Submitted:
05 January 2025
Posted:
08 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Singular Diffusionless Limit of Visco-Diffusive Instabilities in Magnetohydrodynamics
2.1. Governing Equations and the Background Fields
2.2. Transport Equation for Amplitudes and Its Dispersion Relation
2.3. Krein Sign and Splitting of Double Eigenvalues with Jordan Block
2.4. Threshold of Oscillatory Instability in the Diffusionless Case
2.5. Dissipative Perturbation of Simple Imaginary Eigenvalues
2.6. Diffusionless and Double-Diffusive Criteria Meet at
2.7. Visco-Diffusive Instability at
3. Diffusive Instabilities of Baroclinic Lenticular Vortices
3.1. Nonlinear Equations of Motion and the Base State
3.2. Linearization and Geometrical Optics Equations
3.3. Dispersion Relation
3.4. Stability Analysis
3.4.1. Diffusionless and Cases
3.4.2. Criteria for Visco-Diffusive Monotonic and Oscillatory Instabilities
4. Spiral Poiseuille Flow with Radial Temperature Gradient
4.1. Nonlinear Equations of Motion
4.2. Base State
- , the ratio of the inner ( ) to outer ( ) cylinder radii,
- , the ratio of the angular velocities of the outer ( ) to inner ( ) cylinders,
- , the inner radius in dimensionless form,
- , the outer radius in dimensionless form, and
- , the geometric mean radius, at which we will evaluate all parameters in subsequent analyses.
4.3. Geometrical Optics Equations
4.4. Dispersion Relation
4.5. Stability Analysis
4.5.1. Pure Azimuthal Circular Couette Flow with the Radial Temperature Gradient
4.5.2. Isothermal Spiral Poiseuille Flow (SPF)
4.5.3. Spiral Poiseuille Flow with Radial Temperature Gradient (SPFRT)
5. Conclusions
Conflicts of Interest
References
- Aravind, H.M.; Dubos, T.; Mathur, M. Local stability analysis of homogeneous and stratified Kelvin–Helmholtz vortices. J. Fluid Mech. 2022, 943, A18. [Google Scholar] [CrossRef]
- Bayly, B.J. Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 1986, 57(17), 2160–2163. [Google Scholar] [CrossRef]
- Bottema, O. The Routh-Hurwitz condition for the biquadratic equation. Indag. Math. 1956, 59, 403–406. [Google Scholar] [CrossRef]
- Cotrell, D.L.; McFadden, G.B. Linear stability of spiral Poiseuille flow with a radial temperature gradient: Centrifugal buoyancy effects, Phys. Fluids 2005, 17, 114102. [Google Scholar] [CrossRef]
- Craik, A.D.D.; Criminale, W.O. Evolution of wavelike disturbances in shear flows: A class of exact solutions of the Navier-Stokes equations. Proc. R. Soc. London. A 1986, 406(1830), 13–26. [Google Scholar]
- Dymott, R.W.; Barker, A.J.; Jones, C.A.; Tobias, S.M. Linear and non-linear properties of the Goldreich–Schubert–Fricke instability in stellar interiors with arbitrary local radial and latitudinal differential rotation. Mon. Not. R. Astron. Soc. 2023, 524(2), 2857–2882. [Google Scholar] [CrossRef]
- Eckhardt, B.; Yao, D. Local stability snalysis along Lagrangian paths. Chaos, Solit. Fract., 1995, 5, 2073–2088. [Google Scholar] [CrossRef]
- Eckhoff, K.S.; Storesletten, L. A note on the stability of steady inviscid helical gas flows. J. Fluid Mech. 1978, 89, 401–411. [Google Scholar] [CrossRef]
- Eckhoff, K.S. On stability for symmetric hyperbolic systems, I. J. Diff. Eq. 1981, 40(1), 94–115. [Google Scholar] [CrossRef]
- Eckhoff, K.S. A note on the instability of columnar vortices. J. Fluid Mech. 1984, 145, 417–421. [Google Scholar] [CrossRef]
- Friedlander, S.; Vishik, M.M. Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 1991, 66, 2204–2206. [Google Scholar] [CrossRef] [PubMed]
- Friedlander, S.; Vishik, M.M. 1995 On stability and instability criteria for magnetohydrodynamics. Chaos, 1995, 5, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Friedlander, S.; Lipton-Lifschitz, A. 2003 Localized instabilities in fluids. In Handbook of Mathematical Fluid Dynamics 2; Friedlander, S.J., Serre, D., Eds.; North-Holland: Amsterdam, The Netherlands, 2003; pp. 289–354. [Google Scholar]
- Garaud, P. Double diffusive convection at low Prandtl number. Annu. Rev. Fluid Mech. 2018, 50, 275–298. [Google Scholar] [CrossRef]
- Garaud, P. Journey to the center of stars: The realm of low Prandtl number fluid dynamics. Phys. Rev. Fluids 2021, 6, 030501. [Google Scholar] [CrossRef]
- Hattori, Y.; Hijiya, K. Short-wavelength stability analysis of Hill’s vortex with/without swirl. Phys. Fluids 2010, 22, 074104. [Google Scholar] [CrossRef]
- Hoveijn, I.; Ruijgrok, M. The stability of parametrically forced coupled oscillators in sum resonance. Z. Angew. Math. Phys. 1995, 46, 384–392. [Google Scholar] [CrossRef]
- Hull, D. Finding envelope is an optimization problem. J. Optim. Theory Appl. 2020, 186, 453–458. [Google Scholar] [CrossRef]
- Ionescu-Kruse, D. On the short-wavelength stabilities of some geophysical flows. Phil. Trans. R. Soc. A 2017, 376, 20170090. [Google Scholar] [CrossRef]
- Jones, C.A. Multiple eigenvalues and mode classification in plane Poiseuille flow. Q. J. Mech. Appl. Math. 1988, 41, 363–382. [Google Scholar] [CrossRef]
- Kirillov, O.N.; Stefani, F. Extending the range of the inductionless magnetorotational instability. Phys. Rev. Lett. 2013, 111, 061103. [Google Scholar] [CrossRef] [PubMed]
- Kirillov, O.N.; Stefani, F.; Fukumoto, Y. Local instabilities in magnetized rotational flows: A short-wavelength approach. J. Fluid Mech. 2014, 760, 591–633. [Google Scholar] [CrossRef]
- Kirillov, O.N. Singular diffusionless limits of double-diffusive instabilities in magnetohydrodynamics. Proc. R. Soc. A 2017, 473, 20170344. [Google Scholar] [CrossRef] [PubMed]
- Kirillov, O.N.; Mutabazi, I. Short wavelength local instabilities of a circular Couette flow with radial temperature gradient. J. Fluid Mech. 2017, 818, 319–343. [Google Scholar] [CrossRef]
- Kirillov, O.N. Nonconservative Stability Problems of Modern Physics, 2nd ed.; De Gruyter: Berlin, Germany, 2021; pp. 1–548. [Google Scholar]
- Kirillov, O.N.; Mutabazi, I. Unification theory of instabilities of visco-diffusive swirling flows. Phys. Rev. Fluids 2024, 9, 124802. [Google Scholar] [CrossRef]
- Kirillov, O.N.; Verhulst, F. Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella? Z. Angew. Math. Mech. 2010, 90, 462–488. [Google Scholar] [CrossRef]
- Kucherenko, V.V.; Kryvko, A. Interaction of Alfvèn waves in the linearized system of magnetohydrodynamics for an incompressible ideal fluid. Russ. J. Math. Phys. 2013, 20, 56–67. [Google Scholar] [CrossRef]
- Labarbe, J.; Kirillov, O.N. Diffusive instabilities of baroclinic lenticular vortices. Phys. Fluids 2021, 33, 104108. [Google Scholar] [CrossRef]
- Lagnado, R.R.; Phan-Thien, N.; Leal, L.G. The stability of two-dimensional linear flows. Phys. Fluids 1984, 27, 1094–1101. [Google Scholar] [CrossRef]
- Leblanc, S. Internal wave resonances in strain flows. J. Fluid. Mech. 2003, 477, 259–283. [Google Scholar] [CrossRef]
- Leblanc, S.; Le Duc, A. The unstable spectrum of swirling gas flows. J. Fluid Mech. 2005, 537, 433–442. [Google Scholar] [CrossRef]
- Lebovitz, N.R.; Lifschitz, A. Short-wavelength instabilities of Riemann ellipsoids. Phil. Trans. R. Soc. A 1996, 354(1709), 927–950. [Google Scholar]
- Lebovitz, N.R.; Zweibel, E. Magnetoelliptic instabilities. Astrophys. J. 2004, 609, 301–312. [Google Scholar] [CrossRef]
- Leibovich, S.; Stewartson, K. A sufficient condition for the instability of columnar vortices. J. Fluid Mech. 1983, 126, 335–356. [Google Scholar] [CrossRef]
- Lifschitz, A. Short wavelength instabilities of incompressible threedimensional flows and generation of vorticity. Phys. Lett. A 1991, 157, 481–487. [Google Scholar] [CrossRef]
- Lifschitz, A.; Hameiri, E. Local stability conditions in fluid dynamics. Phys. Fluids A: Fluid Dyn. 1991, 3, 2644–2651. [Google Scholar] [CrossRef]
- Lifschitz, A.; Hameiri, E. Localized instabilities of vortex rings with swirl. Comm. Pure Appl. Math. 1993, 46, 1379–1408. [Google Scholar] [CrossRef]
- Ludwieg, H. Stabilität der Strömung in einem zylindrischen Ringraum. Z. Flugwiss. 1960, 5, 135–140. [Google Scholar]
- Maslov, V.P. Coherent structures, resonances, and asymptotic non-uniqueness for Navier-Stokes equations with large Reynolds numbers. Russ. Math. Surv. 1986, 41, 23–42. [Google Scholar] [CrossRef]
- Mathur, M.; Ortiz, S.; Dubos, T.; Chomaz, J.-M. Effects of an axial flow on the centrifugal, elliptic and hyperbolic instabilities in Stuart vortices. J. Fluid Mech. 2014, 758, 565–585. [Google Scholar] [CrossRef]
- McIntyre, M.E. Diffusive destabilisation of the baroclinic circular vortex, Geophys. Fluid Dyn. 1970, 1, 19–57. [Google Scholar]
- Meyer, A.; Mutabazi, I.; Yoshikawa, H.N. Stability of Rayleigh-stable Couette flow between two differentially heated cylinders. Phys. Rev. Fluids 2021, 6, 033905. [Google Scholar] [CrossRef]
- Mizerski, K.A.; Bajer, K. The magnetoelliptic instability of rotating systems J. Fluid Mech. 2009, 632, 401–430. [Google Scholar] [CrossRef]
- Mizerski, K.A.; Bajer, K. The influence of magnetic field on short-wavelength instability of Riemann ellipsoids. Physica D: Nonlin. Phen. 2011, 240, 1629–1635. [Google Scholar] [CrossRef]
- Mizerski, K.A.; Bajer, K.; Moffatt, H.K. The mean electromotive force generated by elliptic instability. J. Fluid Mech. 2012, 707, 111–128. [Google Scholar] [CrossRef]
- Nagarathinam, D.; Sameen, A.; and Mathur, M. Centrifugal instability in non-axisymmetric vortices. J. Fluid Mech. 2015, 769, 26–45. [Google Scholar] [CrossRef]
- Petitdemange, L.; Marcotte, F.; Gissinger, C.; Daniel, F. Tayler–Spruit dynamo simulations for the modeling of radiative stellar layers. A&A, 2024, 681, A75. [Google Scholar]
- Pierrehumbert, R.T. Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Lett. 1986, 57(17), 2157–2159. [Google Scholar] [CrossRef] [PubMed]
- Salhi, A.; Cambon, C. Magneto-gravity-elliptic instability. J. Fluid Mech. 2023, 963, A9. [Google Scholar] [CrossRef]
- Singh, S.; Mathur, M. Effects of Schmidt number on the short-wavelength instabilities in stratified vortices. J. Fluid Mech. 2019, 867, 765–803. [Google Scholar] [CrossRef]
- Singh, S.; Mathur, M. Diffusive effects in local instabilities of a baroclinic axisymmetric vortex. J. Fluid Mech. 2021, 928, A14. [Google Scholar] [CrossRef]
- Vidal, J.; Cébron, D. Inviscid instabilities in rotating ellipsoids on eccentric Kepler orbits. J. Fluid Mech. 2017, 833, 469–511. [Google Scholar] [CrossRef]
- Vidal, J.; Cébron, D.; ud-Doula, A.; Alecian, E. Fossil field decay due to nonlinear tides in massive binaries. A&A, 2019, 629, A142. [Google Scholar]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
