Preprint
Review

This version is not peer-reviewed.

Hepatitis A and E Viruses Are Important Etiologies of Acute Severe Hepatitis in Asia–Pacific Countries: A Narrative Review

Submitted:

04 March 2025

Posted:

04 March 2025

You are already at the latest version

Abstract

Background/Objectives: Acute-on-chronic liver failure (ACLF) and acute liver failure (ALF) are symptoms of acute severe hepatitis which can result in higher liver-related mortality without liver transplantation following acute hepatitis and acute liver injury in patients with and without chronic liver diseases, respectively. Hepatitis A and E viruses (HAV and HEV) infect humans through the fecal–oral route, causing acute hepatitis A and E. Hepatitis E also causes zoonosis, which causes chronic hepatitis E in immunocompromised hosts. These viruses replicate in hepatocytes and egress into blood and feces through the biliary tract system. Prevention and treatment of these viruses is a major health concern. Methods: This narrative review is the result of a traditional, nonsystematic review. Discussion: The Japan Agency for Medical Research and Development (AMED) HAV and HEV Study Group has recently published two guidelines for HAV and HEV infections. Medical researchers should highlight the importance of HAV and HEV infection, and share various guidelines so that patients infected with HAV and HEV are accurately diagnosed and treated. In Asia–Pacific countries, guidelines for hepatitis A and E to prevent progression to ALF and ACLF are required. Conclusions: It is important to develop and highlight specific treatment and preventive methods, including vaccines, for HAV/HEV. Medical researchers should notice that HAV and HEV infections still play roles in progression to acute severe hepatitis in Asia–Pacific countries.

Keywords: 
;  ;  ;  ;  

1. Introduction

Acute acute-on-chronic liver failure (ACLF) and acute liver failure (ALF), are severe conditions which occur, respectively, in patients with or without chronic liver diseases/cirrhosis or cirrhosis. Both ACLF and ALF are associated with high mortality rates unless liver transplantation is performed [1,2,3].
Hepatitis A virus (HAV) infection causes acute hepatitis, occasionally leading to ALF and ACLF [4]. HAV also causes extrahepatic manifestations. Hepatitis E virus (HEV) infection causes acute hepatitis, including ALF and ACLF, chronic hepatitis (especially in compromised hosts), and various extrahepatic manifestations [5,6,7].
McSteen et al. reviewed the viral causes of ALF, along with diagnosis, treatment options and expected outcomes [8]. Although drug-induced liver injury, including acetaminophen (paracetamol) overdose, is the leading cause of ALF in Western countries [8,9,10], viral infection is a common cause of ALF in Asia–Pacific countries [11,12,13,14]. Viral infection is also one of the major causes of ACLF in Asia–Pacific countries [15,16,17].
Recently, it is has become easier to treat patients with hepatitis B virus (HBV) or hepatitis C virus (HCV) infection because of the development of nucleoside/nucleotide analogues [18,19,20] and direct-acting antivirals (DAAs) [21], although there are several issues still be addressed in this area [22,23,24]. In this paper, we describe the roles played by HAV and HEV infection in ALF and ACLF. We also discuss the present situation regarding development of specific treatment and preventive methods, including vaccines, for HAV/HEV.

2. Methods

A traditional, nonsystematic literature review was carried out using PubMed for the purpose of this narrative review.

3. ALF AND ACLF

3.1. Definitions of acute severe hepatitis: ALF and ACLF

ALF, or fulminant hepatic failure, occurs in patients without pre-existing liver diseases. It is a life-threatening disease characterized by severe liver damage with coagulopathy, hepatic encephalopathy, and high mortality [25]. ALF is defined according to the time interval between the development of symptoms and onset of hepatic encephalopathy [25,26]. Trey and Davidson defined ALF as a condition in which there is development of hepatic encephalopathy within 8 weeks of the first symptoms of liver disease as fulminant hepatic failure [27].
O’Grady et al. classified cases in which hepatic encephalopathy developed within 7 days of the onset of jaundice as “hyperacute liver failure”, from 8 to 28 days as “acute liver failure”, and from 5 to 12 weeks as “subacute liver failure” [28]. Bernuau et al. defined cases in which hepatic encephalopathy developed within 2 weeks after the appearance of jaundice as ‘‘fulminant liver failure”. When hepatic encephalopathy developed within 2 weeks to 3 months, this was defined as “subfulminant liver failure” [29].
In Japan, patients showing 40% or less of the standardized prothrombin time value or having an INR of 1.5 or more caused by severe liver damage within 8 weeks of onset of symptoms are diagnosed as having ALF [30,31,32]. Gimson et al. defined patients in whom hepatic encephalopathy occurs between 8 and 24 weeks after the first symptoms of liver diseases as late-onset hepatic failure (LOHF) [33].
The Asia–Pacific Association for the Study of the Liver (APASL) ACLF Research Consortium (AARC) for APASL ACLF Working Party defined ACLF as acute hepatic insult manifesting as jaundice and coagulopathy, leading to complications within 4 weeks, defined by ascites and/or encephalopathy, in patients with previously diagnosed or undiagnosed chronic liver disease associated with high mortality [1]. The European Association for the Study of the Liver (EASL)/Chronic Liver Failure (CLIF) defined ACLF as an acute deterioration of pre-existing chronic liver disease usually related to a precipitating event and associated with increased mortality at 3 months due to multisystem organ failure [34,35]. The North American Consortium For The Study Of End-Stage Liver Disease (NACSELD) defined ACLF as a syndrome characterized
by acute deterioration in a patient with cirrhosis due to infection presenting with failure of two or more extrahepatic organs [36].
In Japan, ACLF has been defined as a patient with cirrhosis and a Child–Pugh score of 5–9 in which there is deterioration of liver function (serum bilirubin level equal to or more than 5.0 mg/dL and prothrombin time value equal to or less than 40% of the standardized values and/or international normalization rate equal to or more than 1.5) caused by severe liver damage developing within 28 days after acute insults (alcohol abuse, bacterial infection, gastrointestinal bleeding, or the exacerbation of underlying liver diseases) [37].
Thus, although there are various definitions, ACLF and ALF may be understood as severe forms of acute hepatitis in patients who may or may not suffer from chronic liver disease. As ALF and ACLF patients also have poor prognosis without liver transplantation, it is very important to diagnose their etiologic agents.

3.2. Causes of ALF and ACLF

It is now widely known that ALF is caused by various viral infections, drugs, autoimmune hepatitis, and other factors. The causes of ACLF are similar, but also include excess alcohol intake [1,8,25]. McSteen et al. presented a summary of viral causes of ALF, diagnostic approaches, treatment options and expected outcomes [8]. This showed that HAV, HBV, HCV, hepatitis delta virus (HDV), HEV, cytomegalovirus (CMV), Epstein–Barr virus (EBV), varicella zoster virus (VZV), parvovirus B19, herpes simplex virus (HSV), yellow fever (YF), dengue virus (DENV), and human adenovirus (HAdV) are all causes of ALF [8].
In Asian countries, reactivation of HBV as an acute hepatic insult is the leading cause of ACLF [1]. On the Indian subcontinent, superinfection with HEV is the other important infectious event in ACLF cases [1]. Among the noninfectious etiologies, alcoholic hepatitis is the major cause of acute deterioration, this being especially the case in Western countries [1].
For the present report, we focused on HAV and HEV infection as causes of ALF and ACLF.

4. HEPATITIS A VIRUS (HAV)

HAV is a nonenveloped RNA virus with a length of approximately 7.6 kb [4,8]. In general, HAV replicates mainly in the liver and is a noncytopathic virus. However, HAV virions are egressed nonlytically from HAV-infected hepatocytes into blood vessels and bile canaliculus as quasi-enveloped virions (eHAV) cloaked in host membranes similar to exosomes but lacking any HAV RNA genome-derived protein on the surface, so that eHAV efficiently enters cells [4,38,39]. eHAV is resistant to neutralizing antibodies; it is released across the canalicular membrane and stripped of membranes by bile acids acting as detergents within the proximal biliary canaliculus. A highly stable naked nonenveloped virion is thereby formed which is shed in feces and optimized for transmission [40,41].

4.1. Symptoms of HAV infection

In adults with acute HAV infection, jaundice, abdominal pain, appetite loss, nausea, vomiting, diarrhea, and hyperbilirubinemia peaking at 7–10 days after jaundice onset, are typically presented [4]. Adults with acute HAV infection present with higher fever than those with other types of acute viral hepatitis. Children with acute HAV infection are asymptomatic.

4.2. Diagnosis of hepatitis A

In general, diagnosis of hepatitis A is confirmed by a positive result for anti-HAV IgM antibodies [4]. Delayed anti-HAV IgM seroconversion as a positive result for anti-HAV IgM on a repeat test after an initially negative result was observed in 38 (6.4%) of 595 patients with acute HAV infection in a Korean outbreak [42]. If a patient with a negative result for anti-HAV IgM antibody is suspected of having hepatitis A, then testing for the anti-HAV IgM antibody should be repeatedly conducted during the 7 days following the first examination.
HAV is transmitted via the fecal–oral route through consumption of HAV-contaminated food and water, person-to-person contact, etc. [8,43,44,45,46,47,48]. Data from the Japanese National Epidemiological Surveillance of Infectious Diseases program demonstrated that about 68% of individuals aged 60 years and older had anti-HAV antibodies, but only 1.1% of those aged below 60 years old had immunity; thus, almost all individuals younger than 60 years of age were susceptible to HAV infection [49]. Thus, we should notice that it is possible that HAV outbreaks may occur in developed countries as well as developing countries. In Japan, we observed an outbreak of acute HAV infection between 2018 and 2020 [50,51,52,53,54].

4.3. Acute severe hepatitis A

It is estimated that ALF progression occurs in 0.1%-0.5% of patients with acute HAV infection [8]. A Japanese study showed that numbers of patients with fulminant hepatitis and/or ALF coma type with hepatic encephalopathy of grade 2 or higher, and LOHF caused by HAV infection were 65 (6.4%)/698, 14 (2.9%)/487 and 103 (6.4%)/1603 patients with acute HAV infection who were seen between 1998 and 2003, between 2004 and 2009, and between 2010 and 2015, respectively [55], although the frequency of HAV infection is decreasing year by year.
In India, the most common cause for ALF was found to be HAV infection, this being recorded in 81(44.2%) of 183 cases [56]. Also in India, ACLF due to HAV infection was observed in 33 (27.2%) of 121 adult patients with cirrhosis [15]. In Indiana, in the United States, the mortality rate for HAV infection caused by illicit drug use was found to be 2% in the period from January 2017 to April 2019, with ALF being seen in 4% of cases and ACLF in 30% [57]. In Ontario, Canada, 938 cases of hepatitis A were recorded between January 1, 2015 and November 22, 2022 (an average rate 0.9 case per 100,000 population). Asymptomatic infection among children and youth may be an important contributor to local transmission of HAV [58].
In Nepal, 266 (92.7%) of 287 children with hepatitis in a tertiary care center were found to have hepatitis A. One child died due to complication, and the mortality rate was therefore one (0.38%) out of two hundred and sixty-six children with hepatitis [59]. In India, HAV infection has been shown to be the most common cause (42%) of ACLF in children [60]. There are various host, viral, and other factors associated with severe HAV diseases; these are described in a previous work by ourselves [4].
It is important to note that HAV infection causes ALF in 2%(95% CI: 1-3) and 27%(95% CI: 13-43) of cases, respectively, in countries where HAV vaccination is performed or not [14]. It has been reported that, after HAV infection, fecal shedding of HAV can last for months after resolution of symptoms, and that such patients could be an important source of further local transmission [61,62].

4.3. Vaccine, and challenges facing developers of anti-HAV drugs to prevent HAV infection

Although HAV vaccination faces several challenges which remain be solved [63,64], the HAV vaccine is effective in preventing HAV infection. Nevertheless, it is also important that anti-HAV drugs be developed. Researchers have previously demonstrated the effectiveness of small interfering RNAs against HAV [65,66,67] and HAV 3C cysteine protease inhibitors [68,69]. The effectiveness of interferon-alfa [70,71,72,73,74], interferon-lambda-1 [75], interferon-gamma [76], ribavirin [77,78,79], amantadine [77,78,80,81,82] and favipiravir [83] as direct-acting antivirals (DAAs) against HAV or host-targeting agents (HTAs) has also been reported.
In previous works, we have also shown that JAK2 inhibitor AZD1480 [84], sirtuin inhibitor sirtinol [85], Japanese rice-koji miso [86,87], zinc chloride [88,89], zinc sulfate [90], and nicotinamide [91] inhibit HAV replication. La protein [92], GRP78 (Bip) [90,93,94], mitogen-activated protein kinase 3 (MAP2K3) [89], and c-Jun [91] are all critical targets of anti HAV drugs.
A potential anti HAV 3C protease inhibitor, Z10325150, was identified in one molecular docking study [69]. Artificial intelligence and machine learning methods could support the development of anti-HAV drugs [69,95]. It is important to develop and disseminate HAV vaccines with lower costs and greater efficacy, and to develop antivirals against HAV infection [4]. Useful recommendations and guidelines for prevention of HAV infection have been produced in the United States [96,97], as well as in Asia–Pacific countries [4]. However, further studies are still needed in this area.
In summary, the above review highlights the viral features of HAV, the present situation regarding HAV infection in representative countries of the Asia–Pacific area, and the development of anti-HAV drugs. It is important for medical researchers to be aware of the role of HAV as one of the causes of ALF and ACLF.

5. HEPATITIS E VIRUS (HEV)

As HEV infection can potentially lead to ALF and ACLF, causing death or a need for liver transplantation, the prevention and treatment of HEV infection can be seen as a major health concern [8]. HEV infects humans through the fecal–oral route, causing acute hepatitis E. Hepatitis E also causes zoonosis, and HEV causes chronic infection in immunocompromised hosts [5,6,7,8].
The mammalian HEV genome is a single-stranded, positive-sense RNA with a length of approximately 7.2 kb [5,8]. HEV also exists in two distinct particle forms. HEV particles present in the bile and shed in the feces are classified as the membrane-unassociated form (nonenveloped HEV [neHEV]); those in the bloodstream as well as cell culture supernatants are classified as the membrane-associated form (quasi-enveloped HEV [eHEV]) [5]. eHEV is coated with a lipid membrane which resembles the lipid membrane of exosomes [98]. HEV replicates in hepatocytes [99].

5.1. HEV genotypes and clinical manifestations

The various strains of the Hepeviridae family are classified as HEV-1 to HEV-8 within the species Paslahepevirus balayani [5,100]. HEV-1 and HEV-2 infect only humans, and are related to HEV outbreaks in developing countries [101]. In addition, acute HEV infection may lead to a greater incidence of ALF in pregnant women, compared with nonpregnant women and men, in developing countries [8,102]. This may depend on HEV genotypes. HEV-3 and HEV-4 cause zoonosis, resulting in sporadic and autochthonous HEV infection in developed countries [101]. HEV-3 and HEV-4 are also major causes of chronic HEV infection in immunocompromised hosts and elderly persons [5,103]. In Japan, several studies have found HEV-4 in fulminant hepatitis E, rather than HEV-3 [104,105,106]. HEV-5 and HEV-6 have also been found in wild boars in Japan [5]. In addition, HEV-7 and HEV-8 have been identified in dromedary camels in the Middle East, and in Bactrian camels in China and Mongolia, respectively [5].

5.2. Symptoms of HEV infection

Acute HEV infection rarely presents clinical symptoms in children [5]. In adults with symptoms (such as flu-like myalgia, arthralgia, weakness, vomiting, jaundice, itching, uncolored stools, and dark urine), incubation periods range from 2 to 9 weeks [5].

5.3. Acute severe hepatitis E

A systematic review and meta-analysis demonstrated that the pooled HEV-attributable proportion of viral-related ALF (n=1312) was 40.0% (95% CI: 0.28-0.52), 30.0% (95% CI: 0.18-0.44), and 61.0% (95% CI: 0.49-0.72) among nonpregnant participants in India, China, and Bangladesh, respectively. However, a rate of 71.0% (95% CI: 0.62-0.79) was recorded among 676 Indian pregnant females [13]. The prevalence of HEV-ALF in HEV-infected nonpregnant individuals was found to be 28.0% (95% CI: 0.20–0.37) and 10.0% (95% CI: 0.01–0.28) in India and China, respectively, and it was 34% (95% CI: 0.27–0.42) in Indian pregnant females with HEV infection [13]. In India, the overall mortality of HEV-ALF was estimated to be 32.0% (95% CI: 0.23-0.42) and 64.0% (95% CI: 0.50-0.77), among nonpregnant and pregnant participants, respectively. Among Chinese nonpregnant participants, overall mortality was 23.0% (95% CI: 0.14-0.34) [13]. The incubation period of HEV-ALF and factors leading to its progression were found to be 2-9 weeks and not known, respectively, by the authors of [107], who also reported that the transplant-free survival rate of HEV-ALF was 55.1% [107].
In one hospital in Germany, approximately 10% to 15% of patients with ALF had evidence for HEV infection [108]. The prevalence of HEV-ALF has been relatively rare in viral ALF cases in the United States and Japan [109,110,111]. In Japan, when hepatitis occurs as a result of consumption of undercooked or grilled pork, wild boar meat, or offal (including pig liver and intestines), HEV infection should be considered [5]. The routes of HEV infection have not completely been elucidated yet.
After the approval by Japan’s Health Insurance System of anti-HEV immunoglobulin A (IgA) antibody as a laboratory diagnostic tool for hepatitis E in 2011 [112], the number of hepatitis E cases has increased. As HEV-3 and HEV-4 may infect through transfusion, universal nucleic acid amplification testing blood-donor screening started in 2020 to prevent transfusion-transmitted HEV infection, revealing that asymptomatic indigenous HEV infection also exists in Japan [5]. HEV plays a role in the pathogenesis of non-A, non-B, and non-C ALF in developed countries such as Japan. Further studies are needed in this area; however, a positive test for HEV RNA is now established as the gold standard for diagnosis of HEV infection [5].
In India, ACLF due to HEV infection was observed in 74 (61.2%)/121 adult patients with cirrhosis [15]. HEV-ACLF has lower mortality [113]. In Bangladesh, positive tests for acute HEV infection were obtained in 21.7% (15/69) of ACLF patients [114]. In China, patients infected with HEV-4 were found to be at high risk of developing ALF or ACLF [115]. Typical histopathological features of viral hepatitis may be absent in HEV-ACLF [116]. Thus, HEV infection is a trigger of ACLF [117,118,119,120].
Host factors (older age and genetic factors), viral factors (viral load, HEV genotype, nucleotide mutations in HEV RNA genomes) and other factors (coinfection with HIV, presence of chronic liver disease, existence of metabolic disease) have been identified as factors influencing the severity of HEV infection [5].

5.4. Vaccine, and challenges facing developers of anti-HEV drugs to prevent HEV infection

In Japan, a HEV vaccine which could prevent the spread of HEV is still under development [6]. In China, HEV 239 (Hecolin) has been shown to be well tolerated and effective in the prevention of hepatitis E [121,122,123,124]. Outside China, successful clinical trials of HEV 239 have also been reported from Bangladesh [123,125], the United States [124] and South Sudan [126,127].
Ribavirin treatment is recommended in cases of severe acute hepatitis E or acute-on-chronic liver failure (Table 1) [6,8]. Japan’s Health Insurance System has not yet approved the use of ribavirin as a drug for the treatment of HEV infection [5]. Ribavirin is a contraindication for pregnant patients, patients with anemia, and patients with renal dysfunction. The development of more effective and safer drugs and spread of vaccination for HEV infection is still needed [125].
Several research reports about anti-HEV drugs have been published. Nishiyama et al. reported that type III interferons (interferon λ1-3) could suppress HEV replication [128]. In another study, 2'-C-methylcytidine (2CMC)/ribavirin was found to exhibit a synergic effect against HEV replication [129]. Azithromycin and ritonavir were shown to strongly inhibit HEV replication in vitro by the authors of [130]. The pan-cathepsin inhibitor K11777 has also been shown to suppress HEV infection [131]. Further studies are needed.
Gu et al. reported a wide variation in the quality of guidelines and primary recommendations regarding HEV, further stating that because the evidence supporting the primary recommendations is currently of insufficient quality, guideline developers and researchers should address these issues when updating and applying guidelines for the diagnosis and treatment of HEV infection [7]. We agree with their opinions to some extent.
In European countries and in the United States, several HEV guidelines have been published concerning diagnosis, treatment and transplantation for both adults and children [6, 132-136]. Domestic HEV guidelines have also been published in China and India [7]. The Japan Agency for Medical Research and Development (AMED) HAV and HEV Study Group has recently published two guidelines for HAV and HEV infections [4,5]. These reports will aid diagnosis and treatment of acute and chronic HEV infection, and help to prevent the progression of ALF and ACLF [4,5,7,8].
Chronic progression of HEV infection is observed in immunocompromised patients and extrahepatic manifestation may be complicated, including prolonged hepatitis, glomerulonephritis and cryoglobulinemia, hematological disorders, neuromuscular complications, etc. In the control of HEV infection, HTAs as well as DAA may be useful in disrupting host–HEV interactions by modulating host cell pathways that are re[6,132–136lated to the viral replication [137]. It was recently reported that serum-exosome-derived argininosuccinate synthase 1 and aldehyde dehydrogenase 1 family member A1 could effectively predict occurrence and prognosis, respectively, of HEV-ALF [138,139]. The Chinese consortium for the Study of Hepatitis E has reported important findings of HEV research [138,139,140,141,142,143]. Researchers from India also have greatly contributed to hepatitis E research [144,145,146,147,148,149,150,151,152,153,154,155]. Extremely careful attention also should be paid to these matters.
In summary, we have described the viral feature of HEV, the present situation regarding HEV infection in representative countries of Asia–Pacific area, and the development of anti-HEV drugs and HEV vaccines. It is important for medical researchers to notice the role of HEV as one of the causes of ALF and ACLF. Clinical features of HEV infection depend on HEV genotypes.
The different roles played by HAV and HEV in both ALF and ACLF are shown in Table 2. Differences among recommendations for hepatitis E virus diagnosis, treatment, and prevention produced by the World Health Organization (WHO), EASL and AMED, Japan are shown in Table 3) [5,6,156]. These three sets of recommendations do not describe HEV vaccinations.

6. Conclusions

HAV and HEV infections are important infections that cause severe liver diseases globally. Although there is variation in the quality of guidelines and primary recommendations are different across different regions, medical researchers should highlight important findings about HAV and HEV infections in Asia–Pacific countries.

Author Contributions

Conceptualization, R.S.-T. and T.K.; methodology, R.S.-T. and T.K.; software, R.S.-T. and T.K.; validation, R.S.-T. and T.K.; formal analysis, R.S.-T. and T.K..; investigation, R.S.-T. and T.K.; resources, R.S.-T. and T.K.; data curation, R.S.-T. and T.K.; writing—original draft preparation, R.S.-T. and T.K.; writing—review and editing, R.S.-T., T.K., T.Y., H.A., K.H., A.S., H.K., and S.T.; visualization, R.S.-T.; supervision, S.T.; project administration, R.S.-T. and T.K.; funding acquisition, R.S.-T., T.K. and S.T. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Japan Agency for Medical Research and Development (AMED), grant number: JP24fk0210132 (Sasaki-Tanaka R, Kanda Tand Terai S), and the JSPS KAKENHI, grant number: JP23K15055 (Sasaki-Tanaka R).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Sarin, S.K.; Choudhury, A.; Sharma, M.K.; Maiwall, R.; Al Mahtab, M.; Rahman, S.; Saigal, S.; Saraf, N.; Soin, A.S.; Devarbhavi, H.; Kim, D.J.; Dhiman, R.K.; Duseja, A.; Taneja, S.; Eapen, C.E.; Goel, A.; Ning, Q.; Chen, T.; Ma, K.; Duan, Z.; Yu, C.; Treeprasertsuk, S.; Hamid, S.S.; Butt, A.S.; Jafri, W.; Shukla, A.; Saraswat, V.; Tan, S.S.; Sood, A.; Midha, V.; Goyal, O.; Ghazinyan, H.; Arora, A.; Hu, J.; Sahu, M.; Rao, P.N.; Lee, G.H.; Lim, S.G.; Lesmana, L.A.; Lesmana, C.R.; Shah, S.; Prasad, V.G.M.; Payawal, D.A.; Abbas, Z.; Dokmeci, A.K.; Sollano, J.D.; Carpio, G.; Shresta, A.; Lau, G.K.; Fazal Karim, M.; Shiha, G.; Gani, R.; Kalista, K.F.; Yuen, M.F.; Alam, S.; Khanna, R.; Sood, V.; Lal, B.B.; Pamecha, V.; Jindal, A.; Rajan, V.; Arora, V.; Yokosuka, O.; Niriella, M.A.; Li, H.; Qi, X.; Tanaka, A.; Mochida, S.; Chaudhuri, D.R.; Gane, E.; Win, K.M.; Chen, W.T.; Rela, M.; Kapoor, D.; Rastogi, A.; Kale, P.; Rastogi, A.; Sharma, C.B.; Bajpai, M.; Singh, V.; Premkumar, M.; Maharashi, S.; Olithselvan, A.; Philips, C.A.; Srivastava, A.; Yachha, S.K.; Wani, Z.A.; Thapa, B.R.; Saraya, A.; Shalimar; Kumar, A.; Wadhawan, M.; Gupta, S.; Madan, K.; Sakhuja, P.; Vij, V.; Sharma, B.C.; Garg, H.; Garg, V.; Kalal, C.; Anand, L.; Vyas, T.; Mathur, R.P.; Kumar, G.; Jain, P.; Pasupuleti, S.S.R.; Chawla, Y.K.; Chowdhury, A.; Alam, S.; Song, D.S.; Yang, J.M.; Yoon, E.L.; APASL ACLF Research Consortium (AARC) for APASL ACLF working Party. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific association for the study of the liver (APASL): an update. Hepatol Int 2019, 13, 353–390. [Google Scholar] [CrossRef] [PubMed]
  2. Mochida, S.; Nakayama, N.; Terai, S.; Yoshiji, H.; Shimizu, M.; Ido, A.; Inoue, K.; Genda, T.; Takikawa, Y.; Takami, T.; Kato, N.; Abe, M.; Abe, R.; Inui, A.; Ohira, H.; Kasahara, M.; Chayama, K.; Hasegawa, K.; Tanaka, A. Diagnostic criteria for acute-on-chronic liver failure and related disease conditions in Japan. Hepatol Res 2022, 52, 417–421. [Google Scholar] [CrossRef] [PubMed]
  3. Kulkarni, A.V.; Gustot, T.; Reddy, K.R. Liver transplantation for acute liver failure and acute-on-chronic liver failure. Am J Transplant 2024, 24, 1950–1962. [Google Scholar] [CrossRef] [PubMed]
  4. Kanda, T.; Sasaki-Tanaka, R.; Ishii, K.; Suzuki, R.; Inoue, J.; Tsuchiya, A.; Nakamoto, S.; Abe, R.; Fujiwara, K.; Yokosuka, O.; Li, T.C.; Kunita, S.; Yotsuyanagi, H.; Okamoto, H.; AMED HAV and HEV Study Group. Recent advances in hepatitis A virus research and clinical practice guidelines for hepatitis A virus infection in Japan. Hepatol Res 2024, 54, 4–23. [Google Scholar] [CrossRef] [PubMed]
  5. Kanda, T.; Li, T.C.; Takahashi, M.; Nagashima, S.; Primadharsini, P.P.; Kunita, S.; Sasaki-Tanaka, R.; Inoue, J.; Tsuchiya, A.; Nakamoto, S.; Abe, R.; Fujiwara, K.; Yokosuka, O.; Suzuki, R.; Ishii, K.; Yotsuyanagi, H.; Okamoto, H.; AMED HAV and HEV Study Group. Recent advances in hepatitis E virus research and the Japanese clinical practice guidelines for hepatitis E virus infection. Hepatol Res 2024, 54, 1–30. [Google Scholar] [CrossRef] [PubMed]
  6. European Association for the Study of the Liver. European Association for the Study of the Liver. EASL Clinical Practice Guidelines on hepatitis E virus infection. J Hepatol 2018, 68, 1256–1271. [Google Scholar] [CrossRef] [PubMed]
  7. Gu, T.; Zheng, C.Y.; Deng, Y.Q.; Yang, X.F.; Bao, W.M.; Tang, Y.M. Systematic Evaluation of Guidelines for the Diagnosis and Treatment of Hepatitis E Virus Infection. J Clin Transl Hepatol. 2024, 12, 739–749. [Google Scholar] [CrossRef] [PubMed]
  8. McSteen, B.W.; Ying, X.H.; Lucero, C.; Jesudian, A.B. Viral etiologies of acute liver failure. World J Virol 2024, 13, 97973. [Google Scholar] [CrossRef] [PubMed]
  9. Chiew, A.L.; Gluud, C.; Brok, J.; Buckley, N.A. Interventions for paracetamol (acetaminophen) overdose. Cochrane Database Syst Rev 2018, 2, CD003328. [Google Scholar] [CrossRef] [PubMed]
  10. Stravitz, R.T.; Lee, W.M. Acute liver failure. Lancet 2019, 394, 869–881. [Google Scholar] [CrossRef] [PubMed]
  11. Nakao, M.; Nakayama, N.; Uchida, Y.; Tomiya, T.; Ido, A.; Sakaida, I.; Yokosuka, O.; Takikawa, Y.; Inoue, K.; Genda, T.; Shimizu, M.; Terai, S.; Tsubouchi, H.; Takikawa, H.; Mochida, S. Nationwide survey for acute liver failure and late-onset hepatic failure in Japan. J Gastroenterol 2018, 53, 752–769. [Google Scholar] [CrossRef] [PubMed]
  12. Kim, J.D.; Cho, E.J.; Ahn, C.; Park, S.K.; Choi, J.Y.; Lee, H.C.; Kim, D.Y.; Choi, M.S.; Wang, H.J.; Kim, I.H.; Yeon, J.E.; Seo, Y.S.; Tak, W.Y.; Kim, M.Y.; Lee, H.J.; Kim, Y.S.; Jun, D.W.; Sohn, J.H.; Kwon, S.Y.; Park, S.H.; Heo, J.; Jeong, S.H.; Lee, J.H.; Nakayama, N.; Mochida, S.; Ido, A.; Tsubouchi, H.; Takikawa, H.; Shalimar, Acharya, S.K.; Bernal, W.; O'Grady, J.; Kim, Y.J. A Model to Predict 1-Month Risk of Transplant or Death in Hepatitis A-Related Acute Liver Failure. Hepatology 2019, 70, 621–629. [Google Scholar] [CrossRef] [PubMed]
  13. Dong, R.; Chang, D.; Luo, Z.; Zhang, M.; Guan, Q.; Shen, C.; Chen, Y.; Huang, P.; Wang, J. The burden of HEV-related acute liver failure in Bangladesh, China and India: a systematic review and meta-analysis. BMC Public Health 2023, 23, 2369. [Google Scholar] [CrossRef] [PubMed]
  14. Maiwall, R.; Kulkarni, A.V.; Arab, J.P.; Piano, S. Acute liver failure. Lancet 2024, 404, 789–802. [Google Scholar] [CrossRef] [PubMed]
  15. Radha Krishna, Y.; Saraswat, V.A.; Das, K.; Himanshu, G.; Yachha, S.K.; Aggarwal, R.; Choudhuri, G. Clinical features and predictors of outcome in acute hepatitis A and hepatitis E virus hepatitis on cirrhosis. Liver Int 2009, 29, 392–398. [Google Scholar] [CrossRef] [PubMed]
  16. Lal, J.; Thapa, B.R.; Rawal, P.; Ratho, R.K.; Singh, K. Predictors of outcome in acute-on-chronic liver failure in children. Hepatol Int 2011, 5, 693–697. [Google Scholar] [CrossRef] [PubMed]
  17. Chen, T.; Yang, Z.; Choudhury, A.K.; Al Mahtab, M.; Li, J.; Chen, Y.; Tan, S.S.; Han, T.; Hu, J.; Hamid, S.S.; Huei, L.G.; Ghazinian, H.; Nan, Y.; Chawla, Y.K.; Yuen, M.F.; Devarbhavi, H.; Shukla, A.; Abbas, Z.; Sahu, M.; Dokmeci, A.K.; Lesmana, L.A.; Lesmana, C.R.A.; Xin, S.; Duan, Z.; Guo, W.; Ma, K.; Zhang, Z.; Cheng, Q.; Jia, J.; Sharma, B.C.; Sarin, S.K.; Ning, Q. Complications constitute a major risk factor for mortality in hepatitis B virus-related acute-on-chronic liver failure patients: a multi-national study from the Asia-Pacific region. Hepatol Int 2019, 13, 695–705. [Google Scholar] [CrossRef] [PubMed]
  18. Li, J.; Hu, C.; Chen, Y.; Zhang, R.; Fu, S.; Zhou, M.; Gao, Z.; Fu, M.; Yan, T.; Yang, Y.; Li, J.; Liu, J.; Chen, T.; Zhao, Y.; He, Y. Short-term and long-term safety and efficacy of tenofovir alafenamide, tenofovir disoproxil fumarate and entecavir treatment of acute-on-chronic liver failure associated with hepatitis B. BMC Infect Dis 2021, 21, 567. [Google Scholar] [CrossRef] [PubMed]
  19. Pan, C.Q.; Dai, E.; Duan, Z.; Han, G.; Zhao, W.; Wang, Y.; Zhang, H.; Zhu, B.; Jiang, H.; Zhang, S.; Zhang, X.; Zou, H.; Chen, X.; Chen, Y. Long-term safety of infants from mothers with chronic hepatitis B treated with tenofovir disoproxil in China. Gut 2022, 71, 798–806. [Google Scholar] [CrossRef] [PubMed]
  20. Chan, H.L.Y.; Buti, M.; Lim, Y.S.; Agarwal, K.; Marcellin, P.; Brunetto, M.; Chuang, W.L.; Janssen, H.L.A.; Fung, S.; Izumi, N.; Abdurakhmanov, D.; Jabłkowski, M.; Celen, M.K.; Ma, X.; Caruntu, F.; Flaherty, J.F.; Abramov, F.; Wang, H.; Camus, G.; Osinusi, A.; Pan, C.Q.; Shalimar, Seto, W.K.; Gane, E.; GS-US-320-0110 and GS-US-320-0108 investigators. Long-Term Treatment With Tenofovir Alafenamide for Chronic Hepatitis B Results in High Rates of Viral Suppression and Favorable Renal and Bone Safety. Am J Gastroenterol 2024, 119, 486–496. [Google Scholar] [CrossRef] [PubMed]
  21. Takehara, T.; Sakamoto, N.; Nishiguchi, S.; Ikeda, F.; Tatsumi, T.; Ueno, Y.; Yatsuhashi, H.; Takikawa, Y.; Kanda, T.; Sakamoto, M.; Tamori, A.; Mita, E.; Chayama, K.; Zhang, G.; De-Oertel, S.; Dvory-Sobol, H.; Matsuda, T.; Stamm, L.M.; Brainard, D.M.; Tanaka, Y.; Kurosaki, M. Efficacy and safety of sofosbuvir-velpatasvir with or without ribavirin in HCV-infected Japanese patients with decompensated cirrhosis: an open-label phase 3 trial. J Gastroenterol 2019, 54, 87–95. [Google Scholar] [CrossRef] [PubMed]
  22. Korenaga, M.; Murata, K.; Izumi, N.; Tamaki, N.; Yokosuka, O.; Takehara, T.; Sakamoto, N.; Suda, G.; Nishiguchi, S.; Enomoto, H.; Ikeda, F.; Yanase, M.; Toyoda, H.; Genda, T.; Umemura, T.; Yatsuhashi, H.; Yamasaki, K.; Ide, T.; Toda, N.; Kanda, T.; Nirei, K.; Ueno, Y.; Haga, H.; Nishigaki, Y.; Nakane, K.; Omata, M.; Mochizuki, H.; Aoki, Y.; Imamura, M.; Kanto, T.; Mizokami, M. No increased risk of hepatocellular carcinoma after eradication of hepatitis C virus by direct-acting antivirals, compared with interferon-based therapy. Glob Health Med 2022, 4, 216–224. [Google Scholar] [CrossRef] [PubMed]
  23. Thuluvath, P.J.; Amjad, W.; Russe-Russe, J.; Li, F. The Lower Survival in Patients With Alcoholism and Hepatitis C Continues in the DAA Era. Transplantation 2024, 108, 1584–1592. [Google Scholar] [CrossRef] [PubMed]
  24. Lampertico, P.; Anolli, M.P.; Roulot, D.; Wedemeyer, H. Antiviral therapy for chronic hepatitis delta: new insights from clinical trials and real-life studies. Gut 2024 Dec 25. Online ahead of print. [CrossRef] [PubMed]
  25. Blackmore, L.; Bernal, W. Acute liver failure. Clin Med (Lond) 2015, 15, 468–472. [Google Scholar] [CrossRef] [PubMed]
  26. Kanda, T.; Yokosuka, O.; Ehata, T.; Maru, Y.; Imazeki, F.; Saisho, H.; Shiratori, Y.; Omata, M. Detection of GBV-C RNA in patients with non-A-E fulminant hepatitis by reverse-transcription polymerase chain reaction. Hepatology 1997, 25, 1261–1265. [Google Scholar] [CrossRef] [PubMed]
  27. Trey, C.; Davidson, L.S. The management of fulminant hepatic failure. In: Popper H, Schaffner F, eds. New York: Grune and Stratton. Progress in Liver Disease 1970, 3, 282–298. [Google Scholar]
  28. O'Grady, J.G.; Schalm, S.W.; Williams, R. Acute liver failure: redefining the syndromes. Lancet 1993, 342, 273–275. [Google Scholar] [CrossRef] [PubMed]
  29. Bernuau, J.; Rueff, B.; Benhamou, J.P. Fulminant and subfulminant liver failure: definitions and causes. Semin Liver Dis 1986, 6, 97–106. [Google Scholar] [CrossRef] [PubMed]
  30. Takahashi, Y.; Shimizu, M. Aetiology and prognosis of fulminant viral hepatitis in Japan: a multicentre study. The Study Group of Fulminant Hepatitis. J Gastroenterol Hepatol 1991, 6, 159–164. [Google Scholar] [CrossRef] [PubMed]
  31. Mochida, S.; Takikawa, Y.; Nakayama, N.; Oketani, M.; Naiki, T.; Yamagishi, Y.; Ichida, T.; Tsubouchi, H. Diagnostic criteria of acute liver failure: A report by the Intractable Hepato-Biliary Diseases Study Group of Japan. Hepatol Res 2011, 41, 805–812. [Google Scholar] [CrossRef] [PubMed]
  32. Nakayama, N.; Oketani, M.; Kawamura, Y.; Inao, M.; Nagoshi, S.; Fujiwara, K.; Tsubouchi, H.; Mochida, S. Algorithm to determine the outcome of patients with acute liver failure: a data-mining analysis using decision trees. J Gastroenterol 2012, 47, 664–677. [Google Scholar] [CrossRef] [PubMed]
  33. Gimson, A.E.; O'Grady, J.; Ede, R.J.; Portmann, B.; Williams, R. Late onset hepatic failure: clinical, serological and histological features. Hepatology 1986, 6, 288–294. [Google Scholar] [CrossRef] [PubMed]
  34. Jalan, R.; Gines, P.; Olson, J.C.; Mookerjee, R.P.; Moreau, R.; Garcia-Tsao, G.; Arroyo, V.; Kamath, P.S. Acute-on chronic liver failure. J Hepatol 2012, 57, 1336–1348. [Google Scholar] [CrossRef] [PubMed]
  35. Moreau, R.; Jalan, R.; Gines, P.; Pavesi, M.; Angeli, P.; Cordoba, J.; Durand, F.; Gustot, T.; Saliba, F.; Domenicali, M.; Gerbes, A.; Wendon, J.; Alessandria, C.; Laleman, W.; Zeuzem, S.; Trebicka, J.; Bernardi, M.; Arroyo, V.; CANONIC Study Investigators of the EASL–CLIF Consortium. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 2013, 144, 1426–1437, 1437.e1-9. [Google Scholar] [CrossRef] [PubMed]
  36. Bajaj, J.S.; O'Leary, J.G.; Reddy, K.R.; Wong, F.; Biggins, S.W.; Patton, H.; Fallon, M.B.; Garcia-Tsao, G.; Maliakkal, B.; Malik, R.; Subramanian, R.M.; Thacker, L.R.; Kamath, P.S.; North American Consortium For The Study Of End-Stage Liver Disease (NACSELD). Survival in infection-related acute-on-chronic liver failure is defined by extrahepatic organ failures. Hepatology 2014, 60, 250–256. [Google Scholar] [CrossRef] [PubMed]
  37. Mochida, S.; Nakayama, N.; Ido, A.; Inoue, K.; Genda, T.; Takikawa, Y.; Sakaida, I.; Terai, S.; Yokosuka, O.; Shimizu, M.; Takikawa, H. Proposed diagnostic criteria for acute-on-chronic liver failure in Japan. Hepatol Res 2018, 48, 219–224. [Google Scholar] [CrossRef] [PubMed]
  38. Das, A.; Hirai-Yuki, A.; González-López, O.; Rhein, B.; Moller-Tank, S.; Brouillette, R.; Hensley, L.; Misumi, I.; Lovell, W.; Cullen, J.M.; Whitmire, J.K.; Maury, W.; Lemon, S.M. TIM1 (HAVCR1) Is Not Essential for Cellular Entry of Either Quasi-enveloped or Naked Hepatitis A Virions. mBio 2017, 8, e00969-17. [Google Scholar] [CrossRef] [PubMed]
  39. Das, A.; Rivera-Serrano, E.E.; Yin, X.; Walker, C.M.; Feng, Z.; Lemon, S.M. Cell entry and release of quasi-enveloped human hepatitis viruses. Nat Rev Microbiol 2023, 21, 573–589. [Google Scholar] [CrossRef] [PubMed]
  40. Feng, Z.; Hensley, L.; McKnight, K.L.; Hu, F.; Madden, V.; Ping, L.; Jeong, S.H.; Walker, C.; Lanford, R.E.; Lemon, S.M. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 2013, 496, 367–371. [Google Scholar] [CrossRef] [PubMed]
  41. Hirai-Yuki, A.; Hensley, L.; Whitmire, J.K.; Lemon, S.M. Biliary Secretion of Quasi-Enveloped Human Hepatitis A Virus. mBio 2016, 7, e01998-16. [Google Scholar] [CrossRef] [PubMed]
  42. Jung, Y.M.; Park, S.J.; Kim, J.S.; Jang, J.H.; Lee, S.H.; Kim, J.W.; Park, Y.M.; Hwang, S.G.; Rim, K.S.; Kang, S.K.; Lee, H.S.; Yun, H.S.; Jee, Y.M.; Jeong, S.H. Atypical manifestations of hepatitis A infection: a prospective, multicenter study in Korea. J Med Virol 2010, 82, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
  43. Tominaga, A.; Kanda, T.; Akiike, T.; Komoda, H.; Ito, K.; Abe, A.; Aruga, A.; Kaneda, S.; Saito, M.; Kiyohara, T.; Wakita, T.; Ishii, K.; Yokosuka, O.; Sugiura, N. Hepatitis A outbreak associated with a revolving sushi bar in Chiba, Japan: Application of molecular epidemiology. Hepatol Res 2012, 42, 828–834. [Google Scholar] [CrossRef] [PubMed]
  44. Tsukada, R.; Ono, S.; Kobayashi, H.; Wada, Y.; Nishizawa, K.; Fujii, M.; Takeuchi, M.; Kuroiwa, K.; Kobayashi, Y.; Ishii, K.; Nakazawa, H. A Cluster of Hepatitis A Infections Presumed to be Related to Asari Clams and Investigation of the Spread of Viral Contamination from Asari Clams. Jpn J Infect Dis 2019, 72, 44–48. [Google Scholar] [CrossRef] [PubMed]
  45. Bai, H.; Shiota, T.; Yoshizaki, S.; Saito-Obata, M.; Malbas, F.F. Jr.; Lupisan, S.P.; Oshitani, H.; Takeda, N.; Muramatsu, M.; Wakita, T.; Ishii, K.; Li, T.C. Detection of Subgenotype IA and IIIA Hepatitis A Viruses in Rivers Flowing through Metro Manila, the Philippines. Jpn J Infect Dis 2019, 72, 53–55. [Google Scholar] [CrossRef] [PubMed]
  46. Ishida, T.; Nakamura, T.; Ajisawa, A.; Negishi, M.; Kashiyama, T.; Takechi, A.; Iwamoto, A. Outbreak of hepatitis A virus infection among HIV-1 seropositive men who had sex with men. Jpn J Infect Dis 1999, 52, 131–132. [Google Scholar] [CrossRef] [PubMed]
  47. Kojima, T.; Tachikawa, N.; Yosizawa, S.; Yasuoka, C.; Yamamoto, Y.; Genka, I.; Teruya, K.; Kikuchi, Y.; Aoki, M.; Yasuoka, A.; Oka, S. Hepatitis A virus outbreak; a possible indicator of high risk sexual behavior among HIV-1 infected homosexual men. Jpn J Infect Dis 1999, 52, 173–174. [Google Scholar] [CrossRef] [PubMed]
  48. Takahashi, H.; Yotsuyanagi, H.; Yasuda, K.; Koibuchi, T.; Suzuki, M.; Kato, T.; Nakamura, T.; Iwamoto, A.; Nishioka, K.; Iino, S.; Koike, K.; Itoh, F. Molecular epidemiology of hepatitis A virus in metropolitan areas in Japan. J Gastroenterol 2006, 41, 981–986. [Google Scholar] [CrossRef] [PubMed]
  49. Kiyohara, T.; Ishii, K.; Satake, M.; Matsubayashi, K.; Suzuki, R.; Sugiyama, R.; Sunagawa, T.; Muramatsu, M. Seroepidemiology of hepatitis A virus infection in Japan: An area of very low endemicity. Microbiol Immunol 2023, 67, 14–21. [Google Scholar] [CrossRef] [PubMed]
  50. Tanaka, S.; Kishi, T.; Ishihara, A.; Watanabe, D.; Uehira, T.; Ishida, H.; Shirasaka, T.; Mita, E. Outbreak of hepatitis A linked to European outbreaks among men who have sex with men in Osaka, Japan, from March to July 2018. Hepatol Res 2019, 49, 705–710. [Google Scholar] [CrossRef] [PubMed]
  51. Koibuchi, T.; Koga, M.; Kikuchi, T.; Horikomi, T.; Kawamura, Y.; Lim, L.A.; Adachi, E.; Tsutsumi, T.; Yotsuyanagi, H. Prevalence of Hepatitis A Immunity and Decision-tree Analysis Among Men Who Have Sex With Men and Are Living With Human Immunodeficiency Virus in Tokyo. Clin Infect Dis 2020, 71, 473–479. [Google Scholar] [CrossRef] [PubMed]
  52. Koga, M.; Lim, L.A.; Ogishi, M.; Satoh, H.; Kikuchi, T.; Adachi, E.; Sugiyama, R.; Kiyohara, T.; Suzuki, R.; Muramatsu, M.; Koibuchi, T.; Tsutsumi, T.; Yotsuyanagi, H. Comparison of the Clinical Features of Hepatitis A in People Living with HIV between Pandemics in 1999-2000 and 2017-2018 in the Metropolitan Area of Japan. Jpn J Infect Dis 2020, 73, 89–95. [Google Scholar] [CrossRef] [PubMed]
  53. Maki, Y.; Kimizuka, Y.; Sasaki, H.; Yamamoto, T.; Hamakawa, Y.; Tagami, Y.; Miyata, J.; Hayashi, N.; Fujikura, Y.; Kawana, A. Hepatitis A virus-associated fulminant hepatitis with human immunodeficiency virus coinfection. J Infect Chemother 2020, 26, 282–285. [Google Scholar] [CrossRef] [PubMed]
  54. Honda, M.; Asakura, H.; Kanda, T.; Somura, Y.; Ishii, T.; Yamana, Y.; Kaneko, T.; Mizutani, T.; Takahashi, H.; Kumagawa, M.; Sasaki, R.; Masuzaki, R.; Kanezawa, S.; Nirei, K.; Yamagami, H.; Matsumoto, N.; Nagashima, M.; Chiba, T.; Moriyama, M. Male-Dominant Hepatitis A Outbreak Observed among Non-HIV-Infected Persons in the Northern Part of Tokyo, Japan. Viruses 2021, 13, 207. [Google Scholar] [CrossRef] [PubMed]
  55. Nakao, M.; Nakayama, N.; Uchida, Y.; Tomiya, T.; Oketani, M.; Ido, A.; Tsubouchi, H.; Takikawa, H.; Mochida, S. Deteriorated outcome of recent patients with acute liver failure and late-onset hepatic failure caused by infection with hepatitis A virus: A subanalysis of patients seen between 1998 and 2015 and enrolled in nationwide surveys in Japan. Hepatol Res 2019, 49, 844–852. [Google Scholar] [CrossRef] [PubMed]
  56. Roy, A.; Kumar, K.; Premkumar, M.; Sree, A.; Gupta, A.; Sharma, M.; Alla, M.; Iyengar, S.; Venishetty, S.; Ghoshal, U.C.; Goenka, M.; Rao, P.N.; Saraswat, V.A.; Reddy, N.D.; Kulkarni, A.V.; Reddy, R.K.; HEPIN consortium. Current status of etiology and outcomes of acute liver failure in India-A multicentre study from tertiary centres. Indian J Gastroenterol 2025, 44, 47–56. [Google Scholar] [CrossRef] [PubMed]
  57. Samala, N.; Abdallah, W.; Poole, A.; Shamseddeen, H.; S Are, V.; S Orman, E.; Patidar, K.R.; Vuppalanchi, R. Insight into an acute hepatitis A outbreak in Indiana. J Viral Hepat 2021, 28, 964–971. [Google Scholar] [CrossRef] [PubMed]
  58. Paphitis, K.; Adams, J.A.; Navarro, C. Epidemiology of sporadic and outbreak-associated hepatitis A infections in Ontario, Canada: A descriptive summary, 2015-2022. Can Commun Dis Rep 2024, 50, 326–334. [Google Scholar] [CrossRef] [PubMed]
  59. Shrestha, B.; Singh, U.; Karmacharya, K.; Singh, S. Children With Hepatitis in a Tertiary Care Center in Nepal: A Prospective Observational Study. Glob Pediatr Health 2024, 11, 2333794X241274713. [Google Scholar] [CrossRef] [PubMed]
  60. Lal, J.; Thapa, B.R.; Rawal, P.; Ratho, R.K.; Singh, K. Predictors of outcome in acute-on-chronic liver failure in children. Hepatol Int 2011, 5, 693–697. [Google Scholar] [CrossRef] [PubMed]
  61. Yotsuyanagi, H.; Koike, K.; Yasuda, K.; Moriya, K.; Shintani, Y.; Fujie, H.; Kurokawa, K.; Iino, S. Prolonged fecal excretion of hepatitis A virus in adult patients with hepatitis A as determined by polymerase chain reaction. Hepatology 1996, 24, 10–13. [Google Scholar] [CrossRef] [PubMed]
  62. Fujiwara, K.; Yokosuka, O.; Ehata, T.; Imazeki, F.; Saisho, H.; Miki, M.; Omata, M. Frequent detection of hepatitis A viral RNA in serum during the early convalescent phase of acute hepatitis A. Hepatology 1997, 26, 1634–1639. [Google Scholar] [CrossRef] [PubMed]
  63. Koga, M.; Senkoji, T.; Kubota, M.; Ishizaka, A.; Mizutani, T.; Sedohara, A.; Ikeuchi, K.; Kikuchi, T.; Adachi, E.; Saito, M.; Koibuchi, T.; Hosomichi, K.; Ohashi, J.; Kawana-Tachikawa, A.; Matano, T.; Tsutsumi, T.; Yotsuyanagi, H. Predictors associated with a better response to the Japanese aluminum-free hepatitis A vaccine, Aimmugen®, for people living with HIV. Hepatol Res 2022, 52, 227–234. [Google Scholar] [CrossRef] [PubMed]
  64. Maki, Y.; Edo, N.; Mizuguchi, M.; Ikeda, M.; Kitano, M.; Kitagami, E.; Osa, M.; Yamamoto, S.; Ogawa, T.; Nakamura, T.; Kawana, A.; Kimizuka, Y. Impact of frequency and duration of freeze-dried inactivated tissue culture hepatitis A vaccine (Aimmugen) vaccination on antibody titers; a japanese cross-sectional study. Vaccine 2023, 41, 5974–5978. [Google Scholar] [CrossRef] [PubMed]
  65. Kanda, T.; Kusov, Y.; Yokosuka, O.; Gauss-Müller, V. Interference of hepatitis A virus replication by small interfering RNAs. Biochem Biophys Res Commun 2004, 318, 341–345. [Google Scholar] [CrossRef] [PubMed]
  66. Kanda, T.; Zhang, B.; Kusov, Y.; Yokosuka, O.; Gauss-Müller, V. Suppression of hepatitis A virus genome translation and replication by siRNAs targeting the internal ribosomal entry site. Biochem Biophys Res Commun 2005, 330, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
  67. Kusov, Y.; Kanda, T.; Palmenberg, A.; Sgro, J.Y.; Gauss-Müller, V. Silencing of hepatitis A virus infection by small interfering RNAs. J Virol 2006, 80, 5599–5610. [Google Scholar] [CrossRef] [PubMed]
  68. Kanda, T.; Nakamoto, S.; Wu, S.; Nakamura, M.; Jiang, X.; Haga, Y.; Sasaki, R.; Yokosuka, O. Direct-acting Antivirals and Host-targeting Agents against the Hepatitis A Virus. J Clin Transl Hepatol 2015, 3, 205–210. [Google Scholar] [CrossRef] [PubMed]
  69. Sasaki-Tanaka, R.; Nagulapalli Venkata, K.C.; Okamoto, H.; Moriyama, M.; Kanda, T. Evaluation of Potential Anti-Hepatitis A Virus 3C Protease Inhibitors Using Molecular Docking. Int J Mol Sci 2022, 23, 6044. [Google Scholar] [CrossRef] [PubMed]
  70. Sánchez-Tapias, J.M.; Mas, A.; Costa, J.; Bruguera, M.; Mayor, A.; Ballesta, A.M.; Compernolle, C.; Rodés, J. Recombinant alpha 2c-interferon therapy in fulminant viral hepatitis. J Hepatol 1987, 5, 205–210. [Google Scholar] [CrossRef] [PubMed]
  71. Yoshiba, M.; Inoue, K.; Sekiyama, K. Interferon for hepatitis A. Lancet 1994, 343, 288–289. [Google Scholar] [CrossRef] [PubMed]
  72. Crance, J.M.; Lévêque, F.; Chousterman, S.; Jouan, A.; Trépo, C.; Deloince, R. Antiviral activity of recombinant interferon-alpha on hepatitis A virus replication in human liver cells. Antiviral Res 1995, 28, 69–80. [Google Scholar] [CrossRef] [PubMed]
  73. Berthillon, P.; Crance, J.M.; Leveque, F.; Jouan, A.; Petit, M.A.; Deloince, R.; Trepo, C. Inhibition of the expression of hepatitis A and B viruses (HAV and HBV) proteins by interferon in a human hepatocarcinoma cell line (PLC/PRF/5). J Hepatol 1996, 25, 15–19. [Google Scholar] [CrossRef] [PubMed]
  74. Yang, L.; Kiyohara, T.; Kanda, T.; Imazeki, F.; Fujiwara, K.; Gauss-Müller, V.; Ishii, K.; Wakita, T.; Yokosuka, O. Inhibitory effects on HAV IRES-mediated translation and replication by a combination of amantadine and interferon-alpha. Virol J 2010, 7, 212. [Google Scholar] [CrossRef] [PubMed]
  75. Kanda, T.; Wu, S.; Kiyohara, T.; Nakamoto, S.; Jiang, X.; Miyamura, T.; Imazeki, F.; Ishii, K.; Wakita, T.; Yokosuka, O. Interleukin-29 suppresses hepatitis A and C viral internal ribosomal entry site-mediated translation. Viral Immunol 2012, 25, 379–386. [Google Scholar] [CrossRef] [PubMed]
  76. Maier, K.; Gabriel, P.; Koscielniak, E.; Stierhof, Y.D.; Wiedmann, K.H.; Flehmig, B.; Vallbracht, A. Human gamma interferon production by cytotoxic T lymphocytes sensitized during hepatitis A virus infection. J Virol 1988, 62, 3756–3763. [Google Scholar] [CrossRef] [PubMed]
  77. Widell, A.; Hansson, B.G.; Oberg, B.; Nordenfelt, E. Influence of twenty potentially antiviral substances on in vitro multiplication of hepatitis A virus. Antiviral Res 1986, 6, 103–112. [Google Scholar] [CrossRef] [PubMed]
  78. Crance, J.M.; Biziagos, E.; Passagot, J.; van Cuyck-Gandré, H.; Deloince, R. Inhibition of hepatitis A virus replication in vitro by antiviral compounds. J Med Virol 1990, 31, 155–160. [Google Scholar] [CrossRef] [PubMed]
  79. Chaudhary, R.K.; Andonov, A.P. Effect of ribavirin on hepatitis A virus replication in vitro. Can J Infect Dis 1992, 3, 67–70. [Google Scholar] [CrossRef] [PubMed]
  80. Kanda, T.; Yokosuka, O.; Imazeki, F.; Fujiwara, K.; Nagao, K.; Saisho, H. Amantadine inhibits hepatitis A virus internal ribosomal entry site-mediated translation in human hepatoma cells. Biochem Biophys Res Commun 2005, 331, 621–629. [Google Scholar] [CrossRef] [PubMed]
  81. Kanda, T.; Imazeki, F.; Nakamoto, S.; Okitsu, K.; Fujiwara, K.; Yokosuka, O. Internal ribosomal entry-site activities of clinical isolate-derived hepatitis A virus and inhibitory effects of amantadine. Hepatol Res 2010, 40, 415–423. [Google Scholar] [CrossRef] [PubMed]
  82. Sasaki-Tanaka, R.; Shibata, T.; Moriyama, M.; Okamoto, H.; Kogure, H.; Kanda, T. Amantadine and Rimantadine Inhibit Hepatitis A Virus Replication through the Induction of Autophagy. J Virol 2022, 96, e0064622. [Google Scholar] [CrossRef] [PubMed]
  83. Sasaki-Tanaka, R.; Shibata, T.; Okamoto, H.; Moriyama, M.; Kanda, T. Favipiravir Inhibits Hepatitis A Virus Infection in Human Hepatocytes. Int J Mol Sci 2022, 23, 2631. [Google Scholar] [CrossRef] [PubMed]
  84. Jiang, X.; Kanda, T.; Nakamoto, S.; Saito, K.; Nakamura, M.; Wu, S.; Haga, Y.; Sasaki, R.; Sakamoto, N.; Shirasawa, H.; Okamoto, H.; Yokosuka, O. The JAK2 inhibitor AZD1480 inhibits hepatitis A virus replication in Huh7 cells. Biochem Biophys Res Commun 2015, 458, 908–912. [Google Scholar] [CrossRef] [PubMed]
  85. Kanda, T.; Sasaki, R.; Nakamoto, S.; Haga, Y.; Nakamura, M.; Shirasawa, H.; Okamoto, H.; Yokosuka, O. The sirtuin inhibitor sirtinol inhibits hepatitis A virus (HAV) replication by inhibiting HAV internal ribosomal entry site activity. Biochem Biophys Res Commun 2015, 466, 567–571. [Google Scholar] [CrossRef] [PubMed]
  86. Win, N.N.; Kanda, T.; Nakamoto, S.; Moriyama, M.; Jiang, X.; Suganami, A.; Tamura, Y.; Okamoto, H.; Shirasawa, H. Inhibitory effect of Japanese rice-koji miso extracts on hepatitis A virus replication in association with the elevation of glucose-regulated protein 78 expression. Int J Med Sci 2018, 15, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
  87. Win, N.N.; Kanda, T.; Ogawa, M.; Nakamoto, S.; Haga, Y.; Sasaki, R.; Nakamura, M.; Wu, S.; Matsumoto, N.; Matsuoka, S.; Kato, N.; Shirasawa, H.; Yokosuka, O.; Okamoto, H.; Moriyama, M. Superinfection of hepatitis A virus in hepatocytes infected with hepatitis B virus. Int J Med Sci 2019, 16, 1366–1370. [Google Scholar] [CrossRef] [PubMed]
  88. Kanda, T.; Sasaki, R.; Masuzaki, R.; Takahashi, H.; Fujisawa, M.; Matsumoto, N.; Okamoto, H.; Moriyama, M. Additive Effects of Zinc Chloride on the Suppression of Hepatitis A Virus Replication by Interferon in Human Hepatoma Huh7 Cells. In Vivo 2020, 34, 3301–3308. [Google Scholar] [CrossRef] [PubMed]
  89. Kanda, T.; Sasaki-Tanaka, R.; Masuzaki, R.; Matsumoto, N.; Okamoto, H.; Moriyama, M. Knockdown of Mitogen-Activated Protein Kinase Kinase 3 Negatively Regulates Hepatitis A Virus Replication. Int J Mol Sci 2021, 22, 7420. [Google Scholar] [CrossRef] [PubMed]
  90. Ogawa, M.; Kanda, T.; Suganami, A.; Nakamoto, S.; Win, N.N.; Tamura, Y.; Nakamura, M.; Matsuoka, S.; Yokosuka, O.; Kato, N.; Ohara, O.; Okamoto, H.; Moriyama, M.; Shirasawa, H. Antiviral activity of zinc sulfate against hepatitis A virus replication. Future Virol 2019, 14, 399–406. [Google Scholar] [CrossRef]
  91. Sasaki-Tanaka, R.; Masuzaki, R.; Okamoto, H.; Shibata, T.; Moriyama, M.; Kogure, H.; Kanda, T. Drug Screening for Hepatitis A Virus (HAV): Nicotinamide Inhibits c-Jun Expression and HAV Replication. J Virol 2023, 97, e0198722. [Google Scholar] [CrossRef] [PubMed]
  92. Jiang, X.; Kanda, T.; Wu, S.; Nakamoto, S.; Saito, K.; Shirasawa, H.; Kiyohara, T.; Ishii, K.; Wakita, T.; Okamoto, H.; Yokosuka, O. Suppression of La antigen exerts potential antiviral effects against hepatitis A virus. PLoS One 2014, 9, e101993. [Google Scholar] [CrossRef] [PubMed]
  93. Nwe Win, N.; Kanda, T.; Nakamura, M.; Nakamoto, S.; Okamoto, H.; Yokosuka, O.; Shirasawa, H. Free fatty acids or high-concentration glucose enhances hepatitis A virus replication in association with a reduction in glucose-regulated protein 78 expression. Biochem Biophys Res Commun 2017, 483, 694–699. [Google Scholar] [CrossRef] [PubMed]
  94. Jiang, X.; Kanda, T.; Haga, Y.; Sasaki, R.; Nakamura, M.; Wu, S.; Nakamoto, S.; Shirasawa, H.; Okamoto, H.; Yokosuka, O. Glucose-regulated protein 78 is an antiviral against hepatitis A virus replication. Exp Ther Med 2017, 13, 3305–3308. [Google Scholar] [CrossRef] [PubMed]
  95. Kanda, T.; Sasaki, R.; Masuzaki, R.; Moriyama, M. Artificial intelligence and machine learning could support drug development for hepatitis A virus internal ribosomal entry sites. Artif Intell Gastroenterol 2021, 2, 1–9. [Google Scholar] [CrossRef]
  96. Advisory Committee on Immunization Practices (ACIP); Fiore, A.E.; Wasley, A.; Bell, B.P. Prevention of hepatitis A through active or passive immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2006, 55, 1–23. [Google Scholar] [PubMed]
  97. Nelson, N.P.; Weng, M.K.; Hofmeister, M.G.; Moore, K.L.; Doshani, M.; Kamili, S.; Koneru, A.; Haber, P.; Hagan, L.; Romero, J.R.; Schillie, S.; Harris, A.M. Prevention of Hepatitis A Virus Infection in the United States: Recommendations of the Advisory Committee on Immunization Practices, 2020. MMWR Recomm Rep 2020, 69, 1–38. [Google Scholar] [CrossRef] [PubMed]
  98. Nagashima, S.; Takahashi, M.; Kobayashi, T.; Tanggis; Nishizawa, T.; Nishiyama, T.; Primadharsini, P.P.; Okamoto, H. Characterization of the Quasi-Enveloped Hepatitis E Virus Particles Released by the Cellular Exosomal Pathway. J Virol 2017, 91, e00822-17. [Google Scholar] [CrossRef] [PubMed]
  99. Wißing, M.H.; Brüggemann, Y.; Steinmann, E.; Todt, D. Virus-Host Cell Interplay during Hepatitis E Virus Infection. Trends Microbiol 2021, 29, 309–319. [Google Scholar] [CrossRef] [PubMed]
  100. Purdy, M.A.; Drexler, J.F.; Meng, X.J.; Norder, H.; Okamoto, H.; Van der Poel, W.H.M.; Reuter, G.; de Souza, W.M.; Ulrich, R.G.; Smith, D.B. ICTV Virus Taxonomy Profile: Hepeviridae 2022. J Gen Virol 2022, 103. [Google Scholar] [CrossRef] [PubMed]
  101. Primadharsini, P.P.; Nagashima, S.; Okamoto, H. Genetic Variability and Evolution of Hepatitis E Virus. Viruses 2019, 11, 456. [Google Scholar] [CrossRef] [PubMed]
  102. Aggarwal, R.; Jameel, S. Hepatitis E. Hepatology 2011, 54, 2218–2226. [Google Scholar] [CrossRef] [PubMed]
  103. Takakusagi, S.; Takagi, H.; Yamazaki, Y.; Kosone, T.; Nagashima, S.; Takahashi, M.; Murata, K.; Okamoto, H. Chronic hepatitis E in an elderly immunocompetent patient who achieved a sustained virologic response with ribavirin treatment. Clin J Gastroenterol 2023, 16, 206–215. [Google Scholar] [CrossRef] [PubMed]
  104. Ohnishi, S.; Kang, J.H.; Maekubo, H.; Takahashi, K.; Mishiro, S. A case report: two patients with fulminant hepatitis E in Hokkaido, Japan. Hepatol Res 2003, 25, 213–218. [Google Scholar] [CrossRef] [PubMed]
  105. Mizuo, H.; Yazaki, Y.; Sugawara, K.; Tsuda, F.; Takahashi, M.; Nishizawa, T.; Okamoto, H. Possible risk factors for the transmission of hepatitis E virus and for the severe form of hepatitis E acquired locally in Hokkaido, Japan. J Med Virol 2005, 76, 341–349. [Google Scholar] [CrossRef] [PubMed]
  106. Ohnishi, S.; Kang, J.H.; Maekubo, H.; Arakawa, T.; Karino, Y.; Toyota, J.; Takahashi, K.; Mishiro, S. Comparison of clinical features of acute hepatitis caused by hepatitis E virus (HEV) genotypes 3 and 4 in Sapporo, Japan. Hepatol Res 2006, 36, 301–307. [Google Scholar] [CrossRef] [PubMed]
  107. Shalimar; Kedia, S.; Gunjan, D.; Sonika, U.; Mahapatra, S.J.; Nayak, B.; Kaur, H.; Acharya, S.K. Acute Liver Failure Due to Hepatitis E Virus Infection Is Associated with Better Survival than Other Etiologies in Indian Patients. Dig Dis Sci 2017, 62, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
  108. Manka, P.; Bechmann, L.P.; Coombes, J.D.; Thodou, V.; Schlattjan, M.; Kahraman, A.; Syn, W.K.; Saner, F.; Gerken, G.; Baba, H.; Verheyen, J.; Timm, J.; Canbay, A. Hepatitis E Virus Infection as a Possible Cause of Acute Liver Failure in Europe. Clin Gastroenterol Hepatol 2015, 13, 1836–1842.e2. [Google Scholar] [CrossRef] [PubMed]
  109. Fontana, R.J.; Engle, R.E.; Scaglione, S.; Araya, V.; Shaikh, O.; Tillman, H.; Attar, N.; Purcell, R.H.; Lee, W.M.; US Acute Liver Failure Study Group. The role of hepatitis E virus infection in adult Americans with acute liver failure. Hepatology 2016, 64, 1870–1880. [Google Scholar] [CrossRef] [PubMed]
  110. Koike, M.; Takahashi, K.; Mishiro, S.; Matsui, A.; Inao, M.; Nagoshi, S.; Ohno, A.; Mochida, S.; Fujiwara, K. Full-length sequences of two hepatitis E virus isolates representing an Eastern China-indigenous subgroup of genotype 4. Intervirology 2007, 50, 181–189. [Google Scholar] [CrossRef] [PubMed]
  111. Takahashi, K.; Okamoto, H.; Abe, N.; Kawakami, M.; Matsuda, H.; Mochida, S.; Sakugawa, H.; Suginoshita, Y.; Watanabe, S.; Yamamoto, K.; Miyakawa, Y.; Mishiro, S. Virulent strain of hepatitis E virus genotype 3, Japan. Emerg Infect Dis 2009, 15, 704–709. [Google Scholar] [CrossRef] [PubMed]
  112. Takahashi, M.; Kusakai, S.; Mizuo, H.; Suzuki, K.; Fujimura, K.; Masuko, K.; Sugai, Y.; Aikawa, T.; Nishizawa, T.; Okamoto, H. Simultaneous detection of immunoglobulin A (IgA) and IgM antibodies against hepatitis E virus (HEV) Is highly specific for diagnosis of acute HEV infection. J Clin Microbiol 2005, 43, 49–56. [Google Scholar] [CrossRef] [PubMed]
  113. Shalimar; Kumar, D.; Vadiraja, P.K.; Nayak, B.; Thakur, B.; Das, P.; Datta Gupta, S.; Panda, S.K.; Acharya, S.K. Acute on chronic liver failure because of acute hepatic insults: Etiologies, course, extrahepatic organ failure and predictors of mortality. J Gastroenterol Hepatol 2016, 31, 856–864. [Google Scholar] [CrossRef] [PubMed]
  114. Mahtab, M.A.; Rahman, S.; Khan, M.; Karim, M.F. Hepatitis E virus is a leading cause of acute-on-chronic liver disease: experience from a tertiary centre in Bangladesh. Hepatobiliary Pancreat Dis Int 2009, 8, 50–52. [Google Scholar] [PubMed]
  115. Wang, Y.; Liu, H.; Liu, S.; Yang, C.; Jiang, Y.; Wang, S.; Liu, A.; Peppelenbosch, M.P.; Kamar, N.; Pan, Q.; Zhao, J. Incidence, predictors and prognosis of genotype 4 hepatitis E related liver failure: A tertiary nested case-control study. Liver Int 2019, 39, 2291–2300. [Google Scholar] [CrossRef] [PubMed]
  116. Vieira Barbosa, J.; Müllhaupt, B.; Brunner, F.; Filipowicz Sinnreich, M.; Semela, D.; Montani, M.; Cathomas, G.; Neuweiler, J.; Gouttenoire, J.; Artru, F.; Louvet, A.; Mathurin, P.; Sempoux, C.; Lenggenhager, D.; Weber, A.; Moradpour, D.; Fraga, M. Autochthonous hepatitis E as a cause of acute-on-chronic liver failure and death: histopathology can be misleading but transaminases may provide a clue. Swiss Med Wkly 2021, 151, w20502. [Google Scholar] [CrossRef] [PubMed]
  117. Hirano, R.; Kanda, T.; Honda, M.; Arima, S.; Totsuka, M.; Masuzaki, R.; Kanezawa, S.; Sasaki-Tanaka, R.; Matsumoto, N.; Yamagami, H.; Ishii, T.; Ogawa, M.; Nomura, S.; Fujisawa, M.; Saito, K.; Takahashi, M.; Okamoto, H.; Kogure, H. Hepatitis E Virus Infection Caused Elevation of Alanine Aminotransferase Levels in a Patient with Chronic Hepatitis B and Choledocholithiasis. Reports 2023, 6, 55. [Google Scholar] [CrossRef]
  118. Kanda, T.; Arima, S.; Sasaki-Tanaka, R.; Totsuka, M.; Honda, M.; Masuzaki, R.; Matsumoto, N.; Ogawa, M.; Takahashi, M.; Okamoto, H.; Kogure, H. Severe hepatitis E virus genotype 3b in a patient with alcohol-associated liver disease: A case report. Med Int (Lond) 2024, 4, 22. [Google Scholar] [CrossRef] [PubMed]
  119. Li, W.; Du, L.; Ma, Y.; Tang, H. Successful recovery from acute-on-chronic liver failure due to acute hepatitis E virus superinfection in chronic hepatitis B: A case report. IDCases 2024, 37, e02069. [Google Scholar] [CrossRef] [PubMed]
  120. Buti, M.; Ruiz-Cobo, J.C.; Esteban, R.; Riveiro-Barciela, M. Hepatitis E as a trigger for Acute-on-Chronic Liver Failure. Clin Mol Hepatol 2024 Nov 11. Online ahead of print. [CrossRef] [PubMed]
  121. Zhu, F.C.; Zhang, J.; Zhang, X.F.; Zhou, C.; Wang, Z.Z.; Huang, S.J.; Wang, H.; Yang, C.L.; Jiang, H.M.; Cai, J.P.; Wang, Y.J.; Ai, X.; Hu, Y.M.; Tang, Q.; Yao, X.; Yan, Q.; Xian, Y.L.; Wu, T.; Li, Y.M.; Miao, J.; Ng, M.H.; Shih, J.W.; Xia, N.S. Efficacy and safety of a recombinant hepatitis E vaccine in healthy adults: a large-scale, randomised, double-blind placebo-controlled, phase 3 trial. Lancet 2010, 376, 895–902. [Google Scholar] [CrossRef] [PubMed]
  122. Zaman, K.; Dudman, S.; Stene-Johansen, K.; Qadri, F.; Yunus, M.; Sandbu, S.; Gurley, E.S.; Overbo, J.; Julin, C.H.; Dembinski, J.L.; Nahar, Q.; Rahman, A.; Bhuiyan, T.R.; Rahman, M.; Haque, W.; Khan, J.; Aziz, A.; Khanam, M.; Streatfield, P.K.; Clemens, J.D. HEV study protocol : design of a cluster-randomised, blinded trial to assess the safety, immunogenicity and effectiveness of the hepatitis E vaccine HEV 239 (Hecolin) in women of childbearing age in rural Bangladesh. BMJ Open 2020, 10, e033702. [Google Scholar] [CrossRef] [PubMed]
  123. Sridhar, S.; Situ, J.; Cai, J.P.; Yip, C.C.; Wu, S.; Zhang, A.J.; Wen, L.; Chew, N.F.; Chan, W.M.; Poon, R.W.; Chan, J.F.; Tsang, D.N.; Chen, H.; Xia, N.S.; Yuen, K.Y. Multimodal investigation of rat hepatitis E virus antigenicity: Implications for infection, diagnostics, and vaccine efficacy. J Hepatol 2021, 74, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
  124. Kao, C.M.; Rostad, C.A.; Nolan, L.E.; Peters, E.; Kleinhenz, J.; Sherman, J.D.; Tippett, A.; Shih, J.W.K.; Yildirim, I.; Agbakoba, V.; Beresnev, T.; Ballou, C.; Kamidani, S.; Karmali, V.; Natrajan, M.; Scherer, E.M.; Rouphael, N.; Anderson, E.J. A Phase 1, Double-Blinded, Placebo-Controlled Clinical Trial to Evaluate the Safety and Immunogenicity of HEV-239 (Hecolin) Vaccine in Healthy US Adults. J Infect Dis 2024, 230, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
  125. Aziz, A.B.; Dudman, S.; Julin, C.H.; Ahmmed, F.; Stene-Johansen, K.; Sandbu, S.; Øverbø, J.; Dembinski, J.L.; Wisløff, T.; Rana, S.; Basunia, A.H.; Haque, W.; Qadri, F.; Zaman, K.; Clemens, J.D. Receipt of hepatitis E vaccine and fetal loss in rural Bangladesh: further analysis of a double-blind, cluster-randomised, controlled trial. Lancet Glob Health 2024, 12, e1300–e1311. [Google Scholar] [CrossRef] [PubMed]
  126. Nesbitt, R.C.; Asilaza, V.K.; Gignoux, E.; Koyuncu, A.; Gitahi, P.; Nkemenang, P.; Duncker, J.; Antier, Z.; Haile, M.; Gakima, P.; Wamala, J.F.; Loro, F.B.; Biem, D.; Rull, M.; Azman, A.S.; Rumunu, J.; Ciglenecki, I. Vaccination coverage and adverse events following a reactive vaccination campaign against hepatitis E in Bentiu displaced persons camp, South Sudan. PLoS Negl Trop Dis 2024, 18, e0011661. [Google Scholar] [CrossRef] [PubMed]
  127. Nesbitt, R.C.; Kinya Asilaza, V.; Alvarez, C.; Gitahi, P.; Nkemenang, P.; Duncker, J.; Haile, M.; Gakima, P.; Wamala, J.F.; Loro, F.B.; Koyuncu, A.; Biem, D.; Albela, M.; Rull, M.; Gignoux, E.; Rumunu, J.; Eckerle, I.; Ciglenecki, I.; Azman, A.S. The effectiveness of two doses of recombinant hepatitis E vaccine in response to an outbreak in Bentiu, South Sudan: a case-control and bias indicator study. Lancet Infect Dis Online ahead of print. 2025. [Google Scholar] [CrossRef] [PubMed]
  128. Nishiyama, T.; Kobayashi, T.; Jirintai, S.; Kii, I.; Nagashima, S.; Prathiwi Primadharsini, P.; Nishizawa, T.; Okamoto, H. Screening of novel drugs for inhibiting hepatitis E virus replication. J Virol Methods 2019, 270, 1–11. [Google Scholar] [CrossRef] [PubMed]
  129. Nishiyama, T.; Kobayashi, T.; Jirintai, S.; Nagashima, S.; Primadharsini, P.P.; Nishizawa, T.; Okamoto, H. Antiviral candidates against the hepatitis E virus (HEV) and their combinations inhibit HEV growth in in vitro. Antiviral Res 2019, 170, 104570. [Google Scholar] [CrossRef] [PubMed]
  130. Primadharsini, P.P.; Nagashima, S.; Nishiyama, T.; Takahashi, M.; Murata, K.; Okamoto, H. Development of Recombinant Infectious Hepatitis E Virus Harboring the nanoKAZ Gene and Its Application in Drug Screening. J Virol 2022, 96, e0190621. [Google Scholar] [CrossRef] [PubMed]
  131. Klöhn, M.; Burkard, T.; Janzen, J.; Haase, J.A.; Gömer, A.; Fu, R.; Ssebyatika, G.; Nocke, M.K.; Brown, R.J.P.; Krey, T.; Dao Thi, V.L.; Kinast, V.; Brüggemann, Y.; Todt, D.; Steinmann, E. Targeting cellular cathepsins inhibits hepatitis E virus entry. Hepatology 2024, 80, 1239–1251. [Google Scholar] [CrossRef] [PubMed]
  132. Fischler, B.; Baumann, U.; Dezsofi, A.; Hadzic, N.; Hierro, L.; Jahnel, J.; McLin, V.; Nobili, V.; Smets, F.; Verkade, H.; Debray, D. Hepatitis E in Children: A Position Paper by the ESPGHAN Hepatology Committee. J Pediatr Gastroenterol Nutr 2016, 63, 288–294. [Google Scholar] [CrossRef] [PubMed]
  133. McPherson, S.; Elsharkawy, A.M.; Ankcorn, M.; Ijaz, S.; Powell, J.; Rowe, I.; Tedder, R.; Andrews, P.A. Summary of the British Transplantation Society UK Guidelines for Hepatitis E and Solid Organ Transplantation. Transplantation 2018, 102, 15–20. [Google Scholar] [CrossRef] [PubMed]
  134. The British Transplantation Society. Guidelines for Hepatitis E & Solid Organ Transplantation. Available from: https://bts.org.uk/wp-content/uploads/2017/06/BTS_HEV_Guideline-FINAL.pdf (accessed on 10 Jan. 2025).
  135. Rivero-Juárez, A.; Aguilera, A.; Avellón, A.; García-Deltoro, M.; García, F.; Gortazar, C.; Granados, R.; Macías, J.; Merchante, N.; Oteo, J.A.; Pérez-Gracia, M.T.; Pineda, J.A.; Rivero, A.; Rodriguez-Lazaro, D.; Téllez, F.; Morano-Amado, L.E.; Grupo redactor de GeHEP SEIMC. Executive summary: Consensus document of the diagnosis, management and prevention of infection with the hepatitis E virus: Study Group for Viral Hepatitis (GEHEP) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC). Enferm Infecc Microbiol Clin (Engl Ed) 2020, 38, 28–32. [Google Scholar] [CrossRef] [PubMed]
  136. Te, H.; Doucette, K. Viral hepatitis: Guidelines by the American Society of Transplantation Infectious Disease Community of Practice. Clin Transplant 2019, 33, e13514. [Google Scholar] [CrossRef] [PubMed]
  137. Frericks, N.; Klöhn, M.; Lange, F.; Pottkämper, L.; Carpentier, A.; Steinmann, E. Host-targeting antivirals for chronic viral infections of the liver. Antiviral Res 2024, 234, 106062. [Google Scholar] [CrossRef] [PubMed]
  138. Xiang, Z.; Jiang, C.; Yang, J.; Huang, L.; Jiang, B.; Wang, X.; Gao, C.; Li, M.; Meng, Y.; Tong, L.; Ling, B.; Wang, Y.; Wu, J.; Chinese Consortium for the Study of Hepatitis E (CCSHE). Serum extracellular vesicle-derived ASS1 is a promising predictor for the occurrence of HEV-ALF. J Med Virol 2023, 95, e28425. [Google Scholar] [CrossRef] [PubMed]
  139. Shang, A.Q.; Yan, H.; Xiang, Z.; Chen, J.Q.; Jiang, B.; Jiang, C.; Ling, B.; Wu, J.; Chinese Consortium for the Study of Hepatitis E (CCSHE). Serum exosome-derived ALDH1A1 can greatly predict the prognosis of patients with hepatitis E virus-related acute liver failure. Hepatobiliary Pancreat Dis Int Online ahead of print. 2024. [Google Scholar] [CrossRef] [PubMed]
  140. Wu, J.; Xiang, Z.; Gao, C.; Huang, L.; Hua, J.; Tong, L.; Ling, B.; Yao, Y.; Jiang, B.; Wang, D.; Li, G.; Ju, F.; Jin, X.; Xu, P.; Bortolanza, M.; Jiang, C.; Chao, C.; Dong, P.; Huang, F.; Chinese Consortium for the Study of Hepatitis E (CCSHE). Genotype 4 HEV infection triggers the initiation and development of acute pancreatitis. Microbes Infect 2023, 25, 105190. [Google Scholar] [CrossRef] [PubMed]
  141. Xiang, Z.; He, X.L.; Zhu, C.W.; Yang, J.J.; Huang, L.; Jiang, C.; Wu, J.; Chinese Consortium for the Study of Hepatitis E (CCSHE). Animal models of hepatitis E infection: Advances and challenges. Hepatobiliary Pancreat Dis Int 2024, 23, 171–180. [Google Scholar] [CrossRef] [PubMed]
  142. Liang, Y.; Zhang, J.; Luo, D.; Cheng, L.; Wang, Y.; Chinese Consortium for the Study of Hepatitis E (CCSHE). Deregulation of immune response contributing to fulminant hepatitis in HEV infected pregnant women. J Med Virol 2024, 96, e29639. [Google Scholar] [CrossRef] [PubMed]
  143. Wu, J.; Wang, H.; Xiang, Z.; Jiang, C.; Xu, Y.; Zhai, G.; Ling, Z.; Chinese Consortium for the Study of Hepatitis E (CCSHE). Role of viral hepatitis in pregnancy and its triggering mechanism. J Transl Int Med 2024, 12, 344–354. [Google Scholar] [CrossRef] [PubMed]
  144. Ray, R.; Aggarwal, R.; Salunke, P.N.; Mehrotra, N.N.; Talwar, G.P.; Naik, S.R. Hepatitis E virus genome in stools of hepatitis patients during large epidemic in north India. Lancet 1991, 338, 783–784. [Google Scholar] [CrossRef] [PubMed]
  145. Ray, R.; Jameel, S.; Manivel, V.; Ray, R. Indian hepatitis E virus shows a major deletion in the small open reading frame. Virology 1992, 189, 359–362. [Google Scholar] [CrossRef] [PubMed]
  146. Chauhan, A.; Jameel, S.; Dilawari, J.B.; Chawla, Y.K.; Kaur, U.; Ganguly, N.K. Hepatitis E virus transmission to a volunteer. Lancet 1993, 341, 149–150. [Google Scholar] [CrossRef] [PubMed]
  147. Sallie, R.; Chiyende, J.; Tan, K.C.; Bradley, D.; Portmann, B.; Williams, R.; Mowat, A.P.; Mieli-Vergani, G. Fulminant hepatic failure resulting from coexistent Wilson's disease and hepatitis E. Gut 1994, 35, 849–853. [Google Scholar] [CrossRef] [PubMed]
  148. Acharya, S.K.; Dasarathy, S.; Kumer, T.L.; Sushma, S.; Prasanna, K.S.; Tandon, A.; Sreenivas, V.; Nijhawan, S.; Panda, S.K.; Nanda, S.K.; Irshad, M.; Joshi, Y.K.; Duttagupta, S.; Tandon, R.K.; Tandon, B.N. Fulminant hepatitis in a tropical population: clinical course, cause, and early predictors of outcome. Hepatology 1996, 23, 1448–1455. [Google Scholar] [CrossRef] [PubMed]
  149. Mishra, A.; Saigal, S.; Gupta, R.; Sarin, S.K. Acute pancreatitis associated with viral hepatitis: a report of six cases with review of literature. Am J Gastroenterol 1999, 94, 2292–2295. [Google Scholar] [CrossRef] [PubMed]
  150. Arankalle, V.A.; Chobe, L.P. Retrospective analysis of blood transfusion recipients: evidence for post-transfusion hepatitis E. Vox Sang 2000, 79, 72–74. [Google Scholar] [CrossRef] [PubMed]
  151. Patra, S.; Kumar, A.; Trivedi, S.S.; Puri, M.; Sarin, S.K. Maternal and fetal outcomes in pregnant women with acute hepatitis E virus infection. Ann Intern Med 2007, 147, 28–33. [Google Scholar] [CrossRef] [PubMed]
  152. Aggarwal, R.; Goel, A. Natural History, Clinical Manifestations, and Pathogenesis of Hepatitis E Virus Genotype 1 and 2 Infections. Cold Spring Harb Perspect Med 2019, 9, a032136. [Google Scholar] [CrossRef] [PubMed]
  153. Khan, S.; Aggarwal, S.; Bhatia, P.; Yadav, A.K.; Kumar, Y.; Veerapu, N.S. Glucose and glutamine drive hepatitis E virus replication. Arch Virol 2024, 169, 233. [Google Scholar] [CrossRef] [PubMed]
  154. Kamar, N.; Selves, J.; Mansuy, J.M.; Ouezzani, L.; Péron, J.M.; Guitard, J.; Cointault, O.; Esposito, L.; Abravanel, F.; Danjoux, M.; Durand, D.; Vinel, J.P.; Izopet, J.; Rostaing, L. Hepatitis E virus and chronic hepatitis in organ-transplant recipients. N Engl J Med 2008, 358, 811–817. [Google Scholar] [CrossRef] [PubMed]
  155. Kamar, N.; Izopet, J.; Tripon, S.; Bismuth, M.; Hillaire, S.; Dumortier, J.; Radenne, S.; Coilly, A.; Garrigue, V.; D'Alteroche, L.; Buchler, M.; Couzi, L.; Lebray, P.; Dharancy, S.; Minello, A.; Hourmant, M.; Roque-Afonso, A.M.; Abravanel, F.; Pol, S.; Rostaing, L.; Mallet, V. Ribavirin for chronic hepatitis E virus infection in transplant recipients. N Engl J Med 2014, 370, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
  156. World Health Organization. Hepatitis E. Available from: https://www.who.int/news-room/fact-sheets/detail/hepatitis-E (accessed on 21 Feb. 2025).
Table 1. Distribution of hepatitis E virus genotypes; availability of treatments.
Table 1. Distribution of hepatitis E virus genotypes; availability of treatments.
Countries HEV genotypes Specific treatment
European countries HEV-3, HEV-4 Reduced immunosuppression/ribavirin
India HEV-1 Urgent liver transplantation for acute liver failure
Japan HEV-3, HEV-4 Off-label ribavirin
Mainland China HEV-1, HEV-4 Ribavirin
North African countries HEV-1, HEV-2 Various
Mexico, West African countries HEV-2 Various
HEV—hepatitis E virus.
Table 2. Different roles of hepatitis A and E viruses in acute severe hepatitis.
Table 2. Different roles of hepatitis A and E viruses in acute severe hepatitis.
Items ALF ACLF
Background of liver No liver diseases Chronic liver diseases, or cirrhosis
Causes of chronic liver diseases
HAV No No
HEV No Yes
Acute insults
HAV Yes Yes
HEV Yes Yes
ALF—acute liver failure; ACLF—acute-on-chronic liver failure; HAV—hepatitis A virus; HEV—hepatitis E virus.
Table 3. Differences among recommendations for hepatitis E virus diagnosis, treatment, and prevention produced by WHO [156], EASL [6], and AMED HAV and HEV Study Group [5].
Table 3. Differences among recommendations for hepatitis E virus diagnosis, treatment, and prevention produced by WHO [156], EASL [6], and AMED HAV and HEV Study Group [5].
Items WHO EASL AMED HAV and HEV Study Group
Diagnosis HEV RNA, and anti-HEV IgM HEV RNA, anti-HEV IgM, anti-HEV IgG and HEV antigen Anti-HEV IgA; HEV RNA in feces and sera and HEV genotype
Treatment No specific treatment for acute hepatitis E; hospitalization for fulminant hepatitis and symptomatic pregnant women; and Ribavirin for chronic hepatitis E Ribavirin for severe acute hepatitis E, ACLF-E and chronic hepatitis E in solid organ transplant recipients; pegylated interferon-α plus ribavirin for liver transplant recipients Off-label use of ribavirin should be considered in cases of chronic hepatitis E; off-label use of ribavirin may be considered in cases of severe acute hepatitis E, acute-on-chronic liver failure; liver transplant recipients with chronic hepatitis E without interferon intolerance or contraindication, or patients showing nonresponse to ribavirin, can be considered for treatment with pegylated interferon-α with or without ribavirin. In patients with HEV-ALF and hepatic encephalopathy, liver transplantation should be considered; high-flow continuous hemodiafiltration or on-line hemodiafiltration with or without plasma exchange can be performed until hepatic encephalopathy in HEV-ALF patients improves; and high-dose corticosteroid administration in the early stage of illness may be required in certain patients with severe hepatitis E. Further research for establishment of antiviral drugs is needed.
Prevention Maintaining quality standards for public water supplies; establishing proper disposal systems for human feces; maintaining hygienic practices; and avoiding consumption of water and ice of unknown purity Immunocompromised individuals and those with chronic liver diseases should avoid consumption of undercooked meat (pork, wild boar and venison) and shellfish; immunocompromised patients should consume meat only if it has been thoroughly cooked to temperatures of at least 70 oC. Heating at a temperature of 95 °C for at least 10 min; HEV in pork/wild boar meat and entrails, including pig liver and intestines, should be completely devitalized by cooking for 10 min at a temperature close to 100 °C; and travelers to endemic and developing countries should avoid drinking untreated water and eating raw food.
WHO—World Health Organization; EASL—European Association for the Study of the Liver; AMED—Japan Agency for Medical Research and Development; HEV—hepatitis E virus; ACLF-E— acute-on-chronic liver failure caused by HEV infection.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated