Submitted:
04 March 2025
Posted:
04 March 2025
Read the latest preprint version here
Abstract
Keywords:
MSC: 11M20
1. Introduction
2. The Proof of Riemann’s Hypothesis
2.1. Riemann’s Reflection-Symmetric Functional Pair
2.2. Proving Lemma: ’s Global Minima and Non-Trivial Zeros Must Be at s=1/2+iy
2.3. Proving x=1/2 as the Global Minima of and Zeros of Riemann’s Zeta Function Across the Entire Critical Strip
3. Conclusions
Funding
References
- Riemann zeta function - Wikipedia.
- Titchmarsh, E. C. , The Theory of the Riemann Zeta-Function (Oxford University Press, 1986).
- Ivic, A. , The Riemann Zeta-Function: Theory and Applications (Dover Publications, 2003).
- Hilbert, D. , Mathematical problems. Bulletins of the American Mathematical Society 1902, 8, 437–479. [Google Scholar]
- Hardy, G. H. , and Littlewood, J. E. The zeros of Riemann’s zeta function on the critical line, 1921, Math. Zeitschrift.
- Selberg, A. , Collected Papers. Volumes 1 & II (Springer-Verlag, 1989).
- Bober, J. W. , and Hiary, G. A. New Computations of the Riemann Zeta Function on the Critical Line. Experimental Mathematics 2016, 27, 125–137. [Google Scholar] [CrossRef]
- Sabbagh, K. , Riemann Zeta: The Greatest Unsolved Problem in Mathematics (Farrar, Straus and Giroux, 2004).
- NIST Digital Library of Mathematical Functions (DLMF), Sec. 5.4. https://dlmf.nist.gov.
- Tang, J. A rigorous proof of Riemann's hypothesis, Zenodo Preprint (2025), Preprints.org (2025), 10.20944/preprints202502.1458.v1. Website: https://www.preprints.org/manuscript/202502.1458/v1. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).