google Scholar] [CrossRef]
- Pettigrew, C.; Soldan, A. Defining Cognitive Reserve and Implications for Cognitive Aging. Curr Neurol Neurosci Rep 2019, 19. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, Z.; Xu, T.; Ping, F.; Tian, F. Global Prevalence of Polypharmacy and Potentially Inappropriate Medication in Older Patients with Dementia: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2023, 14. [Google Scholar] [CrossRef]
- Scheel, J.; Luttenberger, K.; Graessel, E.; Kratzer, A.; Donath, C. Predictors of Falls and Hospital Admissions in People with Cognitive Impairment in Day-Care: Role of Multimorbidity, Polypharmacy, and Potentially Inappropriate Medication. BMC Geriatrics 2022, 22. [Google Scholar] [CrossRef]
- Ie, K.; Chou, E.; Boyce, R.D.; Albert, S.M. Fall Risk-Increasing Drugs, Polypharmacy, and Falls among Low-Income Community-Dwelling Older Adults. Innovation in Aging 2021, 5. [Google Scholar] [CrossRef]
- Leelakanok, N.; D’Cunha, R.R. Association between Polypharmacy and Dementia – a Systematic Review and Metaanalysis. Aging & Mental Health 2018, 23, 932–941. [Google Scholar] [CrossRef]
- Molino, C.G.R. C.; Rübel, L.; Mantegazza, N.; Bischoff-Ferrari, H.A.; Freystaetter, G. Association of Polypharmacy with Cognitive Impairment in Older Trauma Patients: A Cross-Sectional Study. European Journal of Hospital Pharmacy 2023, ejhpharm-2022-003645. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, J.; Guo, N.; Bo, H.; Xu, T.; Wu, X. Association of Polypharmacy with Falls among Older Chinese Inpatients: A Nationwide Cohort Study. Geriatrics & Gerontology International 2021, 21, 810–817. [Google Scholar] [CrossRef]
- Watanabe, K.; Umegaki, H.; Sugimoto, T.; Fujisawa, C.; Komiya, H.; Nagae, M.; Yamada, Y.; Kuzuya, M.; Sakurai, T. Associations between Polypharmacy and Gait Speed according to Cognitive Impairment Status: Cross-Sectional Study in a Japanese Memory Clinic. Journal of Alzheimer’s Disease 2021, 82, 1115–1122. [Google Scholar] [CrossRef]
- Adam, C.E.; Fitzpatrick, A.L.; Leary, C.S. Anjum Hajat; Ilango, S.D.; Park, C.; Phelan, E.A.; Semmens, E.O. Change in Gait Speed and Fall Risk among Community-Dwelling Older Adults with and without Mild Cognitive Impairment: A Retrospective Cohort Analysis. BMC Geriatrics 2023, 23. [Google Scholar] [CrossRef]
- Hoel, R.W.; Giddings Connolly, R.M.; Takahashi, P.Y. Polypharmacy Management in Older Patients. Mayo Clinic Proceedings 2021, 96, 242–256. [Google Scholar] [CrossRef]
- Sousa, L.; Tomás, J.; Severino, S.; Valido, S.; Santos, MJ.; José, H. Prevention of Falls in the Elderly: A Challenge in Patient Safety. Salud, Science and Technology 2024, 4, 1000. [Google Scholar] [CrossRef]
- Bai, W.; Chen, P.; Cai, H.; Zhang, Q.; Su, Z.; Cheung, T.; Jackson, T.; Sha, S.; Xiang, Y.-T. Worldwide Prevalence of Mild Cognitive Impairment among Community Dwellers Aged 50 Years and Older: A Meta-Analysis and Systematic Review of Epidemiology Studies. Age and Ageing 2022, 51, afac173. [Google Scholar] [CrossRef]
- World Health Organization. WHOQOL: Measuring quality of life. World Health Organization. Available online: https://www.who.int/tools/whoqol (accessed on 3 March 2025).
- Steffens, D.C.; Manning, K.J.; Wu, R.; Grady, J.J. Effects of Longitudinal Changes in Neuroticism and Stress on Cognitive Decline. The American Journal of Geriatric Psychiatry 2023, 31, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, C.; Xie, W.; Zhong, B.; Wu, Y.; Blumenthal, J.A. Trajectories of Depressive Symptoms and Subsequent Cognitive Decline in Older Adults: A Pooled Analysis of Two Longitudinal Cohorts. Age and Ageing 2021. [Google Scholar] [CrossRef]
- Power, M.; Quinn, K.; Schmidt, S. Development of the WHOQOL-Old Module. Quality of Life Research 2005, 14, 2197–2214. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World mental health report: Transforming mental health for all. World Health Organization. Available online: https://www.who.int/publications/i/item/9789240049338. (accessed on 3 March 2025).
- Park, S.-H.; Kwak, M.-J. Performance of the Geriatric Depression Scale-15 with Older Adults Aged over 65 Years: An Updated Review 2000-2019. Clinical Gerontologist 2020, 44, 1–14. [Google Scholar] [CrossRef]
- Abrantes, G.G. de; Souza, G.G.; Cunha, N.M.; Rocha, H.N.B. da; Silva, A.O.; Vasconcelos, S.C. Depressive Symptoms in Older Adults in Basic Health Care. Revista Brasileira de Geriatria e Gerontologia 2019, 22. [Google Scholar] [CrossRef]
- Uomoto, K.E. Increasing Identification and Follow-up of Older Adult Depression in Primary Care. J Prim Care Community Health 2023, 14, 215013192311527. [Google Scholar] [CrossRef]
| Variables | T0 (n=368) | T1 (n=368) | p-Value | Effect Size |
|---|---|---|---|---|
| Depressive Symptoms | Média (SD) | Média (SD) | ||
| GDS-15 | 5.97 (2.91) | 7.48 (2.65) | <0.001 | 0.542 |
| Cognitive Function | ||||
| MMSE | 19.88 (2.92) | 19.11 (2.97) | <0.001 | 0.216 |
| Variables | B (SE) | Beta | p-value | Adjusted R² |
|---|---|---|---|---|
| GDS-15* | 0.123 (0.047) | 0.135 | <0.001 | 0.13 |
| GDS-15**(Sociodemographic and Clinical) | 0.696 (0.386) | 0.110 | 0.048 | 0.19 |
| MMSEa | 0.465 (0.047) | 0.457 | <0.001 | 0.29 |
| MMSE** (Sociodemographic and Clinical) | 0.444 (0.049) | 0.437 | <0.001 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
