Submitted:
09 January 2025
Posted:
13 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Various Types of Nanoparticles Used in Pharmaceuticals
2.1. Polymeric Nanoparticles
2.2. Lipid-Based Nanoparticles
2.3. Inorganic Nanoparticles
2.4. Biological Nanoparticles
3. Drug Delivery Systems
4. Nanoparticles in Diagnostics and Imaging
4.1. Nanoparticles as Contrast Agents in Imaging
4.2. Nanoparticles in Positron Emission Tomography (PET) and Single-Photon Emission Computed Tomography (SPECT)
4.3. Nanoparticles in Optical Imaging
4.4. Nanoparticles in Targeted Diagnostics and Theranostics
5. Nanoparticles in Therapeutic Applications
5.1. Nanoparticles in Drug Delivery Systems
5.2. Nanoparticles in Gene Therapy
5.3. Nanoparticles in Cancer Therapy
5.4. Nanoparticles in Vaccine Development
6. Future Directions and Conclusion
Future Directions
7. Conclusions
References
- Thakur, R. S., & Agrawal, R. (2015). Application of nanotechnology in pharmaceutical formulation design and development. Current Drug Therapy, 10(1), 20–34. [CrossRef]
- Kumar, C. S. S. R. (2010). Nanotechnology tools in pharmaceutical R&D. Materials Today, 12(Suppl.), 24–30. [CrossRef]
- Patil, M. P., & Nemade, L. S. (2023). Nanoarchitectured materials: Their applications and present scenarios in drug delivery. In Advances in Novel Formulations for Drug Delivery (pp. 3–27). [CrossRef]
- Demetzos, C., Kavatzikidou, P., Pippa, N., & Stratakis, E. (2020). Nanomedicines and nanosimilars: Looking for a new and dynamic regulatory “Astrolabe” inspired system. AAPS PharmSciTech, 21(2), 65. [CrossRef]
- McNeil, S. E. (2011). Unique benefits of nanotechnology to drug delivery and diagnostics. In Methods in Molecular Biology (Vol. 697, pp. 3–8). [CrossRef]
- Croitoru, G.-A., Pîrvulescu, D.-C., Niculescu, A. G., Grumezescu, A. M., Antohi, A. M., & Nicolae, C.-L. (2024). Metallic nanomaterials – Targeted drug delivery approaches for improved bioavailability, reduced side toxicity, and enhanced patient outcomes. Romanian Journal of Morphology and Embryology, 65(2), 145–158. [CrossRef]
- Borthakur, P. P., Sarmah, P., Das, D., & Saikia, M. (2023). Nanotechnology: Exploring its applications in mechanical engineering. Modern Trends in Mechanical Engineering, 1(1), 31–55. Bright Sky Publications.
- Pathak, K., Ahmad, M. Z., Saikia, R., Borthakur, P. P., Pramanik, P., Islam, M. A., Das, A., Abdel-Wahab, B. A., Das, D., & Gogoi, S. (2024). Nanohybrid cerasomes: Advancements in targeted drug and gene delivery. European Journal of Medicinal Chemistry Reports, 2024, Article 100178. Elsevier Masson.
- Das, A., Saikia, R., Pathak, K., Gogoi, U., & Pathak, M. P. (2020). Anti-diabetic nano-formulation from herbal source. Nano Medicine and Nano Safety: Recent Trends and Clinical Evidences, 61–84. Springer Singapore.
- Pathak, K., & Zaman, K. (2013). Comparative pharmacological evaluation on the leaf and stem bark of Annona reticulata L. for antidiabetic activity. The Pharma Review, 1(3), 65–69.
- Pathak, K., & Das, A. (2018). Assessment of antioxidant activity of different extracts of Annona. International Journal of Pharmaceutical Sciences and Research, 9(6), 2431–2437.
- Pathak, K., Das, R., Saikia, R., Das, A., & Ahmad, M. Z. (2021). Bora rice: Natural polymer for drug delivery. Materials Proceedings, 7(1). MDPI.
- Saikia, R., Pathak, K., Das, A., & Ahmad, M. Z. (2022). The promising shadow of nanohybrid liposomal cerasomes towards the treatment of diabetes mellitus. Medical Sciences Forum, 10(1), 5. MDPI.
- Ahmad, M. Z., Ahmad, J., Alasmary, M. Y., Akhter, S., Aslam, M., Pathak, K., Jamil, P., & Abdullah, M. M. (2022). Nanoemulgel as an approach to improve the biopharmaceutical performance of lipophilic drugs: Contemporary research and application. Journal of Drug Delivery Science and Technology, 72, Article 103420. Elsevier.
- Pathak, K., Gogoi, U., Saikia, R., Pathak, M. P., & Das, A. (2022). Marine-derived antidiabetic compounds: An insight into their sources, chemistry, SAR, and molecular mechanisms. Studies in Natural Products Chemistry, 73, 467–504. Elsevier.
- Ahmad, M. Z., Mohammed, A. A., Pathak, K., Gogoi, U., Saikia, R., & Ahmad, J. (2022). Metallic nanomaterials for the diagnosis and treatment of infectious diseases. In Nanotheranostics for Treatment and Diagnosis of Infectious Diseases (pp. 289–317). Academic Press.
- Ahmad, M. Z., Alasiri, A. S., Alasmary, M. Y., Abdullah, M. M., Ahmad, J., Abdel-Wahab, B. A., M. Alqahtani, S. A., Pathak, K., Mustafa, G., & Khan, M. A. (2022). Emerging advances in nanomedicine for breast cancer immunotherapy: Opportunities and challenges. Immunotherapy, 14(12), 957–983. Future Medicine Ltd.
- Ahmad, M. Z., Bhatnagar, D., Ladhe, S., Kumar, D., Pathak, K., Das, R. J., & Sarma, H. (2022). Liposomes and niosomes for targeted drug and gene delivery systems. In Pharmaceutical Nanobiotechnology for Targeted Therapy (pp. 337–359). Springer International Publishing.
- Saikia, R., Das, A., Pathak, K., Gogoi, N., Paul, T., Sahariah, J. J., & Sarma, H. (2022). In silico design, synthesis, and evaluation of hydroxyxanthone derivatives as potential anti-diabetic agents targeting α-glucosidase. Current Enzyme Inhibition, 18(3), 211–225. Bentham Science Publishers.
- Abdel-Wahab, B. A., Haque, A., Alotaibi, H. F., Alasiri, A. S., Elnoubi, O. A. E., Ahmad, M. Z., Pathak, K., Albarqi, H. A., Walbi, I. A., & Wahab, S. (2024). Eco-friendly green synthesis of silver nanoparticles utilizing olive oil waste by-product and their incorporation into a chitosan-aloe vera gel composite for enhanced wound healing in acid burn injuries. Elsevier.
- Naveen, J., Saikia, M., Borah, N., Pathak, K., & Das, R. (2020). Yield performance of organic baby corn (Zea mays L.) as influenced by nutrient management and moisture conservation practices in sandy loam soils of Assam. Indian Journal of Agricultural Research, 54(2), 256–259. Agricultural Research Communication Centre.
- Sonowal, S., Pathak, K., Das, D., Buragohain, K., Gogoi, A., Borah, N., Das, A., & Nath, R. (2024). l-Asparaginase bio-betters: Insight into current formulations, optimization strategies, and future bioengineering frontiers in anti-cancer drug development. Advanced Therapeutics, 7(10), Article 2400156.
- Das, R. J., Pathak, K., Kalita, P., & Das, P. (2024). Nano-drug delivery systems for the enhancement of bioavailability and bioactivity. In Futuristic Trends in Pharmacy & Nursing Volume 3 Book 3. [CrossRef]
- Kalita, P. (2024, February). Advancements in antidiabetic therapy: An extensive study on the use of polypills to treat type 2 diabetes. Bioequivalence & Bioavailability International Journal.
- Bora, A., Kalita, P., Kalita, P., Adhikari, R. P., Das, A., Zaheer, R., Laskar, M. A., & Pathak, K. (2025). Harnessing the therapeutic potential of Dillenia indica: An overview of recent dosage form developments. Current Drug Discovery Technologies, 22(1), E170424229033. Bentham Science Publishers.
- Dobrovolskaia, M. A. (2022). Lessons learned from immunological characterization of nanomaterials at the Nanotechnology Characterization Laboratory. Frontiers in Immunology, 13, 984252. [CrossRef]
- Chen, S., Zhang, Q., Hou, Y., Zhang, J., & Liang, X.-J. (2013). Nanomaterials in medicine and pharmaceuticals: Nanoscale materials developed with less toxicity and more efficacy. European Journal of Nanomedicine, 5(2), 61–79. [CrossRef]
- Hurst, S. J. (2011). Biomedical nanotechnology. In Methods in Molecular Biology (Vol. 726, pp. 1–13). [CrossRef]
- Nadendla, R. R., & Chandu, U. M. (2024). Future trends in pharmaceutical sciences: Nanosynth and the evolution of drug delivery through nanoparticle synthesis. Pharma Times, 56(8), 25–29.
- Egbuna, C., Găman, M.-A., & Jeevanandam, J. (2022). Applications of nanotechnology in drug discovery and delivery. In Applications of Nanotechnology in Drug Discovery and Delivery (pp. 1–429). [CrossRef]
- Bhowmick, T. K., Gayen, K., & Maity, S. K. (2024). Nanobiotechnology: Applications of nanomaterials in biotechnology, medicine, and healthcare. In Nanobiotechnology: Applications of Nanomaterials in Biotechnology, Medicine, and Healthcare (pp. 1–344). [CrossRef]
- Martins, L. H. S., Rai, M., Neto, J. M., de Oliveira, J. A. R., Martins, J. H. S., Komesu, A., Moreira, D. K. T., & Gomes, P. W. P. (2017). Nanomaterials: Properties, toxicity, safety, and drug delivery. In Nanotechnology Applied to Pharmaceutical Technology (pp. 363–381). [CrossRef]
- El-Hack, M. E. A., Alagawany, M., Farag, M. R., Arif, M., Emam, M., Dhama, K., Sarwar, M., & Sayab, M. (2017). Nutritional and pharmaceutical applications of nanotechnology: Trends and advances. International Journal of Pharmacology, 13(4), 340–350. [CrossRef]
- Dey, S., Mazumder, B., & Pathak, Y. (2014). Models for risk assessments of nanoparticles. In Biointeractions of Nanomaterials (pp. 383–423). [CrossRef]
- Grognet, J.-M. (2008). Nanotechnologies: From information sciences to pharmacology [Nanotechnologies: Des sciences de l'information à la pharmacologie]. Therapie, 63(1), 1–9. [CrossRef]
- Abbott, L. C., & Maynard, A. D. (2010). Exposure assessment approaches for engineered nanomaterials. Risk Analysis, 30(11), 1634–1644.
- Abdelhalim, M. A. K. (2011). Gold nanoparticles administration induces disarray of heart muscle, hemorrhagic, chronic inflammatory cells infiltrated by small lymphocytes, cytoplasmic vacuolization and congested and dilated blood vessels. Lipids in Health and Disease, 10(1), 233.
- Anjum, N. A., Adam, V., Kizek, R., Duarte, A. C., Pereira, E., Iqbal, M., ... Ahmad, I. (2015). Nanoscale copper in the soil–plant system–toxicity and underlying potential mechanisms. Environmental Research, 138, 306–325.
- Anjum, N. A., Rodrigo, M. A. M., Moulick, A., Heger, Z., Kopel, P., Zítka, O., ... Kizek, R. (2016). Transport phenomena of nanoparticles in plants and animals/humans. Environmental Research, 151, 233–243.
- Asharani, P. V., Mun, G. L. K., Hande, M. P., & Valiyaveettil, S. (2008a). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3(2), 279–290.
- Asharani, P. V., Wu, Y. L., Gong, Z., & Valiyaveettil, S. (2008b). Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19(25), 255102.
- Bahadar, H., Maqbool, F., Niaz, K., & Abdollahi, M. (2015). Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomedical Journal, 20(1), 1–11.
- Basu, R., Harris, M., Sie, L., Malig, B., Broadwin, R., & Green, R. (2014). Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California. Environmental Research, 128, 42–51.
- Bondi, M. L., Montana, G., Craparo, E. F., Picone, P., Capuano, G., Carlo, D. I., & Giammona, G. (2009). Ferulic acid-loaded lipid nanostructures as drug delivery systems for Alzheimer’s disease: Preparation, characterization, and cytotoxicity studies. Current Nanoscience, 5(1), 26–32.
- Cattaneo, A. G., Gornati, R., Sabbioni, E., Chiriva-Internati, M., Cobos, E., Jenkins, M. R., & Bernardinia, G. (2010). Nanotechnology and human health: Risks and benefits. Journal of Applied Toxicology, 30(8), 730–744.
- Chupani, L., Zusková, E., Niksirat, H., Panáček, A., Lünsmann, V., Haange, S.-B., ... Jehmlich, N. (2017). Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.). Science of the Total Environment, 579, 1504–1511.
- Daraee, H., Eatemadi, A., Abbasi, E., Aval, S. F., Kouhi, M., & Akbarzadeh, A. (2014). Application of gold nanoparticles in biomedical and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 410–422.
- Abbott, L. C., & Maynard, A. D. (2010). Exposure assessment approaches for engineered nanomaterials. Risk Analysis, 30(11), 1634–1644.
- Abdelhalim, M. A. K. (2011). Gold nanoparticles administration induces disarray of heart muscle, hemorrhagic, chronic inflammatory cells infiltrated by small lymphocytes, cytoplasmic vacuolization, and congested and dilated blood vessels. Lipids in Health and Disease, 10(1), 233. [CrossRef]
- Anjum, N. A., Adam, V., Kizek, R., Duarte, A. C., Pereira, E., Iqbal, M., ... Ahmad, I. (2015). Nanoscale copper in the soil–plant system–toxicity and underlying potential mechanisms. Environmental Research, 138, 306–325. [CrossRef]
- Anjum, N. A., Rodrigo, M. A. M., Moulick, A., Heger, Z., Kopel, P., Zítka, O., ... Kizek, R. (2016). Transport phenomena of nanoparticles in plants and animals/humans. Environmental Research, 151, 233–243. [CrossRef]
- Asharani, P. V., Mun, G. L. K., Hande, M. P., & Valiyaveettil, S. (2008a). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3(2), 279–290. [CrossRef]
- Asharani, P. V., Wu, Y. L., Gong, Z., & Valiyaveettil, S. (2008b). Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19(25), 255102. [CrossRef]
- Bahadar, H., Maqbool, F., Niaz, K., & Abdollahi, M. (2015). Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomedical Journal, 20(1), 1–11. [CrossRef]
- Basu, R., Harris, M., Sie, L., Malig, B., Broadwin, R., & Green, R. (2014). Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California. Environmental Research, 128, 42–51. [CrossRef]
- Bondi, M. L., Montana, G., Craparo, E. F., Picone, P., Capuano, G., Carlo, D. I., & Giammona, G. (2009). Ferulic acid-loaded lipid nanostructures as drug delivery systems for Alzheimer’s disease: Preparation, characterization, and cytotoxicity studies. Current Nanoscience, 5(1), 26–32. [CrossRef]
- Cattaneo, A. G., Gornati, R., Sabbioni, E., Chiriva-Internati, M., Cobos, E., Jenkins, M. R., & Bernardini, G. (2010). Nanotechnology and human health: Risks and benefits. Journal of Applied Toxicology, 30(8), 730–744. [CrossRef]
- Borthakur, B., & Borthakur, P. P. (2024). The role of thermal analysis in engine fin design: Insights and perspectives. Recent Patents on Engineering, 18(8), 153–161. Bentham Science Publishers.
- Chupani, L., Zusková, E., Niksirat, H., Panáček, A., Lünsmann, V., Haange, S.-B., ... Jehmlich, N. (2017). Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.). Science of the Total Environment, 579, 1504–1511. [CrossRef]
- Daraee, H., Eatemadi, A., Abbasi, E., Aval, S. F., Kouhi, M., & Akbarzadeh, A. (2014). Application of gold nanoparticles in biomedical and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 410–422. [CrossRef]
- Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S.W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8(1), Article 102. [CrossRef]
- Rahman, A.R., Carmichael, D.C., Harris, M.H., & Roh, J.K. (1986). Comparative pharmacokinetics of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes. Cancer Research, 46(5), 2295-2299.
- Davis, D., Davies, A., & Gregoriadis, G. (1986). Liposomes as immunological adjuvants in vaccines: Studies with entrapped and surface-linked antigen. Biochemical Society Transactions, 14(6), 1036-1037. [CrossRef]
- Minchinton, A.I., & Tannock, I.F. (2006). Drug penetration in solid tumors. Nature Reviews Cancer, 379(1), 146-157.
- Allen, T.M. (1998). Liposomal drug formulations: Rationale for development and what we can expect for the future. Drugs, 56(5), 747-756. [CrossRef]
- Drummond, D.C., Meyer, O., Hong, K., Kirpotin, D.B., & Papahadjopoulos, D. (1999). Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacological Reviews, 51(4), 691-743.
- Allen, T.M., & Cullis, P.R. (2004). Drug delivery systems: Entering the mainstream. Science, 303(5665), 1818-1822. [CrossRef]
- Hobbs, S.K., Monsky, W.L., Yuan, F., Roberts, W.G., Griffith, L., Torchilin, V.P., & Jain, R.K. (1998). Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 95(8), 4607-4612. [CrossRef]
- Yuan, F., Leunig, M., Berk, D.A., & Jain, R.K. (1994). Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Research, 54(13), 3352-3356.
- Yatvin, M.B., Weinstein, J.N., Dennis, W.H., & Blumenthal, R. (1978). Design of liposomes for enhanced local release of drugs by hyperthermia. Science, 202(4374), 1290-1293. [CrossRef]
- Kong, G., Anyarambhatla, G., Petros, W.P., Braun, R.D., Colvin, O.M., Needham, D., & Dewhirst, M.W. (2000). Efficacy of liposomes and hyperthermia in a human tumor xenograft model: Importance of triggered drug release. Cancer Research, 60(24), 6950-6957.
- Yarmolenko, P.S., Zhao, Y., Landon, C., Spasojevic, I., Yuan, F., Needham, D., Viglianti, B.L., & Dewhirst, M.W. (2010). Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumors. International Journal of Hyperthermia, 26(5), 485-498. [CrossRef]
- Kono, K., Yoshino, K., & Takagishi, T. (2002). Effect of poly(ethylene glycol) grafts on temperature-sensitivity of thermosensitive polymer-modified liposomes. Journal of Controlled Release, 80(1-3), 321-332. [CrossRef]
- Kulkarni, P.R., Yadav, J.D., & Vaidya, K.A. (2011). Liposomes: A novel drug delivery system. International Journal of Current Pharmaceutical Research, 3(2), 10-18.
- Padmanabhan, R.V., Gudapaty, R., Liener, I.E., Schwartz, B.A., & Hoidal, J.R. (1985). Protection against pulmonary oxygen toxicity in rats by the intratracheal administration of liposome-encapsulated superoxide dismutase or catalase. American Review of Respiratory Disease, 132(1), 164-167.
- Forssen, E.A., & Ross, M.E. (1994). Daunoxome®® treatment of solid tumors: Preclinical and clinical investigations. Journal of Liposome Research, 4(1), 481-512. [CrossRef]
- Fricker, G., Kromp, T., Wendel, A., Blume, A., Zirkel, J., Rebmann, H., Setzer, C., Quinkert, R.-O., Martin, F., Müller-Goymann, C. (2010). Phospholipids and lipid-based formulations in oral drug delivery. Pharmaceutical Research, 27(8), 1469-1486. [CrossRef]
- Gregoriadis, G., & Florence, A.T. (1993). Liposomes in drug delivery: Clinical, diagnostic, and ophthalmic potential. Drugs, 45(1), 15-28. [CrossRef]
- Lasic, D.D., & Papahadjopoulos, D. (1998). Medical applications of liposomes.
- Patel, G.B., Agnew, B.J., Deschatelets, L., Fleming, L.P., & Sprott, G.D. (2000). In vitro assessment of archaeosome stability for developing oral delivery systems. International Journal of Pharmaceutics, 194(1), 39-49. [CrossRef]
- Sprott, G.D. (1992). Structures of archaebacterial membrane lipids. Journal of Bioenergetics and Biomembranes, 24(6), 555-566. [CrossRef]
- Woodle, M.C., & Lasic, D.D. (1992). Sterically stabilized liposomes. BBA - Reviews on Biomembranes, 1113(2), 171-199. [CrossRef]
- Wörner, C., & Mülhaupt, R. (1993). Polynitrile- and polyamine-functional poly(trimethylene imine) dendrimers. Angewandte Chemie International Edition in English, 32(9), 1306-1308. [CrossRef]
- Blume, G., & Cevc, G. (1993). Molecular mechanism of the lipid vesicle longevity in vivo. BBA - Biomembranes, 1146(2), 157-168. [CrossRef]
- Samad, A., Sultana, Y., & Aqil, M. (2007). Liposomal drug delivery systems: An update review. Current Drug Delivery, 4(4), 297-305. [CrossRef]
- Biju, S., Talegaonkar, S., Mishra, P., & Khar, R. (2006). Vesicular systems: An overview. Indian Journal of Pharmaceutical Sciences, 68(2), 141-153. [CrossRef]
- Bhatt, D.A., & Pethe, A.M. (2010). Nanotechnology: A promising drug delivery system. International Journal of PharmTech Research, 2(2), 1331-1345.
- Dev, A., & Mehra, N.K. (2007). Liposomes: Applications in pharmacology. Indian Journal of Pharmaceutical Sciences, 69(3), 303-306. https://doi.org/10.4103/0250-474X.27223 Pathak, K., Saikia, R., & Das, A. (2023). Unlocking the therapeutic potential of Garcinia cowa Rox. in diabetes management. Sciences of Phytochemistry, 2(1), 38–41. ETFLIN.
- Pathak, K., Saikia, R., Sarma, H., Pathak, M. P., Das, R. J., Gogoi, U., Ahmad, M. Z., Das, A., & Abdel-Wahab, B. A. (2023). Nanotheranostics: Application of nanosensors in diabetes management. Journal of Diabetes & Metabolic Disorders, 22(1), 119–133. Springer International Publishing.
- Pathak, K., Das, R. J., & Baishya, K. (2013). Recent advancement of lipid drug conjugate as nanoparticulate drug delivery system. International Research Journal of Pharmacy, 4(1).
- Ahmad, M. Z., Ahmad, J., Umar, A., Abdel-Wahab, B. A., Lahiq, A. A., Khan, Z. N., Pathak, K., Rizwanullah, M., Warsi, M. H., & Saikia, R. (2023). Nanomaterials in cancer immunotherapy: A spotlight on breast cancer. Science of Advanced Materials, 15(3), 285–318. American Scientific Publishers.
- Das, M. K., & Pathak, Y. V. (2020). Nano medicine and nano safety: Recent trends and clinical evidences. Springer Nature.
- Soliman, K. F. A., & Pathak, Y. V. (2023). Flavonoids and anti-aging: The role of transcription factor nuclear erythroid 2-related factor 2. CRC Press.
- Ahmad, M. Z., Pathak, K., Bhatnagar, D., Ladhe, S., Kumar, D., Saikia, R., & Das, A. (2023). Nanotheranostic approach for cancer treatment. In Handbook of Cancer and Immunology (pp. 1–32). Springer International Publishing.
- Ahmad, M. Z., Saeed, A. M., Elnoubi, O. A. E., Alasiri, A. S., Abdel-Wahab, B. A., Alqahtani, A. A., Pathak, K., Saikia, R., Kakoti, B. B., & Das, A. (2024). Chitosan-based topical formulation integrated with green-synthesized silver nanoparticles utilizing Camellia sinensis leaf extracts: A promising approach for managing infected wounds. International Journal of Biological Macromolecules, 257, Article 128573. Elsevier.
- Pathak, K. (2023). Herbal nanotechnology: Innovations and applications in modern medicine.
- Pathak, K., Ahmad, M. Z., Saikia, R., Pathak, M. P., Jyoti, J., Sahariah, K., Kalita, P., Das, A., Islam, M. A., & Pramanik, P. (2025). Nanomedicine: A new frontier in Alzheimer’s disease drug targeting. Central Nervous System Agents in Medicinal Chemistry, 25(1), 3–19. Bentham Science Publishers.
- Kwon, K., Kim, S., Park, K., & Kwon, I. C. (2009). Nanotechnology in drug delivery: Past, present, and future. AAPS, 10, 581. [Cited 3 times].
- Sahoo, S. K., & Labhasetwar, V. (2003). Nanotech approaches to drug delivery and imaging. Drug Discovery Today, 8(24), 1112-1120. [Cited 1067 times]. [CrossRef]
- Hughes, G. A. (2005). Nanostructure-mediated drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 1(1), 22-30. [Cited 551 times]. [CrossRef]
- Gupta, A., Arora, A., Menakshi, A., Sehgal, A., & Sehgal, R. (2012). Nanotechnology and its applications in drug delivery: A review. WebmedCentral: International Journal of Medical and Molecular Medicine, 3(1), 1-9. [Cited 8 times].
- Prabhakar, C., & Bala Krishna, K. (2011). A review on nanosuspensions in drug delivery. International Journal of Pharma and Bio Sciences, 2(1), 549-558. [Cited 42 times].
- Pandya, V. M., Patel, J. K., & Patel, D. J. (2011). Formulation, optimization, and characterization of simvastatin nanosuspension prepared by nanoprecipitation technique. Der Pharmacia Lettre, 3(2), 129-140. [Cited 40 times].
- Thakkar, H. P., Patel, B. V., & Thakkar, S. P. (2011). Development and characterization of nanosuspensions of olmesartan medoxomil for bioavailability enhancement. Journal of Pharmacy and Bioallied Sciences, 3(3), 426-434. [Cited 76 times]. [CrossRef]
- Borhade, V., Pathak, S., Sharma, S., & Patravale, V. (2013). Formulation and characterization of atovaquone nanosuspension for improved oral delivery in the treatment of malaria. Nanomedicine, 8(7), 1031-1033. [Cited 2 times].
- Chiang, P.-C., Ran, Y., Chou, K.-J., Cui, Y., & Wong, H. (2011). Investigation of utilization of nanosuspension formulation to enhance exposure of 1,3-dicyclohexylurea in rats: Preparation for PK/PD study via subcutaneous route of nanosuspension drug delivery. Nanoscale Research Letters, 6, Article 413. [Cited 24 times]. [CrossRef]
- Padua, G. W., & Wang, Q. (2012). Nanotechnology research methods for food and bioproducts. Wiley-Blackwell. [Cited 1 time].
- Uprit, S., Kumar Sahu, R., Roy, A., & Pare, A. (2013). Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia. Saudi Pharmaceutical Journal, 21(4), 379-385. [Cited 160 times]. [CrossRef]
- Bielinska, A. U., Janczak, K. W., Landers, J. J., Makidon, P., Sower, L. E., Peterson, J. W., & Baker Jr., J. R. (2007). Mucosal immunization with a novel nanoemulsion-based recombinant anthrax protective antigen vaccine protects against Bacillus anthracis spore challenge. Infection and Immunity, 75(8), 4020-4029. [Cited 121 times]. [CrossRef]
- Azeem, A., Ahmad, F. J., Khar, R. K., & Talegaonkar, S. (2009). Nanocarrier for the transdermal delivery of an antiparkinsonian drug. AAPS PharmSciTech, 10(4), 1093-1103. [Cited 76 times]. [CrossRef]
- Tiwari, S. B., & Amiji, M. M. (2006). Improved oral delivery of paclitaxel following administration in nanoemulsion formulations. Journal of Nanoscience and Nanotechnology, 6(9-10), 3215-3221. [Cited 132 times]. [CrossRef]
- Wagner, V., Dullaart, A., Bock, A.-K., & Zweck, A. (2006). The emerging nanomedicine landscape. Nature Biotechnology, 24(10), 1211-1217. [CrossRef]
- Sahoo, S.K., & Labhasetwar, V. (2003). Nanotech approaches to drug delivery and imaging. Drug Discovery Today, 8(24), 1112-1120. [CrossRef]
- Keck, C.M., & Müller, R.H. (2006). Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. European Journal of Pharmaceutics and Biopharmaceutics, 62(1), 3-16. [CrossRef]
- Shafiq, S., Shakeel, F., Talegaonkar, S., Ahmad, F.J., Khar, R.K., & Ali, M. (2007). Development and bioavailability assessment of ramipril nanoemulsion formulation. European Journal of Pharmaceutics and Biopharmaceutics, 66(2), 227-243. [CrossRef]
- Mistry, A., Stolnik, S., & Illum, L. (2009). Nanoparticles for direct nose-to-brain delivery of drugs. International Journal of Pharmaceutics, 379(1-2), 146-157. [CrossRef]
- Dokoumetzidis, A., & Macheras, P. (2006). A century of dissolution research: From Noyes and Whitney to the Biopharmaceutics Classification System. International Journal of Pharmaceutics, 321(1-2), 1-11. [CrossRef]
- Kentish, S., Wooster, T.J., Ashokkumar, M., Balachandran, S., Mawson, R., & Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation. Innovative Food Science and Emerging Technologies, 9(2), 170-175. [CrossRef]
- Hughes, G.A. (2005). Nanostructure-mediated drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 1(1), 22-30. [CrossRef]
- Jenning, V., Schäfer-Korting, M., & Gohla, S. (2000). Vitamin A-loaded solid lipid nanoparticles for topical use: Drug release properties. Journal of Controlled Release, 66(2-3), 115-126. [CrossRef]
- Fernandez, P., André, V., Rieger, J., & Kühnle, A. (2004). Nano-emulsion formation by emulsion phase inversion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 251(1-3), 53-58. [CrossRef]
- Kakran, M., Sahoo, N. G., Li, L., Judeh, Z., Wang, Y., Chong, K., & Loh, L. (2010). Fabrication of drug nanoparticles by evaporative precipitation of nanosuspension. International Journal of Pharmaceutics, 383(1-2), 285–292. [CrossRef]
- Jochmans, D. (2008). Novel HIV-1 reverse transcriptase inhibitors. Virus Research, 134(1-2), 171–185. [CrossRef]
- Koo, O. M., Rubinstein, I., & Onyuksel, H. (2005). Camptothecin in sterically stabilized phospholipid micelles: A novel nanomedicine. Nanomedicine: Nanotechnology, Biology, and Medicine, 1(1), 77–84. [CrossRef]
- Guo, Y., Wang, X., Shen, Z., Shu, X., & Sun, R. (2013). Preparation of cellulose-graft-poly(ε-caprolactone) nanomicelles by homogeneous ROP in ionic liquid. Carbohydrate Polymers, 92(1), 77–83. [CrossRef]
- Salazar, J., Ghanem, A., Müller, R. H., & Möschwitzer, J. P. (2012). Nanocrystals: Comparison of the size reduction effectiveness of a novel combinative method with conventional top-down approaches. European Journal of Pharmaceutics and Biopharmaceutics, 81(1), 82–90. [CrossRef]
- Ammar, H. O., Salama, H. A., Ghorab, M., & Mahmoud, A. A. (2010). Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery. Drug Development and Industrial Pharmacy, 36(11), 1330–1339. [CrossRef]
- Huang, C., Tang, Z., Zhou, Y., Zhou, X., Jin, Y., Li, D., Yang, Y., & Zhou, S. (2012). Magnetic micelles as a potential platform for dual targeted drug delivery in cancer therapy. International Journal of Pharmaceutics, 429(1-2), 113–122. [CrossRef]
- Aisha, A. F. A., Ismail, Z., Abu-salah, K. M., & Majid, A. M. S. A. (2012). Solid dispersions of α-mangostin improve its aqueous solubility through self-assembly of nanomicelles. Journal of Pharmaceutical Sciences, 101(2), 815–825. [CrossRef]
- Myc, A., Kukowska-Latallo, J. F., Bielinska, A. U., Cao, P., Myc, P. P., Janczak, K., Sturm, T. R., Grabinski, M. S., Landers, J. J., Young, K. S., Chang, J., Hamouda, T., Olszewski, M. A., & Baker Jr., J. R. (2003). Development of immune response that protects mice from viral pneumonitis after a single intranasal immunization with influenza A virus and nanoemulsion. Vaccine, 21(25-26), 3801–3814. [CrossRef]
- Möschwitzer, J., & Müller, R. H. (2006). New method for the effective production of ultrafine drug nanocrystals. Journal of Nanoscience and Nanotechnology, 6(9-10), 3145–3153. [CrossRef]
- Bielinska, A. U., Janczak, K. W., Landers, J. J., Markovitz, D. M., Montefiori, D. C., & Baker Jr., J. R. (2008). Nasal immunization with a recombinant HIV gp120 and nanoemulsion adjuvant produces Th1 polarized responses and neutralizing antibodies to primary HIV type 1 isolates. AIDS Research and Human Retroviruses, 24(2), 271–281. [CrossRef]
- Yang, J. Z., Young, A. L., Chiang, P.-C., Thurston, A., & Pretzer, D. K. (2008). Fluticasone and budesonide nanosuspensions for pulmonary delivery: Preparation, characterization, and pharmacokinetic studies. Journal of Pharmaceutical Sciences, 97(11), 4869–4878. [CrossRef]
- Thakkar, H. P., Patel, B. V., & Thakkar, S. P. (2011). Development and characterization of nanosuspensions of olmesartan medoxomil for bioavailability enhancement. Journal of Pharmacy and Bioallied Sciences, 3(3), 426–434. [CrossRef]
- Azeem, A., Ahmad, F. J., Khar, R. K., & Talegaonkar, S. (2009). Nanocarrier for the transdermal delivery of an antiparkinsonian drug. AAPS PharmSciTech, 10(4), 1093-1103. [CrossRef]
- Gallarate, M., Chirio, D., Bussano, R., Peira, E., Battaglia, L., Baratta, F., & Trotta, M. (2013). Development of O/W nanoemulsions for ophthalmic administration of timolol. International Journal of Pharmaceutics, 440(2), 126-134. [CrossRef]
- Sun, H., Liu, K., Liu, W., Wang, W., Guo, C., Tang, B., Gu, J., Zhang, J., Li, H., Mao, X., Zou, Q., & Zeng, H. (2012). Development and characterization of a novel nanoemulsion drug-delivery system for potential application in oral delivery of protein drugs. International Journal of Nanomedicine, 7, 5529-5543. [CrossRef]
- Abismaïl, B., Canselier, J. P., Wilhelm, A. M., Delmas, H., & Gourdon, C. (2000). Emulsification processes: On-line study by multiple light scattering measurements. Ultrasonics Sonochemistry, 7(4), 187-192. [CrossRef]
- Patel, G. V., Patel, V. B., Pathak, A., & Rajput, S. J. (2014). Nanosuspension of efavirenz for improved oral bioavailability: Formulation optimization, in vitro, in situ and in vivo evaluation. Drug Development and Industrial Pharmacy, 40(1), 80-91. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
