Submitted:
18 February 2025
Posted:
19 February 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Data Sources and Analysis
2.1. Data Source
2.2. Data Analysis
3. Methods
3.1. Integrated Decomposition-Ensemble Model for PSB Market Price Prediction
3.1.1. CEEMDAN Model
3.1.2. ARIMA Model
3.1.3. VMD Model
3.1.4. GRU Network

3.2. Model Evaluation Index
4. Result
4.1. Predicted Model Training Results
4.2. Verification Predicted Models Results
| Date | Actual | Predict | Residuals |
| 2020-8-1 | 3520.00 | 4422.52 | 97.47 |
| 2020-9-1 | 4600.00 | 4606.04 | -6.04 |
| 2020-10-1 | 4590.00 | 4738.86 | -153.86 |
| 2020-11-1 | 4693.00 | 4750.98 | 57.98 |
| 2020-12-1 | 4890.00 | 4892.68 | -2.68 |
| 2021-1-1 | 5110.00 | 5128.93 | -18.93 |
| 2021-2-1 | 5500.00 | 5337.11 | -87.11 |
| 2021-3-1 | 5533.00 | 5459.93 | -126.66 |
| 2021-4-1 | 5640.00 | 5571.37 | 199.04 |
| 2021-5-1 | 6433.33 | 6069.67 | 363.66 |
| 2021-6-1 | 5666.67 | 6522.55 | -255.88 |
| 2021-7-1 | 5540.00 | 6139.05 | -199.05 |
| 2021-8-1 | 6256.67 | 5645.58 | 611.10 |
| 2021-9-1 | 6400.00 | 6206.27 | 193.73 |
| 2021-10-1 | 6730.00 | 6345.15 | 384.85 |
| 2021-11-1 | 6563.33 | 6587.06 | -313.73 |
| 2021-12-1 | 6155.82 | 6618.85 | -463.03 |
| 2022-1-1 | 5880.11 | 5966.36 | -86.25 |
| 2022-2-1 | 5690.00 | 5897.80 | 380.20 |
| 2022-3-1 | 5776.67 | 5580.46 | 196.21 |
| 2022-4-1 | 6066.67 | 5625.06 | -71.61 |
| 2022-5-1 | 5813.33 | 5841.02 | -27.69 |
| 2022-6-1 | 4923.33 | 5119.30 | -195.98 |
| 2022-7-1 | 4923.33 | 5250.18 | -326.85 |
| 2022-8-1 | 5033.33 | 4872.65 | 160.68 |
| 2022-9-1 | 4860.00 | 4928.97 | -68.97 |
| 2022-10-1 | 4476.67 | 4625.76 | -149.09 |
| 2022-11-1 | 4437.94 | 4417.82 | 20.13 |
| 2022-12-1 | 4774.15 | 4810.37 | -36.22 |
| 2023-1-1 | 4478.33 | 4505.79 | 70.54 |
| 2023-2-1 | 5153.33 | 4422.20 | -21.13 |
| 2023-3-1 | 5087.88 | 4374.26 | 378.09 |
| 2023-4-1 | 4776.67 | 4092.53 | -315.86 |
| 2023-5-1 | 4486.67 | 4308.58 | 178.09 |
| 2023-6-1 | 4563.33 | 4568.98 | -5.65 |


5. Discussion
6. Conclusion
Author Contributions
Funding
Data Availability Statement
References
- Wang, D.; Liu, J.; Wang, X.; Chen, Y. Cost-effectiveness analysis and evaluation of a ‘three-old’reconstruction project based on smart system. Cluster Computing 2019, 22, 7895–7905. [Google Scholar] [CrossRef]
- Hwang, S.; Park, M.; Lee, H.-S.; Kim, H. Automated time-series cost forecasting system for construction materials. Journal of construction engineering and management 2012, 138, 1259–1269. [Google Scholar] [CrossRef]
- Marzouk, M.; Hamdala, D. Phasing real estate projects considering profitability and customer satisfaction. Engineering, 2024. [Google Scholar]
- Musarat, M.A.; Alaloul, W.S.; Liew, M.; Maqsoom, A.; Qureshi, A.H. Investigating the impact of inflation on building materials prices in construction industry. Journal of Building Engineering 2020, 32, 101485. [Google Scholar] [CrossRef]
- Kissi, E.; Sadick, M.; Agyemang, D. Drivers militating against the pricing of sustainable construction materials: the Ghanaian quantity surveyors perspective. Case Stud Constr Mater 2018, 8, 507–516. [Google Scholar] [CrossRef]
- Zhao, C.; Hu, P.; Liu, X.; Lan, X.; Zhang, H. Stock market analysis using time series relational models for stock price prediction. Mathematics 2023, 11, 1130. [Google Scholar] [CrossRef]
- Guo, Z.; Jing, X.; Ling, Y.; Yang, Y.; Jing, N.; Yuan, R.; Liu, Y. Optimized air quality management based on air quality index prediction and air pollutants identification in representative cities in China. Scientific Reports 2024, 14, 17923. [Google Scholar] [CrossRef]
- Yin, Y.; Shang, P. Forecasting traffic time series with multivariate predicting method. Applied Mathematics and Computation 2016, 291, 266–278. [Google Scholar] [CrossRef]
- Mehrmolaei, S.; Savargiv, M.; Keyvanpour, M.R. Hybrid learning-oriented approaches for predicting Covid-19 time series data: A comparative analytical study. Engineering Applications of Artificial Intelligence 2023, 126, 106754. [Google Scholar] [CrossRef]
- Tarnate, W.R.D.; Ponci, F.; Monti, A. Uncertainty-aware model predictive control for residential buildings participating in intraday markets. IEEE Access 2022, 10, 7834–7851. [Google Scholar] [CrossRef]
- Uvarova, S.S.; Belyaeva, S.V.; Orlov, A.K.; Kankhva, V.S. Cost Forecasting for Building Materials under Conditions of Uncertainty: Methodology and Practice. Buildings 2023, 13, 2371. [Google Scholar] [CrossRef]
- Jiang, F.; Awaitey, J.; Xie, H. Analysis of construction cost and investment planning using time series data. Sustainability 2022, 14, 1703. [Google Scholar] [CrossRef]
- Ilbeigi, M.; Ashuri, B.; Joukar, A. Time-series analysis for forecasting asphalt-cement price. Journal of Management in Engineering 2017, 33, 04016030. [Google Scholar]
- Yin, L.; Wang, L.; Li, T.; Lu, S.; Tian, J.; Yin, Z.; Li, X.; Zheng, W. U-Net-LSTM: time series-enhanced lake boundary prediction model. Land 2023, 12, 1859. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, Z.; Fang, Z. An effective CNN and Transformer complementary network for medical image segmentation. Pattern Recognition 2023, 136, 109228. [Google Scholar]
- de Zarzà i Cubero, I.; de Curtò i Díaz, J.; Roig, G.; Calafate, C.T. LLM Multimodel Traffic Accident Forecasting. 2023. [Google Scholar]
- Tang, B.Q.; Han, J.; Guo, G.-f.; Chen, Y.; Zhang, S. Building material prices forecasting based on least square support vector machine and improved particle swarm optimization. Architectural Engineering and Design Management 2019, 15, 196–212. [Google Scholar]
- Mir, M.; Kabir, H.D.; Nasirzadeh, F.; Khosravi, A. Neural network-based interval forecasting of construction material prices. Journal of Building Engineering 2021, 39, 102288. [Google Scholar]
- Wang, J.; Ashuri, B. Predicting ENR construction cost index using machine-learning algorithms. International Journal of Construction Education and Research 2017, 13, 47–63. [Google Scholar]
- Liu, Y.; Qin, G.; Huang, X.; Wang, J.; Long, M. Autotimes: Autoregressive time series forecasters via large language models. arXiv preprint arXiv:2402.02370, arXiv:2402.02370 2024.
- Wang, Y.; Yang, D.; Liu, Y. A real-time look-ahead interpolation algorithm based on Akima curve fitting. International Journal of Machine Tools and Manufacture 2014, 85, 122–130. [Google Scholar]
- Hamilton, J.D. Why you should never use the Hodrick-Prescott filter. Review of Economics and Statistics 2018, 100, 831–843. [Google Scholar] [CrossRef]
- Nasir, J.; Aamir, M.; Haq, Z.U.; Khan, S.; Amin, M.Y.; Naeem, M. A new approach for forecasting crude oil prices based on stochastic and deterministic influences of LMD Using ARIMA and LSTM Models. IEEE Access 2023, 11, 14322–14339. [Google Scholar] [CrossRef]
- Jun, W.; Yuyan, L.; Lingyu, T.; Peng, G. A new weighted CEEMDAN-based prediction model: An experimental investigation of decomposition and non-decomposition approaches. Knowledge-based systems 2018, 160, 188–199. [Google Scholar]
- Gao, B.; Huang, X.; Shi, J.; Tai, Y.; Zhang, J. Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks. Renewable Energy 2020, 162, 1665–1683. [Google Scholar] [CrossRef]
- Shumway, R.H.; Stoffer, D.S. Time series analysis and its applications (springer texts in statistics); Springer-Verlag: 2005.
- Thiruchelvam, L.; Dass, S.C.; Asirvadam, V.S.; Daud, H.; Gill, B.S. Determine neighboring region spatial effect on dengue cases using ensemble ARIMA models. Scientific Reports 2021, 11, 5873. [Google Scholar]
- Gan, M.; Pan, H.; Chen, Y.; Pan, S. Application of the Variational Mode Decomposition (VMD) method to river tides. Estuarine, Coastal and Shelf Science 2021, 261, 107570. [Google Scholar]
- Li, X.P.; Shi, Z.-L.; Leung, C.-S.; So, H.C. Sparse index tracking with K-sparsity or ϵ-deviation constraint via ℓ 0-norm minimization. IEEE Transactions on Neural Networks and Learning Systems 2022, 34, 10930–10943. [Google Scholar]
- Nazari, M.; Sakhaei, S.M. Successive variational mode decomposition. Signal Processing 2020, 174, 107610. [Google Scholar]
- Wang, M.-H.; Hung, C. Extension neural network and its applications. Neural Networks 2003, 16, 779–784. [Google Scholar]
- Hu, C.; Cheng, F.; Ma, L.; Li, B. State of charge estimation for lithium-ion batteries based on TCN-LSTM neural networks. Journal of the Electrochemical Society 2022, 169, 030544. [Google Scholar]
- Ghazvini, A.; Sharef, N.M.; Sidi, F.B. Prediction of Course Grades in Computer Science Higher Education Program Via a Combination of Loss Functions in LSTM Model. IEEE Access 2024. [Google Scholar]
- Gao, S.; Huang, Y.; Zhang, S.; Han, J.; Wang, G.; Zhang, M.; Lin, Q. Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. Journal of Hydrology 2020, 589, 125188. [Google Scholar]
- Xu, M.; Shang, P.; Lin, A. Cross-correlation analysis of stock markets using EMD and EEMD. Physica A: Statistical Mechanics and its Applications 2016, 442, 82–90. [Google Scholar]
- Huang, Y.; Yu, J.; Dai, X.; Huang, Z.; Li, Y. Air-quality prediction based on the EMD–IPSO–LSTM combination model. Sustainability 2022, 14, 4889. [Google Scholar] [CrossRef]
- Dong, H.; Qi, K.; Chen, X.; Zi, Y.; He, Z.; Li, B. Sifting process of EMD and its application in rolling element bearing fault diagnosis. Journal of mechanical science and technology 2009, 23, 2000–2007. [Google Scholar]
- Ding, J.; Xiao, D.; Huang, L.; Li, X. Gear fault diagnosis based on VMD sample entropy and discrete hopfield neural network. Mathematical Problems in Engineering 2020, 2020, 8882653. [Google Scholar]
- Zhang, P.; Gao, D.; Lu, Y.; Kong, L.; Ma, Z. Online chatter detection in milling process based on fast iterative VMD and energy ratio difference. Measurement 2022, 194, 111060. [Google Scholar]
- Wang, Y.; Chen, P.; Zhao, Y.; Sun, Y. A denoising method for mining cable PD signal based on genetic algorithm optimization of VMD and wavelet threshold. Sensors 2022, 22, 9386. [Google Scholar] [CrossRef]
- Wang, H.; Wu, F.; Zhang, L. Application of variational mode decomposition optimized with improved whale optimization algorithm in bearing failure diagnosis. Alexandria Engineering Journal 2021, 60, 4689–4699. [Google Scholar]
- Li, J.; Yao, X.; Wang, H.; Zhang, J. Periodic impulses extraction based on improved adaptive VMD and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis. Mechanical Systems and Signal Processing 2019, 126, 568–589. [Google Scholar]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
