Preprint
Article

This version is not peer-reviewed.

The Symmetry Number Structure About Line-1/2

A peer-reviewed article of this preprint also exists.

Submitted:

26 January 2025

Posted:

28 January 2025

Read the latest preprint version here

Abstract
In this paper, we discuss the symmetry number structure about line-1/2 . We find that using the symmetry characters of those structures we can give proofs of the number Conjectures: Goldbach Conjecture、Twins Prime Conjecture and Polignac’s conjecture and the Riemann Hypothesis. In this paper, we also gave concise proofs of the Fermat’ Last Theorem and the 3n+1 conjecture.
Keywords: 
;  ;  

1. The Symmetry of P/2n and Prime Numbers Conjectures

We have
P 2 n =       1 2 N + 1                     n = 2 N P                       3 4                                   n = 2       P = 3                               1                                         n = 1       P = 2
Figure 1. P/2n number structure with points [ 0 1/2N+1 3/4 1].
Figure 1. P/2n number structure with points [ 0 1/2N+1 3/4 1].
Preprints 147320 g001
N ~   0 ,     1   2 3 4 .  All natural numbers
n ~   1   2 3 4 .  All natural numbers excepted 0
P ~ 2 3 5 7 .  All prime numbers
and
P 2 n =                               1 2 1 2 n                         P = n 1   ( n 3 ) 1 2                             P = n   1 2 + 1 2 n                     P = n + 1
And We have
p0∈ P   ~(0, n] ( n 2 )
And based on Bertrand -Chebyshev Theorem:when n 2 , there are at least a prime number between n and 2n.
    pn∈ P  ~[n, 2n)  ( n 2 )
So we have:
0 < p 0 2 n 1 2
1 2 p n 2 n < 1
So we have
p 0 2 n = 1 2 1 2 n ( n 3 )
p n 2 n = 1 2 + 1 2 n
So
( 1 2 1 2 n ) + ( 1 2 + 1 2 n ) = p 0 2 n + p n 2 n
2 n = p 0 + p n   ( n 3 )
This is the proof of Goldbach conjecture.
and
p n 2 n p 0 2 n = 1 2 + 1 2 n ( 1 2 1 2 n )
p n p 0 = 2      
This is the proof of Twin Primes Conjecture
And we also have
0 < p 0 2 n = 2 k 1 + 1 2 n 1 / 2 ( n 3 )
0 < 2 k 1 + 1 n
0 < k 1 n 1 2
k 1     i s   a   p o s i t i v e   i n t e g e r                  
s o           k 1 ~ 1,2 , 3 n 1 2 ( n 3 )
And
1 2 p n 2 n = 2 k 2 + 1 2 n < 1
n 2 k 2 + 1 < 2 n
n 1 2 k 2 < 2 n 1 2 ( n 3 )
k 2     i s   a   p o s i t i v e   i n t e g e r                  
s o           k 2 ~ n 1 2 , n 1 2 + 1 , 2 n 1 2 ( n 3 )
we have
p n 2 n p 0 2 n = 2 k 2 + 1 2 n 2 k 1 + 1 2 n
p n p 0 = 2 ( k 2 k 1 )
( p n p 0 ) m a x = 2 ( k 2 m a x k 1 m i n ) = 2 2 n 1 2 1 = 2 ( n 2 )   ( n 3 )
This is the proof of Polignac’s conjecture.
So we get a symmetry structure of P/2n asFigure 2
Figure 2. a symmetry structure of P/2n about line-1/2.
Figure 2. a symmetry structure of P/2n about line-1/2.
Preprints 147320 g002
p 0 2 n = 1 2 1 2 n ( n 3 )
p n 2 n = 1 2 + 1 2 n
p n ± p 0 4 n = 1 2

2. A Concise Proof of The Fermat’ Last Theorem

he Fermat’ Last Theorem:
x n + y n = z n   ( x , y , z n , x y z 0 n > 2 ) has no solution.
n ~ 1,2 , 3,4 , 5 , 6 .   a l l t h e n a t u r a l n u m b e r s e x c e p t e d 0
The equivalent proposition of this conjecture is 
( x z ) n + ( y z ) n = 1
( x , y , z n ,     x y z 0     n > 2 ) has no solution.
We have
( x z ) n + ( y z ) n = 1 = 1 2 n
n ~ 1,2 , 3,4 , 5 , 6 . a l l t h e n a t u r a l n u m b e r s e x c e p t e d 0
( x z ) n + ( y z ) n = 1 = ( 1 2 n 1 2 n ) + 1 = ( 1 2 1 2 n ) + ( 1 2 + 1 2 n ) = 1 2 n + ( 1 1 2 n )
Only When n = 1 we have
1 2 n 1 2 n = 1 2 1 2 n = 0
1 = ( 1 2 + 1 2 n ) = ( 1 2 + 1 2 )
And Only When n = 2
1 2 n = 1 2 1 2 n = 1 4
1 1 2 n = 1 2 + 1 2 n = 3 4
And We can get the figures as Figure 3.
Figure 3. D1/2+1/2 with points 1/2-1/2n and 1/2-1/2n  n ~   1   2 3 4 . .
Figure 3. D1/2+1/2 with points 1/2-1/2n and 1/2-1/2n  n ~   1   2 3 4 . .
Preprints 147320 g003
n = 1 and n = 2
In fact we have
1 = 1 2 1 + 1 2 1 = 1 2 2 + 3 2 2 = 1 2 3 + 7 2 3 o r   3 2 3 + 5 2 3
Figure 4. a symmetry structure of ( p q ) n about line-1/2.
Figure 4. a symmetry structure of ( p q ) n about line-1/2.
Preprints 147320 g004
( p q ) n p, q is relatively prime and n ~   1   2 3 4 .
1 / 2 [ ( x z ) n + y z n ] = 1 / 2 ( x z ) n + y z n = 1
( x z ) n = 1 2 1 2 n
( y z ) n = 1 2 + 1 2 n

3. a concise proof of Collatz Conjecture

Collatz Conjecture:
f ( n ) = n 2                       i f n 0   ( m o d 2 ) 3 n + 1     i f n 1   ( m o d 2 )
k N   f k n = 1
      n ~ 1 2 3 4 . a l l t h e n a t u r a l n u m b e r s e x c e p t e d 0
n + 1 2 + [ n 1 2 ] [ n 2 ] = 2 n + 2 n + 1 = n 1 + 3 n + 1 2 n = 4 n 2 n = 4 2 = 2 1 = 1 1 2
= 1 2 N
Figure 5. a symmetry structure of 4 n about line-1/2.
Figure 5. a symmetry structure of 4 n about line-1/2.
Preprints 147320 g005
2 n = 1 / 2 [ n 1 + 3 n + 1 ]
lim n n 1 4 n = 1 / 4
lim n 3 n + 1 4 n = 3 / 4

4. The symmetry of L1/2±ε (0 1/2 1) and Riemann Hypothesis

Riemann Zeta-Function
ξ ( s ) = n = 1 1 n s = 1 1 p s ( s = a + b i )
S > 1 ξ ( s ) c o n s t
The trivial zero-points of Riemann Zeta-Function is -2n (n~1,2,3,…….)
Riemann Hypothesis: all the Non-trivial zero-point of Zeta-Function Re ( s ) = 1 2
Figure 6. Riemann Hypothesis: all the non-trivial Zero points of Riemann zeta-function are on the 1/2 axis.
Figure 6. Riemann Hypothesis: all the non-trivial Zero points of Riemann zeta-function are on the 1/2 axis.
Preprints 147320 g006
We can get a symmetry structure including all numbers about the line-1/2 as Figure 6
s = 1 2 + t i t R
z p 1 = 1 2 a + b i z p 0 = 1 2 + b i z p 2 = 1 2 + a + b i
z p 1 + z p 2 = 1 2 a + b i + 1 2 + a + b i = 1 + 2 b i
z p 2 z p 1 = 1 2 + a + b i 1 2 a + b i = 2 a
a , b R 0 a 1 2
As the Figure 7 If we have zero points of ξ ( s ) as
z p 1 = 1 2 a + b i z p 2 = 1 2 + a + b i
And s = 1 2 + t i    t R  is the first zero point on line-1/2
We can get a zero point as
z p 0 = 1 2 + b i b < t b , t R
It is contrary to that s = 1 2 + t i    t R  is the first zero point on line-1/2
Figure 7. a symmetry structure about line1/2+/-a at the zero piont s=1/2+ti.
Figure 7. a symmetry structure about line1/2+/-a at the zero piont s=1/2+ti.
Preprints 147320 g007
As the Figure 8.   If we have zero points of ξ ( s )  as
z p 1 = 1 2 a + b i z p 2 = 1 2 + a + b i
Figure 8. a symmetry structure about line1/2+/-a at the zero point sn=1/2+tni and sn+1=1/2+tn+1i.
Figure 8. a symmetry structure about line1/2+/-a at the zero point sn=1/2+tni and sn+1=1/2+tn+1i.
Preprints 147320 g008
And s n = 1 2 + t n i    t R  is the No. n  zero point on line-1/2
s n + 1 = 1 2 + t n + 1 i    t R  is the No. n+1 zero point on line-1/2
We can get a zero point between s n a n d s n + 1 o n l i n e 1 / 2 as
z p 0 = 1 2 + b i t n < b < t n + 1 b , t R
It is contrary to that s n     a n d         s n + 1    are the adjacent zero points on line-1/2
So   on complex plane, We can have the symmetry structure about the line-1/2 with zp=1/2±a (       0 a 1 2               a   R ) show as on Figure 9.
Figure 9. symmetry structure about the line-1/2 with zp=1/2±a.
Figure 9. symmetry structure about the line-1/2 with zp=1/2±a.
Preprints 147320 g009
S = 1 2 + t i ( t R )
z p = 1 2 ± a ( 0 a 1 2 a R )
z p 1 = 1 2 a z p 0 = 1 2 z p 2 = 1 2 + a
z p 1 + z p 2 = 1 2 a + 1 2 + a = 1
z p 2 z p 1 = 1 2 + a 1 2 a = 2 a
This is mean that there are no zero points on line-1/2± a     (       0 a 1 2               a   R ) .
Hardy and Littlewood give a proof that there are infinite zero points on line-1/2  (Hardy and Littlewood. 1914 )
So we give a proof  that all the non-trivial Zero points of Riemann zeta-function are on the Line-1/2. This is the proof of Riemann Hypothesis.

5. The Symmetry Number Structure about Line-1/2 including all numbers

In fact, we have a symmetry number structure about line-1/2 as Figure 10:
Figure 10. symmetry structure about the line-1/2 with zp=1/2±ε.
Figure 10. symmetry structure about the line-1/2 with zp=1/2±ε.
Preprints 147320 g010
S = 1 2 + t i ( t R )
z p = 1 2 ± ε ( ε = a + b i a , b R 0 a 1 2 )
And we have
1 / 2 = 1 / 2   0 = 1 / 2 - 1 / 2   1 = 1 / 2 + 1 / 2  
1 + ( ± i ) 2 = 0
1 + 1 / 2 ( i + 1 ) i 1 = 0
= 1 + 1 + 1 + 1 +
We called it L1/2±ε 【0 1/2 1 】  and analytic continuation to + +   we can get Figure 11.
Figure 11. The Symmetry of L1/2±ε 【0 1/2 1】 with z p = 1 2 ± ε .
Figure 11. The Symmetry of L1/2±ε 【0 1/2 1】 with z p = 1 2 ± ε .
Preprints 147320 g011
So we have:
1 + +     i     0           1 / 2         1     - i     +         1                           1 / 2                     0 1 2 ε               1 / 2             1 2 + ε 1                             1 / 2                     0           1 = 0
z p = 1 2 ± ε
ε = a + b i ( a , b R 0 a 1 2 )
z p 1 = 1 2 ε z p 2 = 1 2 + ε
We have
z p 1 + z p 2 = 1 2 ε + 1 2 + ε = 1
z p 2 z p 1 = 1 2 + ε 1 2 ε = 2 ε = 2 ( a + b i )
And we have
n 2 = 1 2 n 2 n = N 1 2 N 1 2 N [ 1 2 ε + 1 2 + ε ]
N ~   0 ,     1   2 3 4 .  All natural numbers
n ~   1   2 3 4 .  All natural numbers excepted 0
We can get a matrix ( n × n )
1 / 2             . .                               1 2 n ( 1 / 2 + ε )                 1 / 2                     . . 1 2 n ( 1 / 2 - ε )     . .                               1 / 2                 ( n × n )
The tr(A)=1/2*n
Figure 12. The Symmetry of S∞+i.
Figure 12. The Symmetry of S∞+i.
Preprints 147320 g012
We have
0 = 1 2 1 2     1 = 1 2 + 1 2         2 = 1 + 1
1 + i 2 = 0                   1 / 2 + i 4 N + 1 = 1 / 2 + i
= 1 + 1 + 1 + 1 +
P 0 P 2 n P n P 2 n
N ~ 0 1 2 3 4 . all the natural numbers.
n ~   1   2 3 4 . All natural numbers excepted 0
P ~ 2 3 5 7 . All odd prime number
S = 1 2 + t ( t R )
z p = 1 2 ± ε ( ε = a + b i a , b R 0 a 1 2 )
And we find that
1 + e π i = 0 (Euler’s Formula)
1 + i 2 = 0                       1 + 1 2 i + 1 i 1 = 0                       ( 1 + i ) ( 1 - i ) = 1 2 N
1 + e π i = 0   1 + 1 2 ( e i p π e i 2 N π ) = 0
N ~ 0 1 2 3 4 . all the natural numbers.
  p ~ 3 5 7 . All odd prime number
2 ( n ± 1 ) = p n ± p 0
p n 2 n + p 0 = 2
And
      2 n p n + p 0 = 2
It is like the Euler’s Polyhedron Formula
We can get Figure 12. This is a symmetry number structure about line-1/2 including all numbers.
And we can get a symmetry number structure about line-1/2 as Figure 13. We should call it Reimann dynamic space.
Figure 13. Reimann dynamic space.
Figure 13. Reimann dynamic space.
Preprints 147320 g013
1 + i 2 = 0
1 + 1 / 2   ( i + 1 ) i 1 = 0
S = 1 2 + t i ( t R )
z p = 1 2 ± ε ( ε = a + b i a , b R 0 a 1 2 )
P 2 n =       1 2 N + 1                     n = 2 N P                       3 4                                     n = 2       P = 3                 1                                     n = 1       P = 2
N ~   0 ,     1   2 3 4 . All natural numbers
n ~   1   2 3 4 . All natural numbers excepted 0
P ~ 2 3 5 7 . All prime numbers
No datasets were generated or analyzed during the current study.

Competing Interests statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  1. Weisstein, Eric W. " Riemann Hypothesis." From MathWorld--A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/ Riemann Hypothesis.
  2. Weisstein, Eric W. " Goldbach conjecture." From MathWorld--A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/ Goldbach conjecture.
  3. Weisstein, Eric W. " Fermat Last Theorem." From Math World--A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/Fermat Last Theorem.
  4. Weisstein, Eric W. "Collatz Problem." From Math World--A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/Fermat Last Theorem.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated