Submitted:
04 February 2025
Posted:
05 February 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Circulating cfDNA
2.1. Types and Subtypes
2.2. Methods of Detection
3. Search Strategy, Selection Criteria and Data Extraction
4. cfDNA for HCC Diagnosis
4.1. cfDNA Concentration and Integrity (Table 1)
| First author, yearReference | HCC patients | Controls | Species of cfDNA | Sensitivity | Specificity | AUROC (95% CI) | Other key findings |
| Izuka, 2006 [16] | 52 HCV | 30 HCV & 18 controls | cfDNA levels measured by rtPCR (GSTP1 gene) | 69% | 93% | 0.90 (0.83-0.96) | cfDNA superior than AFP or PIVKA-II |
| Iida, 2008 [17] | 96 HCV | 100 HCV | Serum cfDNA levels | NA | NA | NA | cfDNA levels: higher in HCC than non-HCC cases, p<0.001; High cfDNA level: association with HCC inflammatory status |
| Tokuhisa, 2007 [18] | 96 HCV | 100 HCV | cfDNA levels | NA | NA | NA | cfDNA higher in HCC vs non-HCC pts (116 vs 34 ng/mL, p<0.0001) |
| Elzehery, 2022 [19] | 50 HCV | 50 HCV LC & 50 controls | cfDNA levels & cfDNA integrity (Alu247/115) | cfDNA:82% integrity:70% |
cfDNA: 76% integrity: 88% | cfDNA: 0.83 (0.75-0.91); integrity: 0.86 (0.78-0.93) | |
| Lian, 2024 [20] | 63 HBV | 90 CHB | Genome-wide copy number and tumor content in cfDNA | 1 year pre-diagnosis 23% BCLC A:30% |
98% | NA | High tumor content associated with tumor stage & poor survival |
| Jiang, 2015 [24] | 90 | 135 controls (103 CLD) | ctDNA size and mitochondrial DNA | Mitochondrial DNA: 80% | Mitochondrial DNA: 94% | Mitochondrial DNA: 0.93 | |
| Huang, 2016 [23] | 53 (& 19 non-HCC cancers) | 37 controls | cfDNA integrity: Alu247/Alu115 | 43% | 100% | 0.705 | cfDNA integrity: may be useful for HCC treatment surveillance |
| Papatheodoridi, 2021 [9] | 19 CHB | 38 CHB | cfDNA, Alu115, Alu247, nucleosomes & cfDNA integrity (Alu247/115) | NA | NA | NA | HCC-CHB vs CHB – median Alu 247: 64 vs 23, p=0.010; Alu247/115: 1 vs 0.7, p<0.001 |
| Papatheodoridi, 2021 [21] | 37 CHB | 74 CHB | cfDNA levels, Alu 247 & 115, RNase P coding DNA, mitochondrial DNA, DNA methylation | NA | NA | 0.80 (0.71–0.89) for RNase P levels | Median Alu247: 123 vs 69, p=0.042; median RNase P: GE 68 vs 15, p<0.001 |
| Kamal, 2022 [22] | 80 HCV | 80 HCV LC | cfDNA integrity (Alu115/247) by rtPCR | 85% | 97.5% | NA |
4.2. cfDNA Methylation in HCC Diagnosis (Table 2)
| First author, yearReference | HCC pts | Controls | Species of cfDNA | Sensiti-vity | Specifi-city | AUROC (95% CI) | Other key findings | |
| Xu, 2017 [25] | Training cohort | 715 | 560 | HCC-specific methylation marker Panel by targeted bisulfite sequencing |
86% | 94% | 0.97 (0.96-0.98) | Correlation with tumor burden, stage, & treatment response; prediction of survival |
| Validation cohort | 383 | 275 | 83% | 90.5% | 0.94 (0.93−0.96) | |||
| Wang, 2020 [31] | 97 | 80 & 46 CHB/CHC | cfDNA methylation ratio [methylation cp/ (methyla-tion+unmethylation cp)] | 79% | 89% | 0.81 (0.72-0.90) | ||
| Lewin, 2021 [32] | Training cohort | 41 | 46 LC | cfDNA methylation markers: HCCBloodTest (Epigenomics AG) & NGS panel | 77% & 57%; NGS & AFP:68% | 64% & 97%; NGS & AFP: 97% | NGS: 0.85 (0.78–0.91) NGS & AFP: 0.90 (0.84-0.95) |
|
| Testing cohort | 60 | 103 LC | ||||||
| Luo, 2022 [26] | Training cohort | 120 | 290 (65 HBsAg+) & 92 LC | cfDNA methylation profiles based on tissue methylation profiles from pts and controls | 86% | 98% | 0.98 (0.97-0.99) | For early-stage HCC diagnosis: AUROC 0.93 (95% CI: 0.90-0.96) |
| Validation cohort | 67 | 242 (56 HBsAg+) & 111 LC | 84% | 96% | 0.97 (0.95–0.99) | |||
| Lin, 2022 [33] | Phase 2 study | 122 | 125 CLD | HelioLiver Test: methylation, clinical & tumor markers | 85% | 91% | 0.94 (0.92-0.97) | HelioLiver Test superior sensitivity for HCC detection than AFP and GALAD score |
| Wang, 2022 [27] | Training cohorts | 30 & 60 | 30 & 60 | (Epi)Genetic alterations in cfDNA and genome-wide discovery of methylation markers | 93% | 95% | 0.96 (0.93-1.00) | |
| Independent cohort | 58 | 198 | 90% | 94% | 0.93 (0.90-0.97) | |||
| Phan, 2022 [30] | Testing cohort | 58 | 121 LC or CH | cfDNA methylation markers (450 target regions, 18,000 CpG sites) | 62% | 91% | 0.84 (0.82–0.90) | Plus GALAD score – AUROC: 0.87 (95% CI: 0.85–0.94) (sensitivity: 69%, specificity: 96%) |
| Validation cohort | 48 | 72 LC or CH | 60% | 96% | 0.84 (0.82–0.90) | |||
| Deng, 2023 [28] | 62 | 39 & 67 CLD | cfDNA methylation by whole genome sequencing plus deep learning techniques | 94% (early sta-ge HCC: 90%) |
98.5% (early sta-ge HCC: 89.5%) |
0.99 (0.98-0.99) | Superior diagnostic accuracy than AFP | |
| Guo, 2023 [29] | 73 | 84 & 22 CLD | cfDNA methylation by enzymatic methyl sequencing | 90% | 97% | 0.96 (0.93-0.99) | ||
| Han, 2014 [34] | 160 HBV | 133 (88 CHB) | Methylation of TGR5 promoter | TGR5+ AFP: 65%-81% | TGR5+AFP: 85%-39% | TGR5 without AFP: 0.67 (0.61–0.73.) | ||
| Li, 2014 [36] | 136 HBV | 35 & 46 CHB | Methylation at IGFBP7 promoter | 65% | 83% | 0.74 | HCC with vascular invasion: higher IGFBP7 methylation rates (84% vs 60%, p=0.010) | |
| Huang, 2014 [35] | 66 | 43 CLD | Methylation at INK4A promoter | 65/39/20% for 5/7/ 10% CpG | 87/96.5/99% for 5/7/10% CpG cut-off | 0.82 |
INK4A methylation & AFP: sensitivity 80% (45.5% for AFP alone) | |
| Oussalah, 2018 [37] | Initial study | 51 | 135 LC | mSEPT9 test: SEPT9 promoter methylation in cfDNA | 94% | 84% | 0.94 (0.90–0.97) | |
| Replication | 47 | 56 LC | 85% | 91% | 0.93 (0.86–0.97) | |||
| Kim, 2023 [38] | 313 | 413 (211 high risk) | Methylation markers of RNF135 & LDHB | 57%; & AFP:70% | 94%; & AFP: 93% | 0.80 (0.76-0.83) | Superior sensitivity than AFP alone (45%) | |
| Cai, 2019 [39] | 1204 | 958 & 392 CHB/LC | Genome-wide 5-hydro-xymethylcytosines: 32-gene diagnostic model | 83% | 76% | 0.88 (0.86-0.91) Early stage HCC: 0.85 (0.81-0.89) |
Superior performance than AFP alone | |
| Cai, 2021 [40] | Training set | 103 | 167 | HCC score: 5-hydroxy-xymethylcytosine signatures & AFP & des-γ-carboxy-prothrombin | 79% | 91% | 0.92 (0.88−0.92) | Prediction of relapse and survival after resection in high HCC recurrence risk pts |
| Test set | 32 | 60 | 94% | 78% | 0.95 (0.89−0.95) | |||
| Guo, 2024 [41] | Training cohort | 293 | 266 (96 CHB/LC) | Differentially methylated regions (DMRs) by NGS & quantitative methyla-tion-specific PCR HepaAiQ: 20 best DMRs |
86% | 92% | 0.94 (0.93-0.96) | High postoperative HepaAiQ score: higher HCC recurrence risk (Hazard Ratio: 3.33, p<0.001) |
| Validation cohort | 205 | 318 (100 CHB/LC) | 84% | 90% | 0.94 (0.93-0.95) | |||
| Independent cohort | 65 | 124 CHB/LC | 71% | 90% | ||||
4.3. cfDNA Fragments Size and Nucleosomes (Table 3)
| First author, yearReference | HCC pts | Controls | Species of cfDNA | Sensitivity | Specificity | AUROC (95% CI) | Other key findings | ||
| Jin, 2021 [42] | 197 HBV | 187 HBV | Fragment size, tumor fraction, copy number & 4-mer end motifs | NA | NA | NA | These markers can help in HCC detection | ||
| Meng, 2021 [44] | 76 | 247 | Copy-numbers & fragment size plus AFP | 75% | 98% | 0.95 | High score: shorter recurrence-free survival | ||
| Chen, 2021 [47] | Training | 255 | 260 & 347 LC | HIFI score = 4 cfDNA genomic features: nucleosome footprint, motif, 5hmC, fragmentation profiles | |||||
| Validation | 95 | 100 & 100 LC | 96% | 95% | 0.995 (0.99–1.000) | ||||
| Test | 131 | 116 & 1800 LC | 95% | 98% | 0.996 (0.992–0.999) | ||||
| Sun, 2022 [12] | 110 HCC (105 HBV, 5 HCV) | 342 (100 HBV & 99 HBV LC) | Fragment size by whole-genome sequencing | 87% | 88% | NA | |||
| Zhang, 2022 [43] | Training cohort | 159 (& 26/7 ICC/mixed) | 170 (51 LC/HBV) | cfDNA fragmentomic profiles using whole-genome sequencings | 97% | 99% | 0.995 | ||
| Test cohort | 157 (& 26/6 ICC/mixed) | 164 (51 LC/HBV) | NA | NA | NA | ||||
| Fan, 2023 [49] | Training cohort | 47 | 1,706 LC | aMAP2 Plus score, aMAP score & AFP & 3 cfDNA signatures (nucleosome, fragment and motif scores) | 70% | 92% | 0.89 (0.83-0.94) | ||
| Validation cohort | 67 | 2,520 LC | 67% | 88% | 0.85 (0.80-0.90) | ||||
| Foda, 2023 [45] | Training cohort | 75 | 426 (133 CLD) | cfDNA fragmentation profiles by low-coverage whole-genome sequencing & machine learning program | Average/ High risk: 88%/85% | Average/ High risk: 98%/80% | Average/High risk: 0.98 (0.97–0.99), /0.90 (0.86-0.94) |
||
| Validation cohort | 90 | 133 (101 LC/HBV) | NA | NA | High risk: 0.97 (0.95–0.99) |
||||
| Nguyen, 2023 [46] | Test cohort | 55 | 55 | ctDNA fragmentomics, 13 HCC-related gene mutations | 89% | 82% | 0.88 | Incorporation of mutation fragment length enhances early HCC detection | |
| Validation | 54 | 53 | 81% | 81% | 0.86 | ||||
| Chen, 2024 [48] | Stage 1 | 510 | 4561 LC | PreCar Score =5 cfDNA genomic features: nucleo-some footprint, motif, 5hmC, fragmentation profiles | 94% | 95% | NA | PreCar Score: higher sensitivity than US or AFP; PreCar Score plus US: improved sensitivity for early/very early HCC | |
| Stage 2 | 76 | 2487 LC | 51% | 96% | 0.79 (0.73-0.85) | ||||
4.4. cfDNA Target Mutations (Table 4)
| First author, yearReference | HCC pts | Controls | Species of cfDNA | Sensitivity | Specificity | AUROC (95% CI) | Other key findings | |
| Wu, 2023 [50] | Test cohort | 151 | 145 LC | Gene mutation signatures by cSMART & NGS: TERT, TP53 & CTNNB1 muta-tions plus serum markers | 89% | 81% | 0.87 |
|
| Validation cohort | 112 | 88 LC | 81% | 82% | ||||
| Li, 2020 [51] | 50 HBV | Virus-host chimera DNA (vh-DNA) | 98% (detection limit: 1.5 cm) | NA | NA | Correlation between vh-DNA copy number and tumor size: r=0.7955, p<0.0001. | ||
| Campani, 2024 [59] | 173 | 56 CLD | ctDNA & cfDNA: mutations in TERT, TP53, CTNNB1, PIK3CA & NFE2L2 | ctDNA mutations correlated with active HCC (40.2%) vs controls (1.8%). | ||||
5. cfDNA for HCC Prognosis
6. cfDNA and HCC Therapy
6.1. Surgical or Locoregional Therapies (Table 6)
| First author, yearReference | Study population | Study design | Main objective | Marker type | Methodology | Key Findings |
| Tokuhisa, 2007 [18] | 96 HCV-HCC patients (87 resection) & 100 HCV carriers | Case-control | cfDNA levels for prediction of survival & distant metastasis | cfDNA concentration | Real-time PCR quantification of cfDNA | Prognostic cutoff - High cfDNA levels (>117.8 ng/mL): shorter OS (HR:3.4, 95% CI: 1.5–7.6, p=0.004) & greater risk of EHR (HR:4.5, 95% CI: 1.3–14.9, p=0.014).Tumor characteristics - cfDNA levels positively associated with tumor size and differentiation |
| Long, 2020 [53] |
82 HCC patients after hepa-tectomy | Prospective cohort study | Postoperative cfDNA levels as biomarker for recurrence and prognosis in HCC patients | Postoperative cfDNA concentra-tions | cfDNA postoperatively using a fluorometric dsDNA assay | Postoperative cfDNA cutoff for recurrence: 2.95 ng/μL (AUC:0.68, sensitivity:88%, specificity:45%).Survival analysis - High postoperative cfDNA (>2.95 ng/μL): poorer RFS (median 14 vs. 19.5 mos, p=0.02)Independent risk factors for recurrence: cfDNA (HR: 1.287, p=0.023), tumor number (HR:0.037, p=0.004) & microvascular invasion (HR:0.127, p=0.005) |
| Wang, 2021 [54] |
117 HBV-related HCC patients receiving radical treatments | Prospective cohort study | Multi-level cfDNA CNV indicators for prognosis after radical treatments | cfDNA CNVs (TFx, P-score, S-score) | Low-coverage whole-genome sequencing of plasma cfDNA, CNV profiling at genome-wide, chromosomal-arm, and bin levels |
Genome-wide CNVs - 3 genome-wide indicators (TFx, P-score, and S-score): associated with poorer RFS and OS; High TFx (≥0.02), P-score (≥0.74) & S-score (≥0.04): associated with worse prognosis Chromosomal-arm CNVs - 17p loss/8q gain: HR 4.31/3.20 for death (p<0.001) & HR 2.74/2.49 for recurrence (p≤0.003).Bin-level CNVs - A novel bin score (1Mb resolution): outperformed genome-wide and chromosomal-arm indicators in prognosis (AUC: 0.820 for 1-year survival & 0.746 for 3-year survival) |
| Fu, 2022 [55] | 258 HCC patients undergoing curative liver resection | Prospective cohort study | Preoperative ctDNA for early recurrence prediction | ctDNA | Blood samples collected preoperatively, ctDNA detection and mutation analysis, RNA sequencing for immune profiling |
Early recurrence prediction - Number of ctDNA-mutant genes: associated with early HCC recurrence (HR:2.2, p<0.001). High-risk patients - Mutations in HRGs (APC, ARID1A, CDKN2A, FAT1, LRP1B, MAP3K1, PREX2, TERT, TP53): worse RFS (HR:13, p<0.001).Prognostic nomogram - Combination of ctDNA risk level and TNM stage predicted recurrence with high accuracy (C index:0.76).Therapy response prediction - FAT1 or LRP1B but no TP53 mutations: worse PFS with lenvatinib plus ICIs after recurrence (HR:17, p<0.001). Immune profiling - ctDNA status correlates with tumor immune infiltration |
| Dong, 2022 [56] | 64 HCC patients treated with TACE, 57 LC patients & 32 healthy controls | Prospective case-control study | cfDNA copy number profiling and TFx as biomarkers for TACE efficacy | cfDNA, CNV, TFx | LD-WGS of cfDNA pre- and post-TACE; tumor fraction and CNV profiling |
Pre-TACE – High TFx (≥0.1): correlation with tumor burden and prediction of shorter PFS (97 vs. 189 days) & OS (243 vs. 630 days) Post-TACE - Reductions in TFx (>0.03): better PFS (163 vs. 63 days, p=0.007) and aligned with imaging-based assessments. Lipiodol deposition - Amplifications in chromosomes 1q,3p, 6p, 8q, 10p,12q, 18p and18q were associated with poor lipiodol deposition. TFx outperformed AFP levels in predicting tumor burden and therapeutic outcomes (Sensitivity: 85.3%, Specificity: 94.4%). |
| Muraoka, 2021 [14] | 67 HCC patients: 32 TACE, 35 TKIs | Prospective cohort study | cfDNA hTERT promoter mutations for predicting responses | cfDNA (hTERT promoter mutation) | cfDNA by dPCR; analysis of mutant vs. wild-type cfDNA changes |
TACE – Mutant cfDNA rate increased post-TACE (33% to 73%, (p=0.001). Post-TACE correlations: mutant cfDNA changes with tumor necrosis (p<0.001) & wild-type cfDNA changes with AST changes (p<0.001) TKIs - Mutant cfDNA levels peaked within 1 week only in responders, who had longer PFS (10 vs. 3.4 months, p = 0.004). |
| Nakatsuka, 2021 [57] | 100 HCC patients: TACE: 32, MTAs (lenvatinib, sorafenib, regorafenib): 35, RFA: 33 | Prospective cohort study | cfDNA levels and mutation profiles for tumor response & treatment outcomes | cfDNA, ctDNA, TERT promoter mutations | cfDNA levels measured pre- & post-treatment; TERT mutations detected using ddPCR; ultra-deep sequencing (22,000x coverage) |
Baseline cfDNA -High (>70.7 ng/mL) vs low baseline cfDNA: shorter OS (5.5 vs. 14 mos, p<0.001) Post-treatment - cfDNA levels increased post-TACE (49 to 249 ng/mL, p<0.001) & post-RFA (39 to 96 ng/mL, p < 0.001); rate of TERT mutations increased post-TACE (45% to 57%) & post-RFA (42% to 55%) Post-MTA - cfDNA levels increased after initiation of MTA; >1.5-fold cfDNA increase within 1 week: longer PFS (10 vs. 3.4 mos, p=0.004) Lenvatinib response: associated with mutations in genes like AMER1, MLL3 and NOTCH2 identified by ultra-deep sequencing |
| Kim, 202358 |
37 patients with advanced HCC under-going RT | Prospective cohort study | cfDNA for prediction of treatment response in advanced HCC treated with RT | cfDNA genomic instability score (I-score) | cfDNA analysis at pre-RT and 1 week post-RT, whole-genome sequencing, genomic instability scoring |
Genomic instability - I-score: predictive of PFS (AUC=0.71; sensitivity=50%, specificity=91%) Pre-RT I-score - Pre-treatment I-score (≥6.3) was associated with worse PFS (HR=2.69, p=0.017) and correlated with tumor burden. Post-RT I-score - High I-score (≥6.2): poor responses (non-complete response, p=0.034). Dynamic changes in I-score - delta I-score ratio reflected treatment effects, with negative/positive ratios in responders/non-responders. |
| Campani, 2024 [59] | 173 HCC patients and 56 controls (including cirrhotic patients) | Prospective case-control | ctDNA as biomarker for tumor biology and treatment monitoring | ctDNA | NGS on MiSeq & droplet based digital PCR for TERT, TP53, CTNNB1, PIK3CA NFE2L2 mutations |
ctDNA mutations - 40% of active HCC, 14.6% of inactive HCC & 1.8% of controls - Increasing prevalence in advanced stages (BCLC C: 65% vs. BCLC 0: 8%). - Reduced OS with locoregional therapies (HR:2.6, p=0.001). ctDNA mutations post-treatment - Detection prior to and 24 hours after percutaneous ablation & persistence throughout the initial 4 cycles of atezolizumab+bevacizumab: lower OS and RFS. |
6.2. Systemic Therapies (Table 7)
7. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018, 68, 394–424. [Google Scholar] [CrossRef]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73 Suppl 1, 4–13. [Google Scholar] [CrossRef]
- Villanueva, A. Hepatocellular Carcinoma. New England Journal of Medicine 2019, 380, 1450–1462. [Google Scholar] [CrossRef] [PubMed]
- EASL. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Kelley, R.; Villanueva, A.; Singal, A.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nature Reviews Disease Primers 2021, 7, 6. [Google Scholar] [CrossRef]
- Lehrich, B.M.; Zhang, J.; Monga, S.P.; Dhanasekaran, R. Battle of the biopsies: Role of tissue and liquid biopsy in hepatocellular carcinoma. J Hepatol 2024, 80, 515–530. [Google Scholar] [CrossRef]
- Schwarzenbach, H.; Hoon, D.S.; Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011, 11, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.T.; Zhang, C.; Wu, J.; Lu, P.; Xu, L.; Yuan, H.; Feng, Y.; Chen, Z.S.; Wang, N. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma. Mol Cancer 2024, 23, 189. [Google Scholar] [CrossRef]
- Papatheodoridi, A.; Karakousis, N.; Lembessis, P.; Chatzigeorgiou, A.; Papatheodoridis, G.V. The Significance of Circulating Cell-Free DNA Markers in Chronic Hepatitis B Patients with Hepatocellular Carcinoma. Pathogens 2021, 10. [Google Scholar] [CrossRef]
- Yan, L.; Chen, Y.; Zhou, J.; Zhao, H.; Zhang, H.; Wang, G. Diagnostic value of circulating cell-free DNA levels for hepatocellular carcinoma. International Journal of Infectious Diseases 2018, 67, 92–97. [Google Scholar] [CrossRef]
- Tran, N.H.; Kisiel, J.; Roberts, L.R. Using cell-free DNA for HCC surveillance and prognosis. JHEP Rep 2021, 3, 100304. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Feng, W.; Cui, P.; Ruan, R.; Ma, W.; Han, Z.; Sun, J.; Pan, Y.; Zhu, J.; Zhong, X.; et al. Detection and monitoring of HBV-related hepatocellular carcinoma from plasma cfDNA fragmentation profiles. Genomics 2022, 114, 110502. [Google Scholar] [CrossRef]
- Kaseb, A.O.; Sanchez, N.S.; Sen, S.; Kelley, R.K.; Tan, B.; Bocobo, A.G.; Lim, K.H.; Abdel-Wahab, R.; Uemura, M.; Pestana, R.C.; et al. Molecular Profiling of Hepatocellular Carcinoma Using Circulating Cell-Free DNA. Clin Cancer Res 2019, 25, 6107–6118. [Google Scholar] [CrossRef]
- Muraoka, M.; Maekawa, S.; Katoh, R.; Komiyama, Y.; Nakakuki, N.; Takada, H.; Matsuda, S.; Suzuki, Y.; Sato, M.; Tatsumi, A.; et al. Usefulness of Cell-Free Human Telomerase Reverse Transcriptase Mutant DNA Quantification in Blood for Predicting Hepatocellular Carcinoma Treatment Efficacy. Hepatol Commun 2021, 5, 1927–1938. [Google Scholar] [CrossRef]
- Yang, J.; Lin, N.; Niu, M.; Yin, B. Circulating tumor DNA mutation analysis: advances in its application for early diagnosis of hepatocellular carcinoma and therapeutic efficacy monitoring. Aging (Albany NY) 2024, 16, 11460–11474. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, N.; Sakaida, I.; Moribe, T.; Fujita, N.; Miura, T.; Stark, M.; Tamatsukuri, S.; Ishitsuka, H.; Uchida, K.; Terai, S.; et al. Elevated levels of circulating cell-free DNA in the blood of patients with hepatitis C virus-associated hepatocellular carcinoma. Anticancer Res 2006, 26, 4713–4719. [Google Scholar]
- Iida, M.; Iizuka, N.; Sakaida, I.; Moribe, T.; Fujita, N.; Miura, T.; Tamatsukuri, S.; Ishitsuka, H.; Uchida, K.; Terai, S.; et al. Relation between serum levels of cell-free DNA and inflammation status in hepatitis C virus-related hepatocellular carcinoma. Oncol Rep 2008, 20, 761–765. [Google Scholar] [PubMed]
- Tokuhisa, Y.; Iizuka, N.; Sakaida, I.; Moribe, T.; Fujita, N.; Miura, T.; Tamatsukuri, S.; Ishitsuka, H.; Uchida, K.; Terai, S.; et al. Circulating cell-free DNA as a predictive marker for distant metastasis of hepatitis C virus-related hepatocellular carcinoma. Br J Cancer 2007, 97, 1399–1403. [Google Scholar] [CrossRef] [PubMed]
- Elzehery, R.; Effat, N.; El Farahaty, R.; Elsayed Farag, R.; Abo-Hashem, E.M.; Elhelaly, R. Circulating Cell-Free DNA and DNA Integrity as Molecular Diagnostic Tools in Hepatocellular Carcinoma. Am J Clin Pathol 2022, 158, 254–262. [Google Scholar] [CrossRef]
- Lian, S.; Lu, C.; Li, F.; Yu, X.; Ai, L.; Wu, B.; Gong, X.; Zhou, W.; Liang, X.; Zhan, J.; et al. Monitoring Hepatocellular Carcinoma Using Tumor Content in Circulating Cell-Free DNA. Clin Cancer Res 2024, 30, 2772–2779. [Google Scholar] [CrossRef]
- Papatheodoridi, A.; Chatzigeorgiou, A.; Chrysavgis, L.; Lembessis, P.; Loglio, A.; Facchetti, F.; Cholongitas, E.; Koutsilieris, M.; Lampertico, P.; Papatheodoridis, G. Circulating cell-free DNA species affect the risk of hepatocellular carcinoma in treated chronic hepatitis B patients. J Viral Hepat 2021, 28, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.M.; Abdelaziz, A.O.; El-Baz, H.N.; Mohamed, G.M.; Saleh, S.S.; Nabeel, M.M.; Elbaz, T.M.; Lithy, R.; Shousha, H.I. Plasma cell-free DNA integrity index and hepatocellular carcinoma treated or not with direct-acting antivirals: A case-control study. Arab J Gastroenterol 2022, 23, 39–44. [Google Scholar] [CrossRef]
- Huang, A.; Zhang, X.; Zhou, S.L.; Cao, Y.; Huang, X.W.; Fan, J.; Yang, X.R.; Zhou, J. Plasma Circulating Cell-free DNA Integrity as a Promising Biomarker for Diagnosis and Surveillance in Patients with Hepatocellular Carcinoma. J Cancer 2016, 7, 1798–1803. [Google Scholar] [CrossRef]
- Jiang, P.; Chan, C.W.; Chan, K.C.; Cheng, S.H.; Wong, J.; Wong, V.W.; Wong, G.L.; Chan, S.L.; Mok, T.S.; Chan, H.L.; et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci U S A 2015, 112, E1317–1325. [Google Scholar] [CrossRef]
- Xu, R.-h.; Wei, W.; Krawczyk, M.; Wang, W.; Luo, H.; Flagg, K.; Yi, S.; Shi, W.; Quan, Q.; Li, K.; et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nature Materials 2017, 16, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Ma, F.; Liu, H.; Hu, J.; Rao, L.; Liu, C.; Jiang, Y.; Kuangzeng, S.; Lin, X.; Wang, C.; et al. Cell-free DNA methylation markers for differential diagnosis of hepatocellular carcinoma. BMC Med 2022, 20, 8. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Song, Q.; Ren, J.; Zhang, W.; Wang, Y.; Zhou, L.; Wang, D.; Chen, K.; Jiang, L.; Zhang, B.; et al. Simultaneous analysis of mutations and methylations in circulating cell-free DNA for hepatocellular carcinoma detection. Sci Transl Med 2022, 14, eabp8704. [Google Scholar] [CrossRef]
- Deng, Z.; Ji, Y.; Han, B.; Tan, Z.; Ren, Y.; Gao, J.; Chen, N.; Ma, C.; Zhang, Y.; Yao, Y.; et al. Early detection of hepatocellular carcinoma via no end-repair enzymatic methylation sequencing of cell-free DNA and pre-trained neural network. Genome Medicine 2023, 15, 93. [Google Scholar] [CrossRef]
- Guo, P.; Zheng, H.; Li, Y.; Li, Y.; Xiao, Y.; Zheng, J.; Zhu, X.; Xu, H.; He, Z.; Zhang, Q.; et al. Hepatocellular carcinoma detection via targeted enzymatic methyl sequencing of plasma cell-free DNA. Clin Epigenetics 2023, 15, 2. [Google Scholar] [CrossRef]
- Phan, T.H.; Chi Nguyen, V.T.; Thi Pham, T.T.; Nguyen, V.C.; Ho, T.D.; Quynh Pham, T.M.; Tran, T.H.; Nguyen, T.D.; Khang Le, N.D.; Nguyen, T.H.; et al. Circulating DNA methylation profile improves the accuracy of serum biomarkers for the detection of nonmetastatic hepatocellular carcinoma. Future Oncol 2022, 18, 4399–4413. [Google Scholar] [CrossRef]
- Wang, J.; Yang, L.; Diao, Y.; Liu, J.; Li, J.; Li, R.; Zheng, L.; Zhang, K.; Ma, Y.; Hao, X. Circulating tumour DNA methylation in hepatocellular carcinoma diagnosis using digital droplet PCR. J Int Med Res 2021, 49, 300060521992962. [Google Scholar] [CrossRef] [PubMed]
- Lewin, J.; Kottwitz, D.; Aoyama, J.; deVos, T.; Garces, J.; Hasinger, O.; Kasielke, S.; Knaust, F.; Rathi, P.; Rausch, S.; et al. Plasma cell free DNA methylation markers for hepatocellular carcinoma surveillance in patients with cirrhosis: a case control study. BMC Gastroenterol 2021, 21, 136. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Lin, Y.; Xu, J.; Liu, D.; Li, D.; Meng, H.; Gallant, M.A.; Kubota, N.; Roy, D.; Li, J.S.; et al. A multi-analyte cell-free DNA-based blood test for early detection of hepatocellular carcinoma. Hepatol Commun 2022, 6, 1753–1763. [Google Scholar] [CrossRef]
- Han, L.Y.; Fan, Y.C.; Mu, N.N.; Gao, S.; Li, F.; Ji, X.F.; Dou, C.Y.; Wang, K. Aberrant DNA methylation of G-protein-coupled bile acid receptor Gpbar1 (TGR5) is a potential biomarker for hepatitis B Virus associated hepatocellular carcinoma. Int J Med Sci 2014, 11, 164–171. [Google Scholar] [CrossRef]
- Huang, G.; Krocker, J.D.; Kirk, J.L.; Merwat, S.N.; Ju, H.; Soloway, R.D.; Wieck, L.R.; Li, A.; Okorodudu, A.O.; Petersen, J.R.; et al. Evaluation of INK4A promoter methylation using pyrosequencing and circulating cell-free DNA from patients with hepatocellular carcinoma. Clin Chem Lab Med 2014, 52, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Fan, Y.C.; Gao, S.; Sun, F.K.; Yang, Y.; Wang, K. Methylation of serum insulin-like growth factor-binding protein 7 promoter in hepatitis B virus-associated hepatocellular carcinoma. Genes Chromosomes Cancer 2014, 53, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Oussalah, A.; Rischer, S.; Bensenane, M.; Conroy, G.; Filhine-Tresarrieu, P.; Debard, R.; Forest-Tramoy, D.; Josse, T.; Reinicke, D.; Garcia, M.; et al. Plasma mSEPT9: A Novel Circulating Cell-free DNA-Based Epigenetic Biomarker to Diagnose Hepatocellular Carcinoma. EBioMedicine 2018, 30, 138–147. [Google Scholar] [CrossRef]
- Kim, S.C.; Kim, D.W.; Cho, E.J.; Lee, J.Y.; Kim, J.; Kwon, C.; Kim-Ha, J.; Hong, S.K.; Choi, Y.; Yi, N.J.; et al. A circulating cell-free DNA methylation signature for the detection of hepatocellular carcinoma. Mol Cancer 2023, 22, 164. [Google Scholar] [CrossRef]
- Cai, J.; Chen, L.; Zhang, Z.; Zhang, X.; Lu, X.; Liu, W.; Shi, G.; Ge, Y.; Gao, P.; Yang, Y.; et al. Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma. Gut 2019, 68, 2195–2205. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, J.; He, Y.; Xia, L.; Dong, X.; Chen, G.; Zhou, Y.; Hu, X.; Zhong, S.; Wang, Y.; et al. Liquid biopsy by combining 5-hydroxymethylcytosine signatures of plasma cell-free DNA and protein biomarkers for diagnosis and prognosis of hepatocellular carcinoma. ESMO Open 2021, 6, 100021. [Google Scholar] [CrossRef]
- Guo, D.Z.; Huang, A.; Wang, Y.C.; Zhou, S.; Wang, H.; Xing, X.L.; Zhang, S.Y.; Cheng, J.W.; Xie, K.H.; Yang, Q.C.; et al. Early detection and prognosis evaluation for hepatocellular carcinoma by circulating tumour DNA methylation: A multicentre cohort study. Clin Transl Med 2024, 14, e1652. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Liu, X.; Zheng, W.; Su, L.; Liu, Y.; Guo, X.; Gu, X.; Li, H.; Xu, B.; Wang, G.; et al. Characterization of fragment sizes, copy number aberrations and 4-mer end motifs in cell-free DNA of hepatocellular carcinoma for enhanced liquid biopsy-based cancer detection. Mol Oncol 2021, 15, 2377–2389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Z.; Tang, W.; Wang, X.; Liu, R.; Bao, H.; Chen, X.; Wei, Y.; Wu, S.; Bao, H.; et al. Ultrasensitive and affordable assay for early detection of primary liver cancer using plasma cell-free DNA fragmentomics. Hepatology 2022, 76, 317–329. [Google Scholar] [CrossRef]
- Meng, Z.; Ren, Q.; Zhong, G.; Li, S.; Chen, Y.; Wu, W.; Feng, Y.; Mao, M.; Zhang, F.; Long, G. Noninvasive Detection of Hepatocellular Carcinoma with Circulating Tumor DNA Features and α-Fetoprotein. The Journal of Molecular Diagnostics 2021, 23, 1174–1184. [Google Scholar]
- Foda, Z.H.; Annapragada, A.V.; Boyapati, K.; Bruhm, D.C.; Vulpescu, N.A.; Medina, J.E.; Mathios, D.; Cristiano, S.; Niknafs, N.; Luu, H.T.; et al. Detecting Liver Cancer Using Cell-Free DNA Fragmentomes. Cancer Discov 2023, 13, 616–631. [Google Scholar] [CrossRef]
- Nguyen, V.C.; Nguyen, T.H.; Phan, T.H.; Tran, T.T.; Pham, T.T.T.; Ho, T.D.; Nguyen, H.H.T.; Duong, M.L.; Nguyen, C.M.; Nguyen, Q.B.; et al. Fragment length profiles of cancer mutations enhance detection of circulating tumor DNA in patients with early-stage hepatocellular carcinoma. BMC Cancer 2023, 23, 233. [Google Scholar] [CrossRef]
- Chen, L.; Abou-Alfa, G.K.; Zheng, B.; Liu, J.F.; Bai, J.; Du, L.T.; Qian, Y.S.; Fan, R.; Liu, X.L.; Wu, L.; et al. Genome-scale profiling of circulating cell-free DNA signatures for early detection of hepatocellular carcinoma in cirrhotic patients. Cell Res 2021, 31, 589–592. [Google Scholar] [CrossRef]
- Chen, L.; Wu, T.; Fan, R.; Qian, Y.S.; Liu, J.F.; Bai, J.; Zheng, B.; Liu, X.L.; Zheng, D.; Du, L.T.; et al. Cell-free DNA testing for early hepatocellular carcinoma surveillance. EBioMedicine 2024, 100, 104962. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Chen, L.; Zhao, S.; Yang, H.; Li, Z.; Qian, Y.; Ma, H.; Liu, X.; Wang, C.; Liang, X.; et al. Novel, high accuracy models for hepatocellular carcinoma prediction based on longitudinal data and cell-free DNA signatures. Journal of Hepatology 2023, 79, 933–944. [Google Scholar] [CrossRef]
- Wu, T.; Fan, R.; Bai, J.; Yang, Z.; Qian, Y.-S.; Du, L.-T.; Wang, C.-Y.; Wang, Y.-C.; Jiang, G.-Q.; Zheng, D.; et al. The development of a cSMART-based integrated model for hepatocellular carcinoma diagnosis. Journal of Hematology & Oncology 2023, 16, 1. [Google Scholar]
- Li, C.L.; Ho, M.C.; Lin, Y.Y.; Tzeng, S.T.; Chen, Y.J.; Pai, H.Y.; Wang, Y.C.; Chen, C.L.; Lee, Y.H.; Chen, D.S.; et al. Cell-Free Virus-Host Chimera DNA From Hepatitis B Virus Integration Sites as a Circulating Biomarker of Hepatocellular Cancer. Hepatology 2020, 72, 2063–2076. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.H.; Wei, W.; Krawczyk, M.; Wang, W.; Luo, H.; Flagg, K.; Yi, S.; Shi, W.; Quan, Q.; Li, K.; et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater 2017, 16, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Long, G.; Fang, T.; Su, W.; Mi, X.; Zhou, L. The prognostic value of postoperative circulating cell-free DNA in operable hepatocellular carcinoma. Scand J Gastroenterol 2020, 55, 1441–1446. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, K.; Wang, X.; Liu, Y.; Guo, D.; Bian, Z.; Su, L.; Liu, K.; Gu, X.; Guo, X.; et al. Multiple-level copy number variations in cell-free DNA for prognostic prediction of HCC with radical treatments. Cancer Sci 2021, 112, 4772–4784. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, Z.; Hu, Z.; Yang, Z.; Pan, Y.; Chen, J.; Wang, J.; Hu, D.; Zhou, Z.; Xu, L.; et al. Preoperative serum ctDNA predicts early hepatocellular carcinoma recurrence and response to systemic therapies. Hepatol Int 2022, 16, 868–878. [Google Scholar] [CrossRef]
- Dong, X.; Chen, G.; Huang, X.; Li, Z.; Peng, F.; Chen, H.; Zhou, Y.; He, L.; Qiu, L.; Cai, Z.; et al. Copy number profiling of circulating free DNA predicts transarterial chemoembolization response in advanced hepatocellular carcinoma. Mol Oncol 2022, 16, 1986–1999. [Google Scholar] [CrossRef]
- Nakatsuka, T.; Nakagawa, H.; Hayata, Y.; Wake, T.; Yamada, T.; Nishibatake Kinoshita, M.; Nakagomi, R.; Sato, M.; Minami, T.; Uchino, K.; et al. Post-treatment cell-free DNA as a predictive biomarker in molecular-targeted therapy of hepatocellular carcinoma. J Gastroenterol 2021, 56, 456–469. [Google Scholar] [CrossRef]
- Kim, D.Y.; Cho, E.H.; Kim, J.S.; Chie, E.K.; Kang, H.C. Plasma Circulating Cell-free DNA in Advanced Hepatocellular Carcinoma Patients Treated With Radiation Therapy. In Vivo 2023, 37, 2306–2313. [Google Scholar] [CrossRef]
- Campani, C.; Imbeaud, S.; Couchy, G.; Ziol, M.; Hirsch, T.Z.; Rebouissou, S.; Noblet, B.; Nahon, P.; Hormigos, K.; Sidali, S.; et al. Circulating tumour DNA in patients with hepatocellular carcinoma across tumour stages and treatments. Gut 2024, 73, 1870–1882. [Google Scholar] [CrossRef]
- Oh, C.R.; Kong, S.Y.; Im, H.S.; Kim, H.J.; Kim, M.K.; Yoon, K.A.; Cho, E.H.; Jang, J.H.; Lee, J.; Kang, J.; et al. Genome-wide copy number alteration and VEGFA amplification of circulating cell-free DNA as a biomarker in advanced hepatocellular carcinoma patients treated with Sorafenib. BMC Cancer 2019, 19, 292. [Google Scholar] [CrossRef]
- Mohamed, Y.I.; Lee, S.S.; Demir, T.; Chamseddine, S.; Hu, Z.I.; Xiao, L.; Elsayes, K.; Morris, J.S.; Wolff, R.A.; Hiatia, R.; et al. Circulating tumor DNA (ctDNA) as a biomarker of response to therapy in advanced Hepatocellular carcinoma treated with Nivolumab. Cancer Biomark 2024, 41, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Cisneros-Villanueva, M.; Hidalgo-Pérez, L.; Rios-Romero, M.; Cedro-Tanda, A.; Ruiz-Villavicencio, C.A.; Page, K.; Hastings, R.; Fernandez-Garcia, D.; Allsopp, R.; Fonseca-Montaño, M.A.; et al. Cell-free DNA analysis in current cancer clinical trials: a review. British Journal of Cancer 2022, 126, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Kustanovich, A.; Schwartz, R.; Peretz, T.; Grinshpun, A. Life and death of circulating cell-free DNA. Cancer Biol Ther 2019, 20, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Tsui, Y.M.; Ho, D.W.; Ng, I.O. Liquid Biopsy Using Cell-Free or Circulating Tumor DNA in the Management of Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2022, 13, 1611–1624. [Google Scholar] [CrossRef]
- Warton, K.; Mahon, K.L.; Samimi, G. Methylated circulating tumor DNA in blood: power in cancer prognosis and response. Endocr Relat Cancer 2016, 23, R157–171. [Google Scholar] [CrossRef]
| First author, yearReference | Study population | Study design | Main objective | Marker type | Methodology | Key findings |
| Xu, 2017 [52] | 1,098 HCC patients & 835 healthy controls | Retrospective case-control study | ctDNA methylation markers for HCC diagnosis, treatment response & prognosis | ctDNA methyla-tion markers | Bisulfite sequencing, padlock probe capture, LASSO & random-forest feature selection |
Prognostic model - 8-marker panel correlated with survival outcomes. high-risk (cp-score>-0.24): worse survival than low-risk patients Treatment response monitoring - decreased cp-scores post-treatment: better outcomes than rising scores, which correlated with tumor burden and progression. |
| Lian, 2024 [20] | 67 patients with HBV-related HCC & 90 controls | Retrospective case-control | Tumor-derived cfDNA (tumor content) as biomarker for monitoring, HCC progression and prognosis | cfDNA tumor content | Shallow WGS & ichorCNA method to assess genome-wide copy number variations & tumor content in cfDNA |
Tumor content and stage/survival - High tumor content in cfDNA correlated with advanced tumor stage (p<0.001) and poorer survival (HR:12.3, 95% CI:1.4–107.9; p=0.023) Post-treatment monitoring: -Tumor content turned negative post-surgery p=0.027) but remained positive after TACE (p=0.578). |
| First author, yearReferenc | Study population | Study design | Main objective | Marker type | Methodology | Key Findings |
| Oh, 2019 [60] | 151 HCC patients receiving sorafenib | Prospective case-control study | cfDNA levels, genome-wide CNAs, VEGFA amplification for prognosis post sorafenib | cfDNA levels, genome-wide CNAs (I-score) & VEGFA amplification | WGS of cfDNA; VEGFA analysis via ddPCR |
cfDNA - Higher cfDNA linked to worse TTP (2.2 vs. 4.1 mos, HR:1.71) and OS (4.1 vs. 14.8 mos, HR:3.50) Genome-Wide CNAs (I-score) - Higher I-score: worse TTP (2.2 vs. 4.1 mos, HR:2.09, p<0.0001) and OS (4.6 vs. 14.8 mos, HR:3.35). VEGFA amplification - VEGFA amplification levels: higher in HCC, but no significant correlation with treatment outcomes (DCR, TTP, or OS) |
| Mohamed, 2024 [61] | 44 HCC patients receiving nivolumab | Prospective cohort study | ctDNA as a biomarker for predicting OS & PFS | ctDNA alte-rations in TP53, PIK3CA, BRCA1, CCND1 & CTNNB1 genes | CLIA-certified Guardant360 platform targeting 74 cancer-related using NGS |
Mutation profiles - PIK3CA & KIT mutations: associated with shorter PFS (p<0.0004);CTNNB1 mutation: associated with longer PFS (p=0.04) Mutations in PIK3CA, BRCA1, and CCND1 amplification: correlated with shorter OS (p<0.0001, p<0.0001 & p=0.01, respectively). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
