Submitted:
04 March 2025
Posted:
05 March 2025
You are already at the latest version
Abstract
Background: primary osteoporosis in children and young adults often suggests a monogenic disease affecting bone microarchitecture and bone mineral density. While Osteogenesis Imperfecta (OI) is the most recognized genetic cause of recurrent fractures, many other genes involved in bone metabolism may contribute to osteoporosis. Among them, FGFR2 plays a critical role in bone growth and development by regulating osteoblasts differentiation and proliferation, as well as chondrogenesis. Germline pathogenic FGFR2 variants are typically associated with syndromic craniosynostosis, conditions not characterized by bone fragility or osteoporosis. A report by Dantsev et al. (2023), recently identified FGFR2 as a potential cause of dominant early-onset osteoporosis and bone fractures in a family. Methods: We performed clinical exome sequencing in trio to investigate potential genetic causes of the observed phenotype. Results: We report the case of a child presenting with severe osteoporosis with multiple fractures, carrying a mosaic likely pathogenic FGFR2 variant, absent in both parental samples. Conclusions: Our findings provide further evidence that FGFR2 pathogenic variants can lead to a novel non-syndromic bone mineralization disorder, reinforcing the role of FGFR2 in the pathogenesis of early onset osteoporosis.
Keywords:
1. Introduction
2. Results
2.1. Clinical Description
2.2. Molecular Findings
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. The Lancet 2019, 393, 364–376. [CrossRef]
- Xiao, P.-L.; Cui, A.-Y.; Hsu, C.-J.; Peng, R.; Jiang, N.; Xu, X.-H.; Ma, Y.-G.; Liu, D.; Lu, H.-D. Global, Regional Prevalence, and Risk Factors of Osteoporosis According to the World Health Organization Diagnostic Criteria: A Systematic Review and Meta-Analysis. Osteoporosis International 2022, 33, 2137–2153. [CrossRef]
- Mäkitie, O.; Zillikens, M.C. Early-Onset Osteoporosis. Calcif Tissue Int 2022, 110, 546–561. [CrossRef]
- Unger, S.; Ferreira, C.R.; Mortier, G.R.; Ali, H.; Bertola, D.R.; Calder, A.; Cohn, D.H.; Cormier-Daire, V.; Girisha, K.M.; Hall, C.; et al. Nosology of Genetic Skeletal Disorders: 2023 Revision. Am J Med Genet A 2023, 191. [CrossRef]
- Jovanovic, M.; Marini, J.C. Update on the Genetics of Osteogenesis Imperfecta. Calcif Tissue Int 2024, 115, 891–914. [CrossRef]
- Kang, H.; A.C., S.A.; Marini, J.C. Osteogenesis Imperfecta: New Genes Reveal Novel Mechanisms in Bone Dysplasia. Translational Research 2017, 181, 27–48. [CrossRef]
- Sillence, D.O.; Senn, A.; Danks, D.M. Genetic Heterogeneity in Osteogenesis Imperfecta. J Med Genet 1979, 16, 101–116. [CrossRef]
- Dijk, F.S. Van; Sillence, D.O. Osteogenesis Imperfecta: Clinical Diagnosis, Nomenclature and Severity Assessment. Am J Med Genet A 2014, 164, 1470–1481. [CrossRef]
- Dantsev, I.S.; Parfenenko, M.A.; Radzhabova, G.M.; Nikolaeva, E.A. An FGFR2 Mutation as the Potential Cause of a New Phenotype Including Early-Onset Osteoporosis and Bone Fractures: A Case Report. BMC Med Genomics 2023, 16, 329. [CrossRef]
- Dionne, C.A.; Crumley, G.; Bellot, F.; Kaplow, J.M.; Searfoss, G.; Ruta, M.; Burgess, W.H.; Jaye, M.; Schlessinger, J. Cloning and Expression of Two Distinct High-Affinity Receptors Cross-Reacting with Acidic and Basic Fibroblast Growth Factors. EMBO J 1990, 9, 2685–2692. [CrossRef]
- Mansukhani, A.; Bellosta, P.; Sahni, M.; Basilico, C. Signaling by Fibroblast Growth Factors (Fgf) and Fibroblast Growth Factor Receptor 2 (Fgfr2)–Activating Mutations Blocks Mineralization and Induces Apoptosis in Osteoblasts. J Cell Biol 2000, 149, 1297–1308. [CrossRef]
- Karuppaiah, K.; Yu, K.; Lim, J.; Chen, J.; Smith, C.; Long, F.; Ornitz, D.M. FGF Signaling in the Osteoprogenitor Lineage Non-Autonomously Regulates Postnatal Chondrocyte Proliferation and Skeletal Growth. Development 2016. [CrossRef]
- Wang, Y.; Sun, L.; Kan, T.; Xue, W.; Wang, H.; Xu, P.; Zhang, L.; Yan, M.; Li, H.; Yu, Z. Hypermethylation of Bmp2 and Fgfr2 Promoter Regions in Bone Marrow Mesenchymal Stem Cells Leads to Bone Loss in Prematurely Aged Mice. Aging Dis 2024. [CrossRef]
- Tuzon, C.T.; Rigueur, D.; Merrill, A.E. Nuclear Fibroblast Growth Factor Receptor Signaling in Skeletal Development and Disease. Curr Osteoporos Rep 2019, 17, 138–146. [CrossRef]
- Bobzin, L.; Nickle, A.; Ko, S.; Ince, M.; Bhojwani, A.; Merrill, A.E. FGF Signaling Regulates Development of the Anterior Fontanelle 2024.
- Su, N.; Jin, M.; Chen, L. Role of FGF/FGFR Signaling in Skeletal Development and Homeostasis: Learning from Mouse Models. Bone Res 2014, 2, 14003. [CrossRef]
- Yu, K.; Xu, J.; Liu, Z.; Sosic, D.; Shao, J.; Olson, E.N.; Towler, D.A.; Ornitz, D.M. Conditional Inactivation of FGF Receptor 2 Reveals an Essential Role for FGF Signaling in the Regulation of Osteoblast Function and Bone Growth. Development 2003, 130, 3063–3074. [CrossRef]
- Moerlooze, L. De; Spencer-Dene, B.; Revest, J.-M.; Hajihosseini, M.; Rosewell, I.; Dickson, C. An Important Role for the IIIb Isoform of Fibroblast Growth Factor Receptor 2 (FGFR2) in Mesenchymal-Epithelial Signalling during Mouse Organogenesis. Development 2000, 127, 483–492. [CrossRef]
- Eswarakumar, V.P.; Monsonego-Ornan, E.; Pines, M.; Antonopoulou, I.; Morriss-Kay, G.M.; Lonai, P. The IIIc Alternative of Fgfr2 Is a Positive Regulator of Bone Formation. Development 2002, 129, 3783–3793. [CrossRef]
- OMIM Available online: https://www.omim.org/.
- McIntosh, I.; Bellus, G.A.; Jabs, E.W. The Pleiotropic Effects of Fibroblast Growth Factor Receptors in Mammalian Development. Cell Struct Funct 2000, 25. [CrossRef]
- Merrill, A.E.; Sarukhanov, A.; Krejci, P.; Idoni, B.; Camacho, N.; Estrada, K.D.; Lyons, K.M.; Deixler, H.; Robinson, H.; Chitayat, D.; et al. Bent Bone Dysplasia-FGFR2 Type, a Distinct Skeletal Disorder, Has Deficient Canonical FGF Signaling. The American Journal of Human Genetics 2012, 90, 550–557. [CrossRef]
- Zhou, Y.; Zhu, P.; Shen, S.; Wang, Y.; Li, B.; Guo, B.; Li, H. Overexpression of Fibroblast Growth Factor Receptor 2 in Bone Marrow Mesenchymal Stem Cells Enhances Osteogenesis and Promotes Critical Cranial Bone Defect Regeneration. Front Cell Dev Biol 2023, 11. [CrossRef]
- Yang, Y.; Fei, M.; Zhou, X.; Li, Y.; Jin, D. The Association of Genetic Variants in FGFR2 with Osteoporosis Susceptibility in Chinese Han Population. Biosci Rep 2019, 39. [CrossRef]
- Yerges, L.M.; Klei, L.; Cauley, J.A.; Roeder, K.; Kammerer, C.M.; Moffett, S.P.; Ensrud, K.E.; Nestlerode, C.S.; Marshall, L.M.; Hoffman, A.R.; et al. High-Density Association Study of 383 Candidate Genes for Volumetric BMD at the Femoral Neck and Lumbar Spine Among Older Men. Journal of Bone and Mineral Research 2009, 24, 2039–2049. [CrossRef]
- Zmuda, J.M.; Yerges-Armstrong, L.M.; Moffett, S.P.; Klei, L.; Kammerer, C.M.; Roeder, K.; Cauley, J.A.; Kuipers, A.; Ensrud, K.E.; Nestlerode, C.S.; et al. Genetic Analysis of Vertebral Trabecular Bone Density and Cross-Sectional Area in Older Men. Osteoporosis International 2011, 22, 1079–1090. [CrossRef]
- Dong, S.-S.; Yang, T.-L.; Yan, H.; Rong, Z.-Q.; Chen, J.-B.; Hao, R.-H.; Chen, X.-F.; Guo, Y. Association Analyses of FGFR2 Gene Polymorphisms with Femoral Neck Bone Mineral Density in Chinese Han Population. Molecular Genetics and Genomics 2015, 290, 485–491. [CrossRef]
- Rohmann, E.; Brunner, H.G.; Kayserili, H.; Uyguner, O.; Nürnberg, G.; Lew, E.D.; Dobbie, A.; Eswarakumar, V.P.; Uzumcu, A.; Ulubil-Emeroglu, M.; et al. Mutations in Different Components of FGF Signaling in LADD Syndrome. Nat Genet 2006, 38, 414–417. [CrossRef]
- Dinulescu, A.; Păsărică, A.-S.; Carp, M.; Dușcă, A.; Dijmărescu, I.; Pavelescu, M.L.; Păcurar, D.; Ulici, A. New Perspectives of Therapies in Osteogenesis Imperfecta—A Literature Review. J Clin Med 2024, 13, 1065. [CrossRef]

| Disease | Clinical signs | |
|---|---|---|
| Crouzon syndrome OMIM 123500 |
Craniosynostosis, hypertelorism, exophthalmos and external strabismus, hypoplastic maxilla, and prognathism | Syndromic craniosynostosis |
| Apert syndrome OMIM 101200 |
Craniosynostosis, midface hypoplasia, and syndactyly of the hands and feet | Syndromic craniosynostosis |
| Pfeiffer syndrome OMIM 101600 |
Craniosynostosis syndrome with characteristic anomalies of the hands and feet. | Syndromic craniosynostosis |
| Saethre-Chotzen Syndrome OMIM 101400 |
Craniosynostosis, facial dysmorphism, and hand and foot abnormalities. Hearing loss, limb anomalies, short stature and vertebral fusions. | Syndromic craniosynostosis |
| Jackson-Weiss Syndrome OMIM 123150 |
Premature fusion of the cranial sutures as well as radiographic anomalies of the feet | Syndromic craniosynostosis |
| Antley-Bixler Syndrome without genital anomalies or disordered steroidogenesis OMIM 207410 | Craniosynostosis, radio-humeral synostosis, midface hypoplasia, choanal stenosis or atresia, and multiple joint contractures. | Syndromic craniosynostosis |
| Beare-Stevenson cutis gyrata syndrome OMIM 123790 |
Furrowed skin disorder of cutis gyrata, acanthosis nigricans, craniosynostosis, craniofacial dysmorphism, digital anomalies, umbilical and anogenital abnormalities, and early death. Cloverleaf skull can be observed. |
Syndromic craniosynostosis |
| Bent bone dysplasia Syndrome OMIM 614592 |
Poor mineralization of the calvarium, craniosynostosis, dysmorphic facial features, prenatal teeth, hypoplastic pubis and clavicles, osteopenia, and bent long bones | Lethal skeletal dysplasia, syndromic cranyiosynostosis |
| LADD syndrome 1 OMIM 149730 |
Affecting llacrimal glands and ducts, salivary glands and ducts, ears, teeth, and distal limb segments. | Multiple congenital anomaly disorder |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
