Submitted:
31 January 2025
Posted:
04 February 2025
You are already at the latest version
Abstract
Keywords:
MSC: 42B20; 42B25; 42B35
1. Introduction
- (1)
- (2)
- Since , Theorem 1 generalizes and improves the result in [14] for the case .
- (3)
- If we take in Theorem 1, the main result in [16] is obtained.
- (4)
- (5)
- For the special case (), we obtain the main result in [24].
2. Auxiliary Lemmas
3. Proof of Theorem 1
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- E. Fabes, N. Riviére, Singular integrals with mixed homogeneity, Studia Math., 27 (1966), 19–38.
- E. Stein, On the functions of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc., 88 (1958), 430–466.
- T. Walsh, On the function of Marcinkiewicz, Studia Math., 44 (1972), 203–217.
- A. Al-Salman, H. Al-Qassem, L. Cheng, Y. Pan, Lp bounds for the function of Marcinkiewicz, Math. Res. Lett., 9 (2002), 697–700.
- H. Al-Qassem, A. Al-Salman, A note on Marcinkiewicz integral operators, J. Math. Anal. Appl., 282 (2003), 698–710.
- Y. Ding, D. Fan, Y. Pan, Lp boundedness of Marcinkiewicz integrals with Hardy space function kernels, Acta Math. Sin. (Engl. Ser.), 16 (2000), 593–600.
- J. Chen, D. Fan, Y. Pan, A note on a Marcinkiewicz integral operator, Math. Nachr., 227 (2001), 33–42.
- L. Hörmander, Estimates for translation invariant operators in Lp space, Acta Math., 104 (1960), 93–139.
- Y. Ding, S. Lu, K. Yabuta, A problem on rough parametric Marcinkiewicz functions, J. Aust. Math. Soc., 72 (2002), 13–21.
- M. Sakamota, K. Yabuta, Boundedness of Marcinkiewicz functions, Studia Math., 135 (1999), 103–142.
- A. Torchinsky, S. Wang, A note on the Marcinkiewicz integral, Colloq. Math., 61 (1990), 235–243.
- M. Ali, Lp Estimates for Marcinkiewicz Integral Operators and Extrapolation. Ineq. Appl. 2014, 1, 269.
- F. Liu, Z. Fu, S. Jhang, Boundedness and continuity of Marcinkiewicz integrals associated to homogeneous mappings on Triebel-Lizorkin spaces, Frontiers of Mathematics in China, 14 (2019), 95–122.
- Q. Xue, Y. Ding, K. Yabuta, Parabolic Littlewood-Paley g-function with rough kernels, Acta Math. Sin. (Engl. Ser.), 24 (2008), 2049–2060.
- Y. Chen, Y. Ding, Lp Bounds for the parabolic Marcinkiewicz integral with rough kernels, J. Korean Math. Soc., 44, ( 2007), 733–745.
- A. Al-Salman, A note on parabolic Marcinkiewicz integrals along surfaces, Trans. A Razmadze Math. Inst., 154 (2010), 21–36.
- F. Wang, Y. Chen, W. Yu, Lp bounds for the parabolic Littlewood-Paley operator associated to surfaces of revolution, Bull. Korean Math. Soc., 29 (2012), 787–797.
- F. Liu, A note on Marcinkiewicz integral associated to surfaces of revolution, J. Aust. Math. Soc., 104 (2018), 380–402.
- M. Ali, Q. Katatbeh, Generalized parabolic Marcinkiewicz integrals associated with polynomial compound curves with rough kernels,Demon. Math. 2020.
- F. Liu, S. Mao, Lp bounds for nonisotropic Marcinkiewicz integrals associated to surfaces, J. Aust. Math. Soc., 99 (2015), 380–398.
- J. Chen, D. Fan, Y. Ying, Singular integral operators on function spaces, J. Math. Anal. Appl., 276 (2002), 691–708.
- H. Le, Singular integrals with mixed homogeneity in Triebel-Lizorkin spaces, J. Math. Anal. Appl., 345 (2008), 903–916.
- H. Al-Qassem, L. Cheng, Y. Pan, On rough generalized parametric Marcinkiewicz integrals, J. Math. Ineq., 11 (2017), 763–780.
- H. Al-Qassem, L. Chen, Y. Pan, Boundedness of rough integral operators on Triebel-Lizorkin space. Publ. Mat. 56 ( 2012), 261–277.
- D. Fan, H. Wu, On the generalized Marcinkiewicz integral operators with rough kernels, Canad. Math. Bull., 54 (2011), 100–112.
- M. Ali, O. Al-Mohammed, Boundedness of a class of rough maximal functions, J. Ineq. Appl., 305 (2018), 1900.
- F. Liu, A note on generalized parametric Marcinkiewicz integrals, Bull. Korean Math. Soc., 56 (2019), 1099–1115.
- L. Grafakos, A. Stefanov,. Lp bounds for singular integrals and maximal singular integrals with rough kernel. India. Univ. Math. J.
- R. Ricci, E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179–194.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).