Submitted:
26 February 2025
Posted:
27 February 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. The Gut–Brain Axis (GBA)
3.1. Human Gut Microbiota
3.2. Autonomic Nervous System Communication Pathway
3.3. Vagus Nerve
3.4. Enteric Nervous System
3.5. Hypothalamic–Pituitary–Adrenal Axis Communication Pathway
3.6. Neurotransmitters
3.7. Immune System Communication Pathway
3.8. Enteroendocrine Communication Pathway
3.9. Intestinal Barrier
3.10. Blood Brain Barrier
4. Neurodegenerative Diseases
4.1. Alzheimer Disease
4.2. Parkinson Disease
4.3. Multiple Sclerosis
5. Prebiotics
6. Probiotics
7. Microbiome Modification as a Therapeutic Target for Neurodegenerative Diseases
7.1. Effects of Prebiotics on the Microbiome Modification
7.2. Effects of Probiotics
8. Discussion
9. Conclusion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fabi, J.P. The connection between gut microbiota and its metabolites with neurodegenerative diseases in humans. Metabolic Brain Disease. 2024. [CrossRef]
- Quigley, E. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr Neurol Neurosci Rep. 2017, 17: 94.
- Villavicencio Tejo, F.; Olesen, M.; Navarro, L.; Calisto, N.; Iribarren, C.; García, K.; Corsini, G.; Quintanilla, R. Gut Brain Axis Deregulation and Its Possible Contribution to Neurodegenerative Disorders. Neurotoxicity Research. 2024, 42:4.
- Warren, A.; Nyavor, Y.; Zarabian, N.; Mahoney, A.; Frame, L.A. The microbiota-gut-brain-immune interface in the pathogenesis of neuroinflammatory diseases: a narrative review of the emerging literature. Front. Immunol. 2024, 15:1365673.
- Peterson, C.T. Dysfunction of the Microbiota-Gut-Brain Axis in Neurodegenerative Disease: The Promise of Therapeutic Modulation With Prebiotics, Medicinal Herbs, Probiotics, and Synbiotics. Journal of Evidence-Based Integrative Medicine. 2020, Volume 25: 1-19.
- Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Copper Homeostasis and Neurodegenerative Disorders (Alzheimer’s, Prion, and Parkinson’s Diseases and Amyotrophic Lateral Sclerosis). Chem. Rev. 2006, 106, 1995−2044.
- Zhu, X.; Li, B.; Lou, P.; Dai, T.; Chen, Y.; Zhuge, A.; Yuan, Y.; Li, L. The Relationship Between the Gut Microbiome and Neurodegenerative Diseases. Neurosci. Bull. 2021, 37(10):1510–1522.
- Cryan, J.; O’Riordan, K.; Sandhu, K.; Peterson, V.; Dinan, T. The gut microbiome in neurological disorders. Lancet Neurol. 2020, 19: 179–94.
- Pluta, R.; Ułamek-Kozioł, M.; Januszewski, S.; Czuczwar, S. Gut microbiota and pro/prebiotics in Alzheimer’s disease. AGING. 2020, Vol. 12, No. 6.
- Shahi, S.; Yadav, M.; Ghimire, S.; Mangalam, A. Role of the gut microbiome in multiple sclerosis: From etiology to therapeutics International Review of Neurobiology, 2022, Volume 167.
- Dos Santos Pereira Indiani, CM.; Ferreira Rizzardi, K.; Midori Castelo, P.; Caldas Ferraz, L.F.; Darrieux, M.; Manzano Parisotto, T.M. Childhood Obesity and Firmicutes/ Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Childhood Obesity. 2018, j Volume 14, Number 8.
- Breit, S.; Kupferberg, A.; Rogler, G.; Hasler, G. Vagus Nerve as Modulator of the Brain–Gut Axis in Psychiatric and Inflammatory Disorders. Front. Psychiatry. 2018, 9:44.
- Sorboni, S.G.; Moghaddam, H.S.; Jafarzadeh-Esfehani, R.; Soleimanpour, S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. 2022, Volume 35 Issue 1 e00338-20.
- Engelenburg, H.; Lucassen, P.; Sarafian, J.; Parker, W.; Laman, J. Multiple sclerosis and the microbiota progress in understanding the contribution of the gut microbiome to disease. Evolution, Medicine, and Public Health. 2022, pp. 277–294.
- Piccioni, A.; Rosa, F.; Manca, F.; Pignataro, G.; Zanza, C.; Savioli, G.; Covino, M.; Ojetti, V.; Gasbarrini, A.; Franceschi, F.; Candelli, M. Gut Microbiota and Clostridium difficile: What We Know and the New Frontiers. Frontiers. Int. J. Mol. Sci. 2022, 23, 13323. [Google Scholar] [CrossRef] [PubMed]
- Grace-Farfaglia, P.; Frazier, H.; Iversen, M.D. Essential Factors for a Healthy Microbiome: A Scoping Review. Int. J. Environ. Res. Public Health. 2022, 19, 8361. [Google Scholar] [PubMed]
- Martin-Gallausiaux, C.; Marinelli, L.; Pierre Larraufie, P.; Blottière, H.; Lapaque, N. SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society. 2021, 80, 80,37–49. [Google Scholar] [PubMed]
- Mohammad, S.; Thiemermann, C. Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions. Front. Immunol. 2021, 11:594150.
- Wensel, C.; Salzberg, S.; Sears, C. Next-generation sequencing: insights to advance clinical investigations of the microbiome. Sears J Clin Invest. 2022, 132(7):e154944.
- Liu, Y.X.; Bai, Y. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell. 3: 2021, 12(5); 315–330.
- Zhang, Y.; Thompson, K.; Branck, T.; Yan, Y.; Nguyen, L.; Franzosa, E.; Huttenhower, C. Metatranscriptomics for the Human Microbiome and Microbial Community Functional Profiling. Annu. Rev. Biomed. Data Sci. 2021, 4:279–311.
- Martin, C.; Osadchiy, V.; Kalani, A.; Mayer, E. The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol. 2018; 6:133–148.
- Smith, S.; Vale, W. The role of the hypothalamic-pituitary adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience. 2006, 8:4, 383-395.
- Baquero, F.; Nombela, C. The microbiome as a human organ. Clin Microbiol Infect. 2012, 18 (Suppl. 4): 2–4.
- Sankowski, R.; Mader, S.; Valdés-Ferrer, S.I. Systemic Inflammation and the Brain: Novel Roles of Genetic, Molecular, and Environmental Cues as Drivers of Neurodegeneration. Front. Cell. Neurosci. 2015, 9, 128434. [Google Scholar] [CrossRef]
- Wiertsema, S.; Van Bergenhenegouwen, J.; Garssen, J.; Knippels, L. The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases throughout Life and the Role of Nutrition in Optimizing Treatment Strategies. Nutrients. 2021, 13, 886. [Google Scholar] [CrossRef]
- Shi, N.; Li, N.; Duan, X.; Niu, H. Interaction between the gut microbiome and mucosal immune system. Shi et al. Military Medical Research. 2017, 4:14.
- Sun, J.; Xu, J.; Ling, Y.; Wang, F.; Gong, T.; Yang, C.; Ye, S.; Ye, K.; Wei, D.; Song, Z.; Chen, D.; Liu, J. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Sun et al. Translational Psychiatry. 2019, 9:189.
- Suganya, K.; Koo, B.S. Gut–Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions. Int. J. Mol. Sci. 2020, 21, 7551. [Google Scholar] [CrossRef]
- Bravo, J.; Forsythe, P.; Chew, M.; Escaravage, E.; Savignac, H.; Dinan, T.; Bienenstock, J.; Cryan, J. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. PNAS. 2011, vol. 108 no. 38.
- Sgritta, M.; Dooling, S.; Buffington, S.; Momin, E.; Francis, M.; Britton, R.; Costa-Mattioli, M. Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron. 2019, 101, 246–259. [Google Scholar] [CrossRef]
- Markus Schneider, K.; Blank, N.; Alvarez, Y.; Thum, K.; Lundgren, P.; Litichevskiy, L.; Sleeman, M.; Bahnsen, K.; Kim, J.; Kardo, S.; Patel, S.; Dohnalova’, L.; Uhr, G.; Descamps, H.; Kircher, S.; McSween, A.; Rezazadeh Ardabili, A.; Nemec, K.; Jimenez, N.; Glotfelty, L.; Eisenberg, J.; Furth, E.; Henao-Mejia, J.; Bennett, C.; Pierik, M.; lle Romberg-Camps, M.; Mujagic, Z.; Prinz, M.; Schneider, C.; Wherry, J.; Bewtra, M.; Heuckeroth, R.; Levy, M.; Thaiss, C. The enteric nervous system relays psychological stress to intestinal inflammation. Cell. 2023, 186, 2823–2838. [Google Scholar]
- Zhu, Y.; Li, Y.; Zhang, Q.; Song, Y.; Wang, L.; Zhu, Z. Interactions Between Intestinal Microbiota and Neural Mitochondria: A New Perspective on Communicating Pathway From Gut to Brain Front. Microbiol. 2022, 13:798917.
- Luczynski, P.; Whelan, S.; O’Sullivan, C.; Clarke, G.; Shanahan, F.; Dinan, T.; Cryan, J. Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. European Journal of Neuroscience. 2016, Vol. 44, pp. 2654–2666.
- Damiani, F.; Cornuti, S.; Tognini, P. The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology. 2023, 231 109491.
- Almand, A.; Anderson, A.; Hitt, B.; Sitko, J.; Joy, R.; Easter, B.; Almand, E. The influence of perceived stress on the human microbiome. BMC Research Notes. 2022, 15:193.
- Chen, S.J.; Lin, C.H. Gut microenvironmental changes as a potential trigger in Parkinson’s disease through the gut–brain axis. Journal of Biomedical Science. 2022, 29:54.
- Chavan, S.; Pavlov, V.; Tracey, K. Mechanisms and Therapeutic Relevance of Neuro-immune Communication. Immunity. 2017, 46. [Google Scholar] [CrossRef]
- Bonaz, B.; Bazin, T.; Pellissier, S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front. Neurosci. 2018, 12:49.
- Tang, W.; Zhu, H.; Feng, Y.; Guo, R.; Wan, D. The Impact of Gut Microbiota Disorders on the Blood–Brain Barrier. Infection and Drug Resistance. 2020, 13 3351–3363.
- Sasmita, A. Modification of the gut microbiome to combat Neurodegeneration. Rev. Neurosci. 2019, 30(8): 795–805.
- Bianchi, V.; Herrera, P.; Rizzi, L. Effect of nutrition on neurodegenerative diseases. A systematic review. Nutritional Neuroscience. 2021, Vol. 24, No. 10, 810–834. [Google Scholar]
- Ferreira Silva, M.V.; De Mello Gomide Loures, C.; Vieira Alves, L.C.; Cruz de Souza, L.; Braga Gomes Borges, K.; Das Graças Carvalho, M. Alzheimer’s disease: risk factors and potentially protective measures. Journal of Biomedical Science. 2019, 26:33.
- Salvadores, N.; Gerónimo-Olvera, C.; Court, F. Axonal Degeneration in AD: The Contribution of A and Tau. Front. Aging Neurosci. 2020, 12:581767.
- Van Giau, V.; Wu, S.Y.; Jamerlan, A.; An, S.S.; Kim, S.Y.; Hulme, J. Gut Microbiota and Their Neuroinflammatory Implications in Alzheimer’s Disease. Nutrients. 2018, 10, 1765. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, Y.; Rena, JJ.; Hammer, N.; Chapman, M. Gatekeeper residues in the major curlin subunit modulate bacterial amyloid fiber biogenesis. PNAS. January 5, 2010, vol. 107 no. 1 163–168.
- Taylor, J.D.; Matthews, S.J. New insight into the molecular control of bacterial functional amyloids. Front. Cell. Infect. Microbiol. 2015, 5:33.
- Haran, J.P.; Bhattarai, S.K.; Foley, S.E.; Dutta, P.; Ward, D.V.; Bucci, V.; McCormick, B.A. Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. mBio. 2019, 10: e 00632-19.
- Ho, S.T.; Hsieh, Y.T.; Wang, S.Y.; Chen, M.J. Improving effect of a probiotic mixture on memory and learning abilities in d-galactose–treated aging mice. J. Dairy Sci. 2018, 102:1901–1909.
- Ayman Moustafa, S.; Mohamed, S.; Dawood, A.; Azar, J. ; Elmorsy, E,.; Rizk, N., Ed.; Salama, M. Gut brain axis: an insight into microbiota role in Parkinson’s disease. Metabolic Brain Disease. 2021, 36:1545–1557. [Google Scholar]
- Noto, D.; Miyake, S. Gut dysbiosis and multiple sclerosis. Clinical Immunology. 2022, 235, 108380. [Google Scholar]
- Dunalska, A.; Saramak, K. ; Szejko,N. The Role of Gut Microbiome in the Pathogenesis of Multiple Sclerosis and Related Disorders. Cells. 2023, 12, 1760. [Google Scholar]
- Nourbakhsh, B.; Mowry, E. Multiple Sclerosis Risk Factors and Pathogenesis. Continuum (Minneap Minn). 2019, 25 (3, multiple sclerosis and other CNS inflammatory diseases): 596–610.
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods. 2019, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Vandeputte Vandeputte, D.; Falony, G.; Vieira-Silva, S.; Jun Wang, J.; Sailer, M.; Theis, S.; Verbeke, K.; Raes, J. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut. 2017, 66:1968–1974.
- Roupar, D.; González, A.; Martins, J.T.; Gonçalves, D.A.; Teixeira, J.A.; Botelho, C.; Nobre, C. Modulation of Designed Gut Bacterial Communities by Prebiotics and the Impact of Their Metabolites on Intestinal Cells. Foods. 2023, 12, 4216. [Google Scholar] [CrossRef]
- Holscher, H.; Bauer, L.; Gourineni, V.; Pelkman, C.; Fahey, G.; Kelly, S.; Swanson, K. Agave Inulin Supplementation Affects the Fecal Microbiota of Healthy Adults Participating in a Randomized, Double-Blind, Placebo-Controlled, Crossover Trial1–3. J Nutr. 2015, Sep;145(9):2025-32.
- Dey, K.; Sheth, M.; Anand, S.; Archana, G.; Raval, S. Daily consumption of galacto-oligosaccharide gummies ameliorates constipation symptoms, gut dysbiosis, degree of depression and quality of life among sedentary university teaching staff: A double blind randomized placebo control clinical trial. Indian Journal of Gastroenterology. 2023, 42(6):839-848.
- Healey, G.; Murphy, R.; Butts, C.; Brough, L.; Whelan, K.; Coad, J. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. British Journal of Nutrition. 2018, 119, 176–189. [Google Scholar]
- Ferrarese, R.; Ceresola, E.R.; Preti, A.; Canducci, F. Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome in the microbiome era. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7588–7605. [Google Scholar]
- Cerdó, T.; García-Santos, J.A.; Bermúdez, M.G.; Campoy, C. The Role of Probiotics and Prebiotics in the Prevention and Treatment of Obesity. Nutrients. 2019, 11, 635. [Google Scholar]
- Leeming, E.; Johnson, A.; Spector, T.; Le Roy, C. Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients. 2019, 11, 2862. [Google Scholar]
- Hall, D.; Voigt, R.; Cantu-Jungles, T.; Hamaker, B.; Engen, P.; Shaikh, M.; Raeisi, S.; Green, S.; Naqib, A.; Forsyth, C.; Chen, T.; Manfready, R.; Ouyang, B.; Rasmussen, H.; Shahriar Sedghi, S.; Goetz, C.; Keshavarzian, A. An open label, non-randomized study asses-sing a prebiotic fiber intervention in a small cohort of Parkinson’s disease participants. Nature Communications. 2023, 14:926.
- Majid, H.; Emery, P.; Whelan, K. Faecal microbiota and short-chain fatty acids in patients receiving enteral nutrition with standard or fructo-oligosaccharides and fibre-enriched formulas. J Hum Nutr Diet. 2011, 24, pp. 260–268.
- Mahalak, K.K.; Firrman, J.; Narrowe, A.B.; Hu, W.; Jones, S.M.; Bittinger, K.; Moustafa, A.M.; Liu, L. Fructooligosaccharides (FOS) differentially modifies the in vitro gut microbiota in an age-dependent manner. Front. Nutr. 2023, 9:1058910.
- Akhgarjand, C.; Vahabi, Z.; Shab-Bidar, S.; Etesam, F.; Djafarian, K. Effects of probiotic supplements on cognition, anxiety, and physical activity in subjects with mild and moderate Alzheimer’s disease: A randomized, double-blind, and placebo-controlled study. Front. Aging Neurosci. 2022, 14:1032494.
- Zali, A.; Hajyani, S.; Salari, M.; Tajabadi-Ebrahimi, M.; Mortazavian, A.; Pakpour, B. Co-administration of probiotics and vitamin D reduced disease severity and complications in patients with Parkinson’s disease: a randomized controlled clinical trial. Psychopharmacology. 2024, 241:1905–1914.
- Nimgampalle, M.; Kuna, Y. Anti-Alzheimer Properties of Probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer’s Disease induced Albino Rats. Journal of Clinical and Diagnostic Research. 2017, Vol-11(8): KC01-KC05.
- Hsieh, T.S.; Kuo, C.W.; Hsieh, K.H.; Shieh, M.J.; Peng, C.W.; Chen, Y.C.; Chang, Y.L.; Huang, Y.Z.; Chen, C.C.; Chang, P.K.; Chen, K. Y, Chen, H.Y. Probiotics Alleviate the Progressive Deterioration of Motor Functions in a Mouse Model of Parkinson’s Disease Brain Sci. 2020, 10, 206.
- Kim, C.S.; Cha, J.; Sim, M.; Jung, S.; Chun, WY.; Baik, H.W.; Shin, D. Probiotic Supplementation Improves Cognitive Function and Mood with Changes in Gut Microbiota in Community-Dwelling Older Adults: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. J Gerontol A Biol Sci Med Sci. 2021, Vol. 76, No. 1, 32–40. [Google Scholar] [CrossRef]
- Leblhuber, F.; Steiner, K.; Schuetz, B.; Fuchs, D.; Gostner, J. Probiotic Supplementation in Patients with Alzheimer’s Dementia – An Explorative Intervention Study. Current Alzheimer Research. 2018, 15, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
- Intili, G.; Paladino, L.; Rappa, F.; Alberti, G.; Plicato, A.; Calabrò, F.; Fucarino, A.; Cappello, F.; Bucchieri, F.; Tomasello, G.; et al. From Dysbiosis to Neurodegenerative Diseases through Different Communication Pathways: An Overview. Biology. 2023, 12, 195. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Liu, Y.; Ma, L.; Ma, X.; Shen, L.; Ma, X.; Chen, Z.; Chen, H.; Li, D.; Su, Z.; et al. Constipation Induced Gut Microbiota Dysbiosis Exacerbates Experimental Autoimmune Encephalomyelitis in C57BL/6 Mice. J. Transl. Med. 2021, 19, 317. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.K.; Boudry, G.; Lemay, D.G.; Raybould, H.E. Changes in Intestinal Barrier Function and Gut Microbiota in High-Fat Diet-Fed Rats Are Dynamic and Region Dependent. Am. J. Physiol.- Gastrointest. Liver Physiol. 2015, 308, G840–G851.
- Guarino, M.P.L.; Altomare, A.; Emerenziani, S.; Di Rosa, C.; Ribolsi, M.; Balestrieri, P.; Iovino, P.; Rocchi, G.; Cicala, M. Mechanisms of Action of Prebiotics and Their Effects on Gastro-Intestinal Disorders in Adults. Nutrients. 2020, 12, 1037. [Google Scholar] [CrossRef]
- Chen, D.; Yang, X.; Yang, J.; Lai, G.; Yong, T.; Tang, X.; Shuai, O.; Zhou, G.; Xie, Y.; Wu, Q. Prebiotic Effect of Fructooligosaccharides from Morinda Officinalis on Alzheimer’s Disease in Rodent Models by Targeting the Microbiota-Gut-Brain Axis. Front. Aging Neurosci. 2017, 9, 403. [Google Scholar] [CrossRef]
- Fiijan, S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. Int. J. Environ. Res. Public Health. 2014, 11, 4745. [Google Scholar] [CrossRef]
- Overa-Rosales, L.B.; Cruz-Guerrero, A.E.; Ramírez-Moreno, E.; Quintero-Lira, A.; Contreras-López, E.; Jaimez-Ordaz, J.; Castañeda-Ovando, A.; Añorve-Morga, J.; Calderón-Ramos, Z.G.; Arias-Rico, J.; et al. Impact of the Gut Microbiota Balance on the Health-Disease Relationship: The Importance of Consuming Probiotics and Prebiotics. Foods. 2021, 10, 1261. [Google Scholar] [CrossRef]
- Westfall, S.; Lomis, N.; Kahouli, I.; Dia, S.Y.; Singh, S.P.; Prakash, S. Microbiome, Probiotics and Neurodegenerative Diseases: Deciphering the Gut Brain Axis. Cell. Mol. Life Sci. 2017, 74, 3769–3787. [Google Scholar] [CrossRef]
| Study Type | Study Sample/Duration | Participants | Protocol | Summary of Results | Study Reference |
|---|---|---|---|---|---|
| Randomized, double-blind, placebo-controlled, 3-period, crossover trial. | 29 healthy adults / 21 days. | 29 healthy adults of 20–40 years old. | Participants received 0, 5.0, or 7.5 g agave inulin/day for 21 days and fecal samples were collected and analyzed by 16S Illumina sequencing. | Fecal Actinobacteria and Bifidobacterium were increased. | [57]razmak |
| Open-label, non-randomized study. | 20 PD participants. | 20 PD patients were newly diagnosed, 10 treated PD patients and 10 non-medicated PD patients. | Participants consumed prebiotics in the form of a bar for 10 days daily during the first three days, and then one bar twice a day for an additional seven days. | This intervention diminished the pro-inflammatory phylum Proteobacteria and Escherichia coli and increased SCFA-producing species and reduced plasma zonulin a marker of intestinal barrier integrity and calprotectin a marker of neutrophils in the intestinal mucosa. | [63] |
| Randomised, double-blind, placebo-controlled cross-over study. | 34 healthy participants / 3 weeks. | 34 participants 19-65 years old. | Participants were divided into 2 groups, LDF and HDF and received 16 g/d of inulin-type fructan prebiotic in two doses for 3 weeks or 16 g/d of placebo maltodextrin in two doses for 3 weeks. | In the LDF group, the prebiotic consumption increased Bifidobacterium. In the HDF group, prebiotic consumption increased Bifidobacterium and Faecalibacterium and diminished Ruminococcus, Dorea and Coprococcus. | [59]razmak |
| Double-blind placebo control clinical trial. | 35 adultsrazmak/ 30 days. | 35 sedentary constipated adults, 25-62 years old. | 17 subjects into an experimental group and 18 subjects into the control group were given 10 g GOS and sugar gummies, respectively for 30 days. | GOS consumption ameliorated SCFA profile, increased Lactobacillus, Bifidobacterium and Bacteroides and considerably diminished the phyla Bacteroidetes, Firmicutes and the genus Clostridium. Firmicutes to Bacteroidetes (F/B) ratio also ameliorated in the GOS group. | [58]razmak |
| Cross-sectional study. | 41 adult patients / 12 days. | 25 males, 16 females. | 25 Patients consumed FOS/fibre-enriched formulas and 16 patients consumed standard formula.razmakStandard formulas included no fibre or FOS and the FOS/fibre-enriched formulas included six dietary sources of non-digestible carbohydrate. | Faecal butyrate concentrations were higher in patients consuming the FOS/fibre-enriched formula in comparison to standard formula. | [64] |
| 24-h in vitro culturing method. | 18 adults. | 3 age groups, young adult (25–35 years old), adult (36–50 years old), and older adult (51–70 years old) with 6 subjects for each group. | Fecal samples were collected, after 24 h of incubation with FOS. Gut microbial communities were cultured to investigate whether FOS can change the microbial communities. | After 24 h of incubation, there was an increment of Bifidobacterium in all groups, the genus Odoribacter diminished and the genus Bilophila, decreased significantly. SCFA levels were increased. | [65] |
| Randomised, double-blind, placebo-controlled, cross-over trial. | Healthyrazmakadults / 4-weeks. | Healthy subjects with constipation torazmakassess the effect of inulin consumption. | In two 4-week intervention periods, 12 g of inulin or maltodextrin (placebo control) were given daily for 2 weeks. | Modest impact on microbiota constitution and specific alterations after inulin consumption in relative abundances of Bifidobacterium, Bilophila and Anaerostipes. The decrease in Bilophila abundances led to softer stools and amelioration of constipation. | [55]razmak |
| Study Type | Study Sample/Duration | Participants | Protocol | Summary of Results | Study Reference |
|---|---|---|---|---|---|
| Randomized double-blind and placebo-controlled clinical trial. | 90 older adults with mild and moderate AD/12 weeks. | Aged 50–90 years old. | The participantsrazmakwere randomly divided into three groups, placeborazmak(n = 30), L. rhamnosus (n = 30), and B. longum (n = 30). The cognitive function was evaluated using MMSE and CFT. IADL scale and GAD-7 scale were used to estimate the ability in executing daily jobs and level of anxiety, respectively. | 12-weekrazmakprobioticrazmakconsumptionrazmakcomparedrazmakwithrazmakplacebo,razmakhadrazmakpositiverazmakimpact on the anxiety, cognitive status and instrumental daily functions of patients suffering by AD. | [66] |
| Randomized double-blind, placebo-controlled clinicalrazmaktrial. | 46 patients with PD / 12 weeks. | 18 to 80 years old. | Patients were randomly divided into two groups: Group A was given probiotic/vitamin D supple-razmakmentation (n = 23), and Group B placebo capsules (n = 23) for 12 weeks. GSRS, BAI, UPDRS were used to estimate the intensity of anxiety, the frequency and the intensity of GI problems and the severity and symptoms of PD respectively. | Probioticrazmakconsumption and vitamin D diminishedrazmakinflammatory cytokines, razmakIFN-γ, IL-1β, IL-6 and increased anti-razmakinflammatory cytokines such as IL-10, diminished disease severity, anxiety, and GI symptomsrazmakin PD patients. | [67] |
| Animal study. | 48 albino rats (wistar strain) /60 days. | 48 albino rats separated into 4 groups of 6 animals each group. | The control group was given normal saline (1 ml/kg body weight). AD-Model group received intraperitoneal injection of D-Galactose (120 mg/kg body weight). Protective group was given both D-Galactose and L. plantarum (10 ml/kg body weight; 12×108 CFU/ml) for 60 days. L.P group was given L. Plantarum for 60 days. Animal behaviour was evaluated on the 30th and 60th day in all groups. | Supplementation with L. plantarum MTCC1325razmakfor 60 days, ameliorated cognition problems, treated groups exhibited amelioration in the activity of rats, showed elevated body weight, exhibited an important augmentation of ACh in both cerebral cortex and hippocampus. | [68] |
| Animal study. | Transgenic MitoPark PD mouse model / 16 weeks. | 16 malesrazmakMitoPark PD mice, 8-week-old. | 8-week-old PD mice were randomly divided into the probiotic-treated grouprazmakand sham treatment group.razmakAfter daily oral supplementation withrazmakprobiotics for 16 weeks, the Beam balance test was used so to estimate the execution of motor skill and balance. | Probiotic consumption delays the decrease of motor dysfunction but also has neuroprotective impact against the progressing degeneration of dopaminergic cells in MitoPark PD mice. | [69] |
| A randomized, double-blind, placebo-controlled,razmakmulticenter clinical trial. | 63 participants / 12 weeks. | 63 subjects / over 65 years old | 31 and 32 subjects in therazmakplacebo and probiotics group, respectively. Probiotics or placebo group received their products twice a day for 12 weeks, (1×109 CFU of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI in soybean oil). In the placebo group, each capsule included 500 mg of soybean oil only. | Probiotic supplementation ameliorated cognitive function and mental stress, elevated BDNF, frequency of abdominal distention and gas passage, exhibited benefits in the probiotics group, and important changes in the gut microbiota diversity in the probiotics group. | [70] |
| Explorative Intervention Study. | 20 patients / 4 weeks. | 9 females, 11 males, aged 76.7 ±razmak9.6 years with AD. | Supplementation of probiotics were consumed dailyrazmakfor 28 days. Gut inflammation markers, microbiota constitution in fecal specimens and biomarkers of immune activation (serum neopterin and tryptophan breakdown) were estimated. | Elevation of kynurenine was found after probiotic consumption, Faecalibacterium prausnitzii increased, Zonulin concentrations declined after 4 weeks of supplementation of probiotics. | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
