Submitted:
24 December 2024
Posted:
25 December 2024
You are already at the latest version
Abstract
Keywords:
Introduction
1. Neonatal Human Genome and Precision Medicine
2. Brain Injuries
2.1. Early Brain Injury in Neonates and Neonatal Encephalopathy
2.2. Neonatal Seizures
3. Heamodynamic Disturbances
3.1. Patent Ductus Arteriosus (PDA)
Assessment of Patent Ductus Arteriosus
3.2. Neonatal Shock
Shock and Crashing Neonates
4. Respiratory Disorders
4.1. Neonatal Respiratory Distress Syndrome
- Surfactant genetic and biological tests
- Advanced oxygenation metrics
- Functional lung imaging
Surfactant Genetic and Surfactant Biology of RDS Neonates
4.2. Bronchopulmonary Dysplasia
- Pharmacogenetics and Caffeine
- Electrical Impedance Tomography
- Electromyography of The Diaphragm
- Volatile Organic Compounds
6. Neonatal Sepsis
- PCR
- microRNA (miRNA)
- T2 Magnetic Resonance (T2MR) Technology
- Bioinformatics Analysis
7. Renal Diseases
8. Hyperbilirubinemia
9. Precision Drug Therapy and Therapeutics Interventions in NICU
8.1. Pharmacogenomics and Pharmacogenetics
8.2. Therapeutic Hypothermia
Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Papachristou, K.; Katsakiori, P.F.; Papadimitroulas, P.; Strigari, L.; Kagadis, G.C. Digital Twins’ Advancements and Applications in Healthcare, Towards Precision Medicine. J. Pers. Med. 2024, 14, 1101. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Precision Medicine. Available online: https://www.fda.gov/medical-devices/in-vitro-diagnostics/precision-medicine#:~:text=Precision%20medicine%2C%20sometimes%20known%20as,genes%2C%20environments%2C%20and%20lifestyles (accessed on 11 December 2024).
- Delpierre, C.; Lefèvre, T. Precision and personalized medicine: What their current definition says and silences about the model of health they promote. Implication for the development of personalized health. Front Sociol 2023, 21, 1112159. [Google Scholar] [CrossRef] [PubMed]
- Leite, S.; Barros, A.C.; Liz, C.F.; Aires, S.; Carvalho, C. Precision medicine in neonatology. J Pediatr Neonat Individual Med 2022, 11, e110210. [Google Scholar] [CrossRef]
- Elsayed, Y.N.; Amer, R.; Seshia, M.M. The impact of integrated evaluation of hemodynamics using targeted neonatal echocardiography with indices of tissue oxygenation: a new approach. J Perinatol 2017, 37, 527–535. [Google Scholar] [CrossRef] [PubMed]
- ELMeneza, S.A.; Hassan, N.F.; Mohamed, A.R. Pancreatic Ultrasound in High-risk Neonates. General Reanimatology 2024, 20, 31–36. [Google Scholar] [CrossRef]
- Dong, Z.; Xiao, T.; Chen, B.; Lu, Y.; Zhou, W. Precision medicine via the integration of phenotype-genotype information in neonatal genome project. Fundamental Research 2022, 2, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Ceyhan-Birsoy, O.; Machini, K.; Lebo, M.S.; Yu, T.W.; Agrawal, P.B.; Parad, R.B.; Holm, I.A.; McGuire, A.; Green, R.C.; Beggs, A.H.; Rehm, H.L. A curated gene list for reporting results of newborn genomic sequencing. Genet Med 2017, 19, 809–818. [Google Scholar] [CrossRef]
- Yang, L.; Liu, X.; Li, Z.; Zhang, P.; Wu, B.; Wang, H.; Hu, L.; Cheng, G.; Wang, L.; Zhou, W. Genetic aetiology of early infant deaths in a neonatal intensive care unit. J. Med. Genet. 2020, 57, 169–177. [Google Scholar] [CrossRef]
- Petrikin, J.E.; Cakici, J.A.; Clark, M.M.; Willig, L.K.; Sweeney, N.M.; Farrow, E.G.; Saunders, C.J.; Thiffault, I.; Miller, N.A.; Zellmer, L.; et al. The NSIGHT1-randomized controlled trial: rapid whole-genome sequencing for accelerated etiologic diagnosis in critically ill infants. NPJ Genom Med 2018, 9, 6. [Google Scholar] [CrossRef]
- Yang, L.; Chen, J.; Shen, B. Newborn Screening in the Era of Precision Medicine. Adv Exp Med Biol. 2017, 1005, 47–61. [Google Scholar] [CrossRef]
- Hartnett, M.E.; Morrison, M.A.; Smith, S.; Yanovitch, T.L.; Young, T.L.; Colaizy, T.; Momany, A.; Dagle, J.; Carlo, W.A.; Clark, E.A.; Page, G.; Murray, J.; DeAngelis, M.M.; Cotton, C.M.; Genomics Subcommittee. Genetic variants associated with severe retinopathy of prematurity in extremely low birth weight infants. Invest Ophthalmol Vis Sci 2014, 55, 6194–6203. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Guo, D. Association of High-Mobility Group Box 1 (HMGB1) Gene Polymorphisms with Susceptibility and Better Survival Prognosis in Chinese Han Neonatal Necrotizing Enterocolitis. Med Sci Monit 2021, 27, e930015-1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Srinivasan, L.; Kirpalani, H.; Cotton, C.M. Elucidating the role of genomics in neonatal sepsis. Semin Perinatol 2015, 39, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Chen, H.; Dong, X.; Chen, J.; Mei, M.; Lu, Y.; Yang, L.; Wu, B.; Cao, Y.; Wang, J.; Zhou, W.; Qian, L. Bronchopulmonary Dysplasia Predicted by Developing a Machine Learning Model of Genetic and Clinical Information. Front Genet 2021, 12, 689071. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Torkamani, A.; Wineinger, N.E.; Topol, E.J. The personal and clinical utility of polygenic risk scores. Nat Rev Genet 2018, 19, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Executive Summary: Neonatal Encephalopathy and Neurologic Outcome, Second Edition. Report of the American College of Obstetricians and Gynecologists Task Force on Neonatal Encephalopathy. Neonatal Encephalopathy and Neurologic Outcome. (Reaffirmed 2019) second edition. Available online: https://www.acog.org/clinical/clinical-guidance/task-force-report/articles/2014/neonatal-encephalopathy-and-neurologic-outcome (accessed on 12 December 2024).
- Executive summary: Neonatal encephalopathy and neurologic outcome, second edition. Report of the American College of Obstetricians and Gynecologists Task Force on Neonatal Encephalopathy. Obstet Gynecol 2014, 123, 896–901. [CrossRef]
- Aslam, S.; Strickland, T.; Molloy, E.J. Neonatal encephalopathy: need for recognition of multiple etiologies for optimal management. Front. Pediatr. 2019, 7, 142. [Google Scholar] [CrossRef] [PubMed]
- Sandoval Karamian, A.G.; Mercimek-Andrews, S.; Mohammad, K.; Molloy, E.J.; Chang, T.; Chau, V.; Murray, D.M.; Wusthoff, C.J. Newborn Brain Society Guidelines and Publications Committee. Neonatal encephalopathy: Etiologies other than hypoxic-ischemic encephalopathy. Semin Fetal Neonatal Med 2021, 26, 101272. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.M.; Walsh, B.H.; Boylan, G.B.; Murray, D.M. Mild hypoxic ischaemic encephalopathy and long term neurodevelopmental outcome—A systematic review. Early Hum. Dev. 2018, 120, 80–87. [Google Scholar] [CrossRef]
- Vesoulis, Z.A.; Liao, S.M.; Rao, R.; Trivedi, S.B.; Cahill, A.G.; Mathur, A.M. Re-examining the arterial cord blood gas pH screening criteria in neonatal encephalopathy. Arch Dis Child Fetal Neonatal Ed 2018, 103, F377–F382. [Google Scholar] [CrossRef]
- Thiim, K.R.; Garvey, A.A.; Singh, E.; Walsh, B.; Inder, T.E.; El-Dib, M. Brain Injury in Infants Evaluated for, But Not Treated with, Therapeutic Hypothermia. J Pediatr 2023, 253, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.O.; Battin, M.R.; Gunn, A.J. Implications of the Helix trial for treating infants with hypoxic-ischaemic encephalopathy in low-to-middle-income countries. Arch. Dis. Child. Fetal Neonatal Ed. 2023, 108, 83–84. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, S.H.; Kim, H.D.; Lee, J.S.; Ko, A.; Kang, H.C. Genetic Diagnosis in Neonatal Encephalopathy With Hypoxic Brain Damage Using Targeted Gene Panel Sequencing. J Clin Neurol 2024, 20, 519–528. [Google Scholar] [CrossRef]
- Martinello, K.; Hart, A.R.; Yap, S.; Mitra, S.; Robertson, N.J. Management and investigation of neonatal encephalopathy: 2017 update. Arch. Dis. Child. Fetal Neonatal Ed. 2017, 102, F346–F358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xie, J.; Yuan, X.; Yu, Y.; Zhuang, Y.; Zhang, F.; Hou, J.; Liu, Y.; Huang, W.; Zhang, M.; Li, J.; Gong, Q.; Peng, X. Newly discovered variants in unexplained neonatal encephalopathy. Molecular Genetics & Genomic Medicine 2024, 12, e2354. [Google Scholar] [CrossRef]
- Yang, L.; Chen, X.; Liu, X.; Dong, X.; Ye, C.; Deng, D.; Lu, Y.; Lin, Y.; Zhou, W. Clinical features and underlying genetic causes in neonatal encephalopathy: A large cohort study. Clin Genet 2020, 98, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Chuang, J.L.; Wynn, R.M.; Moss, C.C.; Song, J.L.; Li, J.; Awad, N.; Mandel, H.; Chuang, D.T. Structural and biochemical basis for novel mutations in homozygous Israeli maple syrup urine disease patients: a proposed mechanism for the thiamin-responsive phenotype. J Biol Chem 2004, 279, 17792–17800. [Google Scholar] [CrossRef]
- Lerner-Ellis, J.P.; Anastasio, N.; Liu, J.; Coelho, D.; Suormala, T.; Stucki, M.; Loewy, A.D.; Gurd, S.; Grundberg, E.; Morel, C.F.; et al. Spectrum of mutations in MMACHC, allelic expression, and evidence for genotype-phenotype correlations. Hum Mutat 2009, 30, 1072–1081. [Google Scholar] [CrossRef]
- Berger, I.; Hershkovitz, E.; Shaag, A.; Edvardson, S.; Saada, A.; Elpeleg, O. Mitochondrial complex I deficiency caused by a deleterious NDUFA11 mutation. Ann Neurol 2008, 63, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Montaldo, P.; Kaforou, M.; Pollara, G.; Hervás-Marín, D.; Calabria, I.; Panadero, J.; Pedrola, L.; Lally, P.J.; Oliveira, V.; Kage, A.; et al. Whole Blood Gene Expression Reveals Specific Transcriptome Changes in Neonatal Encephalopathy. Neonatology 2019, 115, 68–76. [Google Scholar] [CrossRef]
- Montaldo, P.; Cunnington, A.; Oliveira, V.; Swamy, R.; Bandya, P.; Pant, S.; Lally, P.J.; Ivain, P.; Mendoza, J.; Atreja, G.; et al. Transcriptomic profile of adverse neurodevelopmental outcomes after neonatal encephalopathy. Sci Rep 2020, 10, 13100. [Google Scholar] [CrossRef] [PubMed]
- Montaldo, P.; Burgod, C.; Herberg, J.A.; Kaforou, M.; Cunnington, A.J.; Mejias, A.; Cirillo, G.; Miraglia Del Giudice, E.; Capristo, C.; Bandiya, P.; et al. Whole-Blood Gene Expression Profile After Hypoxic-Ischemic Encephalopathy. JAMA Netw Open 2024, 7, e2354433. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.L.; O'Boyle, D.S.; Walsh, B.H.; Murray, D.M. Validation of a machine learning algorithm for identifying infants at risk of hypoxic ischaemic encephalopathy in a large unseen data set. Arch Dis Child Fetal Neonatal Ed 2024, 24. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.D.; Miran, A.A.; Stoopler, M.; Branson, H.M.; Danguecan, A.; Raghu, K.; Ly, L.G.; Cizmeci, M.N.; Kalish, B.T. Automated Neuroprognostication via Machine Learning in Neonates with Hypoxic-Ischemic Encephalopathy. medRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Andorka, C.; Barta, H.; Sesztak, T.; Nyilas, N.; Kovacs, K.; Dunai, L.; Rudas, G.; Jermendy, A.; Szabo, M.; Szakmar, E. The predictive value of MRI scores for neurodevelopmental outcome in infants with neonatal encephalopathy. Pediatr Res 2024. [Google Scholar] [CrossRef] [PubMed]
- Ashoori, M.; O'Toole, J.M.; Garvey, A.A.; O'Halloran, K.D.; Walsh, B.; Moore, M.; Pavel, A.M.; Boylan, G.B.; Murray, D.M.; Dempsey, E.M.; McDonald, E.B. Machine learning models of cerebral oxygenation (rcSO2) for brain injury detection in neonates with hypoxic-ischaemic encephalopathy. The J of Physiology 2024, 602, 6347–6360. [Google Scholar] [CrossRef] [PubMed]
- Pavel, A.M.; O'Toole, J.M.; Proietti, J.; Livingstone, V.; Mitra, S.; Marnane, W.P.; Finder, M.; Dempsey, E.M.; Murray, D.M.; Boylan, G.B. ANSeR Consortium. Machine learning for the early prediction of infants with electrographic seizures in neonatal hypoxic-ischemic encephalopathy. Epilepsia 2023, 64, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ju, R.; Chen, Y.; Liu, G.; Yi, Z. Automated diagnosis of neonatal encephalopathy on aEEG using deep neural networks. Neurocomputing 2020, 398, 95–107. [Google Scholar] [CrossRef]
- Ashoori, M.; O’Toole, J.M.; O’Halloran, K.D.; Naulaers, G.; Thewissen, L.; Miletin, J.; Cheung, P.-Y.; EL-Khuffash, A.; Van Laere, D.; Straňák, Z.; et al. Machine Learning Detects Intraventricular Haemorrhage in Extremely Preterm Infants. Children 2023, 10, 917. [Google Scholar] [CrossRef]
- Eldarov, C.; Starodubtseva, N.; Shevtsova, Y.; Goryunov, K.; Ionov, O.; Frankevich, V.; Plotnikov, E.; Sukhikh, G.; Zorov, D.; Silachev, D. Dried Blood Spot Metabolome Features of Ischemic–Hypoxic Encephalopathy: A Neonatal Rat Model. Int. J. Mol. Sci. 2024, 25, 8903. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wusiman, Y.; Zhao, J.; Zhang, W.; Liu, W.; Wang, S.; Qian, G.; Zhang, G.; Le, M.; Dong, X. Metabolomics analysis revealed the neuroprotective role of 2-phosphoglyceric acid in hypoxic-ischemic brain damage through GPX4/ACSL4 axis regulation. European Journal of Pharmacology 2024, 971, 176539. [Google Scholar] [CrossRef] [PubMed]
- Glass, H.C.; Shellhaas, R.A.; Wusthoff, C.J.; Chang, T.; Abend, N.S.; Chu, C.J.; Cilio, M.R.; Glidden, D.V.; Bonifacio, S.L.; Massey, S.; et al. Contemporary Profile of Seizures in Neonates: A Prospective Cohort Study. The Journal of Pediatrics 2016, 174, 98–103.e1. [Google Scholar] [CrossRef]
- Abend, N.S.; Wusthoff, C.J. Neonatal seizures and status epilepticus. J Clin Neurophysiol 2012, 29, 441–448. [Google Scholar] [CrossRef]
- Kim, E.H.; Shin, J.; Lee, B.K. Neonatal seizures: diagnostic updates based on new definition and classification. Clin Exp Pediatr 2022, 65, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Pressler, R.M.; Cilio, M.R.; Mizrahi, E.M.; Moshé, S.L.; Nunes, M.L.; Plouin, P.; Vanhatalo, S.; Yozawitz, E.; de Vries, L.S.; Puthenveettil Vinayan, K.; et al. The ILAE classification of seizures and the epilepsies: Modification for seizures in the neonate. Position paper by the ILAE Task Force on Neonatal Seizures. Epilepsia 2021, 62, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Lynch, N.E.; Stevenson, N.J.; Livingstone, V.; Murphy, B.P.; Rennie, J.M.; Boylan, G.B. The temporal evolution of electrographic seizure burden in neonatal hypoxic ischemic encephalopathy. Epilepsia 2012, 53, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Hart, A.R.; Pilling, E.L.; Alix, J.J. Neonatal seizures—part 2: aetiology of acute symptomatic seizures, treatments and the neonatal epilepsy syndromes. Archs Dis Childh Educ Pract Ed 2015, 100, 226–232. [Google Scholar] [CrossRef]
- Shellhaas, R.A.; Wusthoff, C.J.; Tsuchida, T.N.; Glass, H.C.; Chu, C.J.; Massey, S.L.; Soul, J.S.; Wiwattanadittakun, N.; Abend, N.S.; Cilio, M.R. Neonatal Seizure Registry. Profile of neonatal epilepsies: Characteristics of a prospective US cohort. Neurology 2017, 89, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Scher, M.S.; Aso, K.; Beggarly, M.E.; Hamid, M.Y.; Steppe, D.A.; Painter, M.J. Electrographic seizures in preterm and full-term neonates: clinical correlates, associated brain lesions, and risk for neurologic sequelae. Pediatrics 1993, 91, 128–134. [Google Scholar] [CrossRef]
- Murray, D.M.; Boylan, G.B.; Ali, I.; Ryan, C.A.; Murphy, B.P.; Connolly, S. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed 2008, 93, F187–F191. [Google Scholar] [CrossRef]
- Stevenson, N.J.; Vanhatalo, S. Designing a trial for neonatal seizure treatment. Seminars in Fetal & Neonatal Medicine 2018, 23, 213–217. [Google Scholar] [CrossRef]
- Nunes, M.L.; Yozawitz, E.G.; Zuberi, S.; Mizrahi, E.M.; Cilio, M.R.; Moshé, S.L.; Plouin, P.; Vanhatalo, S.; Pressler, R.M. Task Force on Neonatal Seizures, ILAE Commission on Classification & Terminology. Neonatal seizures: Is there a relationship between ictal electroclinical features and etiology? A critical appraisal based on a systematic literature review. Epilepsia Open 2019, 4, 10–29. [Google Scholar] [CrossRef] [PubMed]
- Santarone, M.E.; Pietrafusa, N.; Fusco, L. Neonatal seizures: when semiology points to etiology. Seizure 2020, 80, 161–165. [Google Scholar] [CrossRef]
- Hellström-Westas, L. Amplitude-integrated electroencephalography for seizure detection in newborn infants. Seminars in Fetal & Neonatal Medicine 2018, 23, 175–182. [Google Scholar] [CrossRef]
- Rakshasbhuvankar, A.; Paul, S.; Nagarajan, L.; Ghosh, S.; Rao, S. Amplitude-integrated EEG for detection of neonatal seizures: a systematic review. Seizure 2015, 33, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Shellhaas, R.A.; Barks, A.K. Impact of amplitude-integrated electroencephalograms on clinical care for neonates with seizures. Pediatric Neurology 2012, 46, 32–35. [Google Scholar] [CrossRef]
- Wietstock, S.O.; Bonifacio, S.L.; McCulloch, C.E.; Kuzniewicz, M.W.; Glass, H.C. Neonatal Neurocritical Care Service Is Associated With Decreased Administration of Seizure Medication. Journal of Child Neurology 2015, 30, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Glass, H.C.; Shellhaas, R.A.; Tsuchida, T.N.; Chang, T.; Wusthoff, C.J.; Chu, C.J.; Cilio, M.R.; Bonifacio, S.L.; Massey, S.L.; Abend, N.S.; Soul, J.S. Neonatal Seizure Registry study group.Seizures in Preterm Neonates: A Multicenter Observational Cohort Study. Pediatric Neurology 2017, 72, 19–24. [Google Scholar] [CrossRef]
- Axeen, E.J.T.; Olson, H.E. Neonatal epilepsy genetics. Semin Fetal Neonatal Med 2018, 23, 197–203. [Google Scholar] [CrossRef]
- Novotny, E.J., Jr. Early genetic testing for neonatal epilepsy: when, why, and how? Neurology 2017, 89, 880–881. [Google Scholar] [CrossRef]
- Fisher, R.S.; Cross, J.H.; D'Souza, C.; French, J.A.; Haut, S.R.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L.; et al. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia 2017, 58, 531–542. [Google Scholar] [CrossRef]
- Fernandez-Alvarez, E. Transient benign paroxysmal movement disorders in infancy. Eur J Paediatr Neurol 2018, 22, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Myers, K.A.; Scheffer, I.E. Precision Medicine Approaches for Infantile-Onset Developmental and Epileptic Encephalopathies. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 641–662. [Google Scholar] [CrossRef] [PubMed]
- de Boode, W.P. Individualized Hemodynamic Management in Newborns. Front. Pediatr. 2020, 8, 580470. [Google Scholar] [CrossRef] [PubMed]
- McNamara, P.J.; Jain, A.; El-Khuffash, A.; Giesinger, R.; Weisz, D.; Freud, L.; Levy, P.T.; Bhombal, S.; de Boode, W.; Leone, T.; et al. Guidelines and Recommendations for Targeted Neonatal Echocardiography and Cardiac Point-of-Care Ultrasound in the Neonatal Intensive Care Unit: An Update from the American Society of Echocardiography. Journal of the American Society of Echocardiography 2024, 37, 171–215. [Google Scholar] [CrossRef]
- van Laere, D.; van Overmeire, B.; Gupta, S.; El-Khuffash, A.; Savoia, M.; McNamara, P.J.; Schwarz, C.E.; de Boode, W.P. European Special Interest Group ‘Neonatologist Performed Echocardiography’ (NPE). Application of NPE in the assessment of a patent ductus arteriosus. Pediatr Res 2018, 84 (Suppl 1), 46–56. [Google Scholar] [CrossRef]
- de Boode, W.P. Individualized Hemodynamic Management in Newborns. Front. Pediatr. 2020, 8, 580470. [Google Scholar] [CrossRef] [PubMed]
- Hamrick, S.E.G.; Sallmon, H.; Rose, A.T.; Porras, D.; Shelton, E.L.; Reese, J.; Hansmann, G. Patent Ductus Arteriosus of the Preterm infant. Pediatrics 2020, 146, e20201209. [Google Scholar] [CrossRef] [PubMed]
- North West, North Wales, and Isle of Man Children’s Heart Network with comments from all NW neonatal clinical leads. Guideline for the management of Patent Ductus Arteriosus (PDA). Available online: https://www.neonatalnetwork.co.uk/nwnodn/wp-content/uploads/2020/10/GL-ODN-09-NW-Guideline-for-the-Management-of-PDA.pdf (accessed on 20 December 2024).
- K¨ostekci, Y.E.; Erdeve, O. Patent ductus arteriosus (PDA): Recent recommendations for to close or not to close. Global Pediatrics 2024, 7, 100128. [Google Scholar] [CrossRef]
- Rogel-Ayala, D.G.; Muñoz-Medina, J.E.; Vicente-Juárez, V.D.; Grether-González, P.; Morales-Barquet, D.A.; Martínez-García, A.d.J.; Echaniz-Aviles, M.O.L.; Sevilla-Montoya, R.; Martínez-Juárez, A.; Artega-Vázquez, J.; et al. Association of the EPAS1 rs7557402 Polymorphism with Hemodynamically Significant Patent Ductus Arteriosus Closure Failure in Premature Newborns under Pharmacological Treatment with Ibuprofen. Diagnostics 2023, 13, 2558. [Google Scholar] [CrossRef] [PubMed]
- Sallmon, H.; Delaney, C.A. Platelets and ductus arteriosus closure in neonates. Seminars in perinatology 2023, 47, 151719. [Google Scholar] [CrossRef]
- Gokulakrishnan, G.; Kulkarni, M.; He, S.; Leeflang, M.M.; Cabrera, A.G.; Fernandes, C.J.; Pammi, M. Brain natriuretic peptide and N-terminal brain natriuretic peptide for the diagnosis of haemodynamically significant patent ductus arteriosus in preterm neonates. The Cochrane Database of Systematic Reviews 2022, 12, CD013129. [Google Scholar] [CrossRef]
- Omar, H.R.; Abed, N.T.; El-Falah, A.A.; Elsayes, M.E. High-sensitivity troponin T in preterm infants with a hemodynamically significant patent ductus arteriosus. International Journal of Health Sciences 2022, 6, 8220–8230. [Google Scholar] [CrossRef]
- Patra, A.; Thakkar, P.S.; Makhoul, M.; Bada, H.S. Objective Assessment of Physiologic Alterations Associated With Hemodynamically Significant Patent Ductus Arteriosus in Extremely Premature Neonates. Frontiers in Pediatrics 2021, 9, 648584. [Google Scholar] [CrossRef] [PubMed]
- Zong, H.; Huang, Z.; Lin, B.; Zhao, J.; Fu, Y.; Yu, Y.; Sun, H.; Yang, C. The Predictive Value of Lung Ultrasound Score on Hemodynamically Significant Patent Ductus Arteriosus among Neonates ≤ 25 Weeks. Diagnostics 2023, 13, 2263. [Google Scholar] [CrossRef]
- Osman, A.A.; Albalawi, M.; Dakshinamurti, S.; Hinton, M.; Elhawary, F.; Mawlana, W.; Elsayed, Y. The perfusion index histograms predict patent ductus arteriosus requiring treatment in preterm infants. European Journal of Pediatrics 2021, 180, 1747–1754. [Google Scholar] [CrossRef] [PubMed]
- Sellmer, A.; Bjerre, J.V.; Schmidt, M.R.; McNamara, P.J.; Hjortdal, V.E.; Høst, B.; Bech, B.H.; Henriksen, T.B. Morbidity and mortality in preterm neonates with patent ductus arteriosus on day 3. Archives of Disease in Childhood - Fetal and Neonatal Edition 2013, 98, F505–F510. [Google Scholar] [CrossRef]
- Xu, C.; Su, X.; Chen, Y.; Xu, Y.; Wang, Z.; Mo, X. Proteomics analysis of plasma protein changes in patent ductus arteriosus patients. Italian Journal of Pediatrics 2020, 46, 64. [Google Scholar] [CrossRef]
- Gómez-Quintana, S.; Schwarz, C.E.; Shelevytsky, I.; Shelevytska, V.; Semenova, O.; Factor, A.; Popovici, E.; Temko, A.A. Framework for AI-Assisted Detection of Patent Ductus Arteriosus from Neonatal Phonocardiogram. Healthcare 2021, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Moon, J.; Eun, H.; Hong, J.-H.; Lee, K. Artificial Intelligence-Based Diagnostic Support System for Patent Ductus Arteriosus in Premature Infants. J. Clin. Med. 2024, 13, 2089. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.-J.; Hsu, R.; Lin, Y.-C.; Wong, T.-W.; Kan, C.-D.; Wang, J.-N. The Association of Patent Ductus Arteriosus with Inflammation: A Narrative Review of the Role of Inflammatory Biomarkers and Treatment Strategy in Premature Infants. Int. J. Mol. Sci. 2022, 23, 13877. [Google Scholar] [CrossRef] [PubMed]
- Lewis, T.R.; Shelton, E.L.; Van Driest, S.L.; Kannankeril, P.J.; Reese, J. Genetics of the patent ductus arteriosus (PDA) and pharmacogenetics of PDA treatment. Semin Fetal Neonatal. Med. 2018, 23, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Amer, R.; Kalash, R.; Seshia, M.M.; Elsayed, Y.N. The impact of integrated evaluation of hemodynamics on management of preterm infants with late onset compromised systemic circulation. Am J Perinatol 2017, 34, 1011–1019. [Google Scholar] [CrossRef]
- Yousef, N.; Singh, Y.; De Luca, D. "Playing it SAFE in the NICU" SAFE-R: a targeted diagnostic ultrasound protocol for the suddenly decompensating infant in the NICU. Eur J Pediatr 2022, 181, 393–398. [Google Scholar] [CrossRef]
- Elsayed, Y.N.; Wahab, M.G.A.; Mohamed, A.; Fadel, N.B.; Bhombal, S.; Yousef, N.; Fraga, M.V.; Afifi, J.; Suryawanshi, P.; Hyderi, A.; et al. Point-of-care ultrasound (POCUS) protocol for systematic assessment of the crashing neonate-expert consensus statement of the international crashing neonate working group. European journal of pediatrics 2023, 182, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, Y.; Abdul Wahab, M.G. A new physiologic-based integrated algorithm in the management of neonatal hemodynamic instability. European Journal of Pediatrics 2022, 181, 1277–1291. [Google Scholar] [CrossRef]
- Yadav, S.; Lee, B.; Kamity, R. Neonatal respiratory distress syndrome. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; https://pubmed.ncbi.nlm.nih.gov/32809614/.
- Martin, T.R.; Zemans, R.L.; Ware, L.B.; Schmidt, E.P.; Riches, D.W.H.; Bastarache, L.; Calfee, C.S.; Desai, T.J.; Herold, S.; Hough, C.L.; et al. New Insights into Clinical and Mechanistic Heterogeneity of the Acute Respiratory Distress Syndrome: Summary of the Aspen Lung Conference 2021. Am. J. Respir. Cell Mol. Biol. 2022, 67, 284–308. [Google Scholar] [CrossRef]
- Arafa, A.; ELMeneza, S.; and Hafeez, S. The Relation between Role of Serum Cortisol Level and Response to Various Respiratory Support Strategies among Preterm Infants. Open Journal of Pediatrics 2020, 10, 504–514. [Google Scholar] [CrossRef]
- Beitler, J.R.; Thompson, B.T.; Baron, R.M.; Bastarache, J.A.; Denlinger, L.C.; Esserman, L.; Calfee, C.S. Advancing precision medicine for acute respiratory distress syndrome. Lancet Respir. Med. 2022, 10, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Wambach, J.A.; Yang, P.; Wegner, D.J.; Heins, H.B.; Luke, C.; Li, F.; White, F.V.; Cole, F.S. Functional Genomics of ABCA3 Variants. Am. J. Respir. Cell Mol. Biol. 2020, 63, 436–443. [Google Scholar] [CrossRef]
- Nogee, L.M. Genetic causes of surfactant protein abnormalities. Curr. Opin. Pediatr. 2019, 31, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Nogee, L.M.; Ryan, R.M. Genetic Testing for Neonatal Respiratory Disease. Children 2021, 8, 216. [Google Scholar] [CrossRef] [PubMed]
- Heiring, C.; Verder, H.; Schousboe, P.; Jessen, T.E.; Bender, L.; Ebbesen, F.; Dahl, M.; Eschen, C.; Fenger-Grøn, J.; Höskuldsson, A.; Matthews, M.; Reinholdt, J.; Scoutaris, N.; Smedegaard, H. Predicting respiratory distress syndrome at birth using a fast test based on spectroscopy of gastric aspirates: 2. Clinical part. Acta paediatrica 2020, 109, 285–290. [Google Scholar] [CrossRef] [PubMed]
- De Luca, D.; Autilio, C.; Pezza, L.; Shankar-Aguilera, S.; Tingay, D.G.; Carnielli, V.P. Personalized medicine for the management of RDS in preterm neonates. Neonatology 2021, 118, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Verder, H.; Ebbesen, F.; Fenger-Grøn, J.; Henriksen, T.B.; Andreasson, B.; Bender, L.; Bertelsen, A.; Björklund, L.J.; Dahl, M.; Esberg, G.; Eschen, C.; et al. Early surfactant guided by lamellar body counts on gastric aspirate in very preterm infants. Neonatology 2013, 104, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Autilio, C.; Echaide, M.; Cruz, A.; Garcı´a-Mouton, C.; Hidalgo, A.; Da Silva, E.; De Luca, D.; Sørli, J.B.; Pérez-Gil, J. Molecular and biophysical mechanisms behind the enhancement of lung surfactant function during controlled therapeutic hypothermia. Sci Rep 2021, 11, 728. [Google Scholar] [CrossRef] [PubMed]
- Autilio, C.; Perez-Gil, J. Understanding the principle biophysics concepts of pulmonary surfactant in health and disease. Arch Dis Child Fetal Neonatal Ed 2019, 104, F443–F451. [Google Scholar] [CrossRef]
- Bhatia, R.; Morley, C.J.; Argus, B.; Tingay, D.G.; Donath, S.; Davis, P.G. The stable microbubble test for determining continuous positive airway pressure (CPAP) success in very preterm infants receiving nasal CPAP from birth. Neonatology 2013, 104, 188–193. [Google Scholar] [CrossRef]
- Oh, M.H.; Bae, C.W. Inhibitory effect of meconium on pulmonary surfactant function tested in vitro using the stable microbubble test. Eur J Pediatr 2000, 159, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Hobi, N.; Siber, G.; Bouzas, V.; Ravasio, A.; P_erez-Gil, J.; Haller, T. Physiological variables affecting surface film formation by native lamellar body-like pulmonary surfactant particles. Biochim Biophys Acta 2014, 1838, 1842–1850. [Google Scholar] [CrossRef]
- De Luca, D.; Vázquez-Sánchez, S.; Minucci, A.; Echaide, M.; Piastra, M.; Conti, G.; Capoluongo, E.D.; Pérez-Gil, J. Effect of whole body hypothermia on inflammation and surfactant function in asphyxiated neonates. Eur Respir J 2014, 44, 1708–1710. [Google Scholar] [CrossRef]
- Arroyo, R.; Kingma, P.S. Surfactant protein D and bronchopulmonary dysplasia: a new way to approach an old problem. Respir Res 2021, 22, 141. [Google Scholar] [CrossRef]
- Sharma, S.; Hashmi, M.F.; Burns, B. Alveolar Gas Equation. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025; https://pubmed.ncbi.nlm.nih.gov/29489223/.
- Khemani, R.G.; Smith, L.S.; Zimmerman, J.J.; Erickson, S. Pediatric Acute Lung Injury Consensus Conference Group Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2015, 16, S23–S40. [Google Scholar] [CrossRef] [PubMed]
- Sweet, D.G.; Carnielli, V.; Greisen, G.; Hallman, M.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; Simeoni, U.; et al. European consensus guidelines on the management of respiratory distress syndrome - 2019 update. Neonatology 2019, 115, 432–450. [Google Scholar] [CrossRef] [PubMed]
- Muniraman, H.K.; Song, A.Y.; Ramanathan, R.; Fletcher, K.L.; Rutuja Kibe, R.; Ding, L.; Lakshmanan, A.; Biniwale, M. Evaluation of oxygen saturation index compared with oxygenation index in neonates with hypoxemic respiratory failure. JAMA Netw Open 2019, 2, e191179. [Google Scholar] [CrossRef]
- Thandaveshwara, D.; Chandrashekar Reddy, A.H.; Gopalakrishna, M.V.; Doreswamy, S.M. Saturation oxygenation pressure index: non-invasive bedside measure for severity of respiratory disease in neonates on CPAP. Eur J Pediatr 2021, 180, 1287–1292. [Google Scholar] [CrossRef]
- Raimondi, F.; Yousef, N.; Migliaro, F.; Capasso, L.; De Luca, D. Point-of-care lung ultrasound in neonatology: classification into descriptive and functional applications. Pediatr Res 2021, 90, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Copetti, R.; Sorantin, E.; Lovrenski, J.; Rodriguez-Fanjul, J.; Kurepa, D.; Feng, X.; Cattaross, L.; Zhang, H.; Hwang, M.; et al. Protocol and guidelines for point-of-care lung ultrasound in diagnosing neonatal pulmonary diseases based on international expert consensus. J Vis Exp 2019, 145, e58990. [Google Scholar] [CrossRef]
- Raschetti, R.; Yousef, N.; Vigo, G.; Marseglia, G.; Centorrino, R.; Ben-Ammar, R.; Shankar-Aguilera, S.; de Luca, D. Echography-guided surfactant therapy to improve timeliness of surfactant replacement: a quality improvement project. J Pediatr 2019, 212, 137–143.e1. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Fanjul, J.; Jordan, I.; Balaguer, M.; Batista- Munoz, A.; Ramon, M.; Bobillo-Perez, S. Early surfactant replacement guided by lung ultrasound in preterm newborns with RDS: the ULTRASURF randomised controlled trial. Eur J Pediatr 2020, 179, 1913–1920. [Google Scholar] [CrossRef]
- Frerichs, I.; Amato, M.B.; van Kaam, A.H.; Tingay, D.G.; Zhao, Z.; Grychtol, B.; Bodenstein, M.; Gagnon, H.; Böhm, S.H.; Eckhard Teschner, E.; et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax 2017, 72, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Tingay, D.G.; Pereira-Fantini, P.M.; Oakley, R.; McCall, K.E.; Perkins, E.J.; Miedema, M.; Sourial, M.; Thomson, J.; Waldmann, A.; Dellaca, R.L.; et al. Gradual aeration at birth is more lung protective than a sustained inflation in preterm lambs. Am J Respir Crit Care Med 2019, 200, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, R.; Davis, P.G.; Tingay, D.G. Regional volume characteristics of the preterm infant receiving first intention continuous positive airway pressure. J Pediatr 2017, 187, 80–88.e2. [Google Scholar] [CrossRef]
- Lui, K.; Lee, S.K.; Kusuda, S.; Adams, M.; Vento, M.; Reichman, B.; Darlow, B.A.; Lehtonen, L.; Modi, N.; Norman, M.; et al. Trends in outcomes for neonates born very preterm and very low birth weight in 11 high-income countries. J Pediatr 2019, 215, 32–40.e14. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, R.G.; McDonald, S.A.; Laughon, M.M.; Tana, D.; Jensen, E.; Van Meurs, K.; Eichenwald, E.; Brumbaugh, J.E.; Duncan, A.; Walsh, M.; et al. Online clinical tool to estimate risk of bronchopulmonary dysplasia in extremely preterm infants. Arch Dis Child Fetal Neonatal Ed 2022, 107, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Onland, W.; Hutten, J.; Miedema, M.; Lieuwe, D.B.; Brinkman, P.; Maitland-van der Zee, A.H.; van Kaam, A.H. Precision Medicine in Neonates: Future Perspectives for the Lung. Front Pediatr 2020, 8, 586061. [Google Scholar] [CrossRef]
- Endesfelder, S.; Strauss, E.; Bendix, I.; Schmitz, T.; Buhrer, C. Prevention of oxygen-induced inflammatory lung injury by caffeine in neonatal rats. Oxid Med Cell Longev 2020, 3840124. [Google Scholar] [CrossRef] [PubMed]
- Pirastu, N.; Kooyman, M.; Robino, A.; Spek, A.V.; Navarini, L.; Amin, N.; Karssen, L.C.; Van Duijn, C.M.; Gasparini, P. Non-additive genome-wide association scan reveals a new gene associated with habitual coffee consumption. Sci Rep 2016, 6, 31590. [Google Scholar] [CrossRef] [PubMed]
- Onland, W.; Hutten, J.; Miedema, M.; Bos, L.D.; Brinkman, P.; Maitland-van der Zee, A.H.; van Kaam, A.H. Precision Medicine in Neonates: Future Perspectives for the Lung. Front. Pediatr. 2020, 8, 586061. [Google Scholar] [CrossRef]
- van Kaam, A.H.; De Luca, D.; Hentschel, R.; Hutten, J.; Sindelar, R.; Thome, U.; Zimmermann, L.J. Modes and strategies for providing conventional mechanical ventilation in neonates. Pediatr Res 2021, 90, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Boots, A.W.; Bos, L.D.; van der Schee, M.P.; van Schooten, F.J.; Sterk, P.J. Exhaled molecular fingerprinting in diagnosis and monitoring: validating volatile promises. Trends Mol Med 2015, 21, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Mei, M.; Chen, X.; Lu, Y.; Dong, X.; Hu, L.; Zhou, W. Identification of genetic factors underlying persistent pulmonary hypertension of newborns in a cohort of Chinese neonates. Respir. Res. 2019, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hanson, B.; BCPPS, F. Persistent Pulmonary Hypertension of The Newborn. NICU Primer for Pharmacists 2024, 16. [Google Scholar] [CrossRef]
- Dai, L.; Du, L. Genes in pediatric pulmonary arterial hypertension and the most promising BMPR2 gene therapy. Front. genet. 2022, 13, 961848. [Google Scholar] [CrossRef] [PubMed]
- Mei, M.; Cheng, G.; Sun, B.; Yang, L.; Wang, H.; Sun, J.; Zhou, W. EDN1 gene variant is associated with neonatal persistent pulmonary hypertension. Sci. Rep. 2016, 6, 29877. [Google Scholar] [CrossRef] [PubMed]
- Martinho, S.; Adão, R.; Leite-Moreira, A.F.; Brás-Silva, C. Persistent pulmonary hypertension of the newborn: pathophysiological mechanisms and novel therapeutic approaches. Front. Pediatr. 2020, 8, 342. [Google Scholar] [CrossRef]
- Leopold, J.A.; Maron, B.A. Precision Medicine in Pulmonary Arterial Hypertension: A First Step. Circ. Res. 2019, 124, 832–833. [Google Scholar] [CrossRef]
- Rodolaki, K.; Pergialiotis, V.; Sapantzoglou, I.; Theodora, M.; Antsaklis, P.; Pappa, K.; Papapanagiotou, A. N-Terminal Pro-B type natriuretic peptide as a predictive biomarker of Bronchopulmonary Dysplasia or Death due to Bronchopulmonary Dysplasia in Preterm neonates: a systematic review and Meta-analysis. J. Pers. Med. 2023, 13, 1287. [Google Scholar] [CrossRef] [PubMed]
- Kedzierski, P.; Torbicki, A. Precision medicine: The future of diagnostic approach to pulmonary hypertension? Anatol. J. Cardiol. 2019, 22, 168. [Google Scholar] [CrossRef] [PubMed]
- Meneza, S.; Bahgat, S.; Nasr, A. Plasma Asymmetric Dimethylarginine Levels in Neonates with Bronchopulmonary Dysplasia Associated with Pulmonary Hypertension. Open Journal of Pediatrics 2018, 8, 221–237. [Google Scholar] [CrossRef]
- Kaplish, D.; Vagha, J.D.; Rathod, S.; Jain, A. Current Pharmaceutical Strategies in the Management of Persistent Pulmonary Hypertension of the Newborn (PPHN): A Comprehensive Review of Therapeutic Agents. Cureus 2024, 16, e70307. [Google Scholar] [CrossRef] [PubMed]
- Lakshminrusimha, S.; Mathew, B.; Leach, C.L. Pharmacologic strategies in neonatal pulmonary hypertension other than nitric oxide. Semin. Perinatol. 2016, 40, 160–173. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, C.; Reichert, F.; Cassini, A.; Horner, R.; Harder, T.; Markwart, R.; Tröndle, M.; Savova, Y.; Kissoon, N.; Schlattmann, P.; et al. Global incidence and mortality of neonatal sepsis: A systematic review and meta-analysis. Arch. Dis. Child. 2021, 106, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Futata, E.A.; Fusaro, A.E.; de Brito, C.A.; Sato, M.N. The neonatal immune system: immunomodulation of infections in early life. Expert Rev Anti Infect Ther 2012, 10, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Glaser, M.A.; Hughes, L.M.; Jnah, A.; Newberry, D. Neonatal Sepsis: A Review of Pathophysiology and Current Management Strategies. Adv. Neonatal Care. 2021, 21, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.; Soukup, D.; Rath, P.M.; Felderhoff-Müser, U. Diagnostic Accuracy of Multiplex Polymerase Chain Reaction in Early Onset Neonatal Sepsis. Children 2023, 10, 1809. [Google Scholar] [CrossRef] [PubMed]
- Sinnar, S.A.; Schiff, S.J. The Problem of Microbial Dark Matter in Neonatal Sepsis. Emerg. Infect. Dis. 2020, 26, 2543–2548. [Google Scholar] [CrossRef] [PubMed]
- Henriquez-Camacho, C.; Losa, J. Biomarkers for sepsis. Biomed. Res. Int. 2014, 2014, 547818. [Google Scholar] [CrossRef] [PubMed]
- ELMeneza, S.A.; Bagoury, I.M.S.E.; Mohamed, K.E.S. Role of Serum Apelin in the Diagnosis of Early-Onset Neonatal Sepsis. Turkish Archives of Pediatrics 2021, 56, 563–568. [Google Scholar] [CrossRef]
- Sutherland, A.M.; Walley, K.R. Bench-to-bedside review: Association of genetic variation with sepsis. Crit Care 2009, 13, 210. [Google Scholar] [CrossRef]
- Pammi, M.; Flores, A.; Versalovic, J.; Leeflang, M.M.G. Molecular assays for the diagnosis of sepsis in neonates. Cochrane Database Syst. Rev. 2017, 2, CD011926. [Google Scholar] [CrossRef]
- Kosmeri, C.; Giapros, V.; Serbis, A.; Baltogianni, M. Application of Advanced Molecular Methods to Study Early-Onset Neonatal Sepsis. Int. J. Mol. Sci. 2024, 25, 2258. [Google Scholar] [CrossRef] [PubMed]
- Benz, F.; Roy, S.; Trautwein, C.; Roderburg, C.; Luedde, T. Circulating microRNAs as biomarkers for sepsis. Int J Mol Sci 2016, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, F.; Xia, H.; Yao, S. MicroRNA-155: regulation of immune cells in sepsis. Mediators Inflamm 2021, 2021, 8874854. [Google Scholar] [CrossRef] [PubMed]
- Lucignano, B.; Cento, V.; Agosta, M.; Ambrogi, F.; Albitar-Nehme, S.; Mancinelli, L.; Mattana, G.; Onori, M.; Galaverna, F.; Di Chiara, L.; et al. Effective Rapid Diagnosis of Bacterial and Fungal Bloodstream Infections by T2 Magnetic Resonance Technology in the Pediatric Population. J. Clin. Microbiol. 2022, 60, e0029222. [Google Scholar] [CrossRef]
- Neely, L.A.; Audeh, M.; Phung, N.A.; Min, M.; Suchocki, A.; Plourde, D.; Blanco, M.; Demas, V.; Skewis, L.R.; Anagnostou, T.; et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med 2013, 5, 182ra154. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Wolk, D.M.; Lowery, T.J. T2MR and T2Candida: novel technology for the rapid diagnosis of candidemia and invasive candidiasis. Future Microbiol 2016, 11, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Quirino, A.; Scaglione, V.; Marascio, N.; Mazzitelli, M.; Garofalo, E.; Divenuto, F.; Serapide, F.; Bruni, A.; Lionello, R.; Pavia, G.; et al. Role of the T2Dx magnetic resonance assay in patients with suspected bloodstream infection: a single-center real-world experience. BMC Infect Dis 2022, 22, 113. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhao, N.; Zhang, Z.; Jia, Y.; Zhang, G.; Dong, G. Identification and validation of a novel four-gene diagnostic model for neonatal early-onset sepsis with bacterial infection. Eur. J. Pediatr. 2023, 182, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Allegaert, K.; Smits, A.; van Donge, T.; van den Anker, J.; Sarafidis, K.; Levtchenko, E.; Mekahli, D. Renal Precision Medicine in Neonates and Acute Kidney Injury: How to Convert a Cloud of Creatinine Observations to Support Clinical Decisions. Front. Pediatr. 2020, 8, 366. [Google Scholar] [CrossRef] [PubMed]
- Gorga, S.M.; Murphy, H.; Selewski, D.T. An Update on Neonatal and Pediatric Acute Kidney Injury. Current Pediatrics Reports 2018, 6, 278–290. [Google Scholar] [CrossRef]
- Abdullah; Kadam, P.; Yachha, M.; Srivastava, G.; Pillai, A.; Pandita, A. Urinary beta-2 microglobulin as an early predictive biomarker of acute kidney injury in neonates with perinatal asphyxia. Eur J Pediatr 2022, 181, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Jetton, J.G.; Askenazi, D.J. Update on acute kidney injury in the neonate. Curr Opin Pediatr 2021, 24, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Coleman, C.; Perez, T.A.; Selewski, D.T.; Steflik, H.J. Neonatal Acute Kidney Injury. Front. Pediatr. 2022, 10, 842544. [Google Scholar] [CrossRef] [PubMed]
- Delgado, C.; Baweja, M.; Crews, D.C.; Eneanya, N.D.; Gadegbeku, C.A.; Inker, L.A.; Mendu, M.L.; Miller, W.G.; Moxey-Mims, M.M.; Roberts, G.V.; St Peter, W.L.; Warfield, C.; Powe, N.R. A unifying approach for GFR estimation: recommendations of the NKF-ASN task force on reassessing the inclusion of race in diagnosing kidney diseas. Am. J. Kidney Dis. 2022, 79, 268–288.e1. [Google Scholar] [CrossRef] [PubMed]
- Hasson, D.; Menon, S.; Gist, K.M. Improving acute kidney injury diagnostic precision using biomarkers. Practical Laboratory Medicine 2022, 30, e0027. [Google Scholar] [CrossRef] [PubMed]
- Ali, U. Time for Precision Medicine in the Diagnosis of Acute Kidney Injury. Indian J Crit Care Med 2022, 26, 547–548. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Lin, H.S.; Tsai, F.J.; Li, C.W. Effects of Tamm-Horsfall protein and albumin on the inhibition of free radicals. Urol. Int. 2001, 67, 305–309. [Google Scholar] [CrossRef]
- Mishra, J.; Dent, C.; Tarabishi, R.; Mitsnefes, M.M.; Ma, Q.; Kelly, C.; Ruff, S.M.; Zahedi, K.; Shao, M.; Bean, J.; Barasch, J.; Devarajan, P. Neutrophil gelatinaseassociated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005, 365, 1231–1238. [Google Scholar] [CrossRef]
- Kayaaltı, S.; Kayaaltı, O.; Aksebzeci, B.H. Relationship between Neutrophil Gelatinase-associated Lipocalin and Mortality in Acute Kidney Injury. Turk. J. Intensiv. Care 2018, 16, 101–108. [Google Scholar] [CrossRef]
- Stoops, C.; Gavigan, H.; Krallman, K.; Anderson, N.; Griffin, R.; Slagle, C.; House, S.; Goldstein, S.L.; Askenazi, D.J. The Utility of Urinary NGAL as an Alternative for Serum Creatinine to Detect Acute Kidney Injury in Infants Exposed to Nephrotoxic Medications in the Neonatal Intensive Care Unit. Neonatology 2024, 121, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Varnell, C.D., Jr.; Goldstein, S.L.; Devarajan, P.; Basu, R.K. Impact of near real-time urine neutrophil gelatinase-associated lipocalin assessment on clinical practice. Kidney Int. Rep. 2017, 2, 1243–1249. [Google Scholar] [CrossRef]
- Lacquaniti, A.; Ceresa, F.; Campo, S.; Barbera, G.; Caruso, D.; Palazzo, E.; Patanè, F.; Monardo, P. Acute Kidney Injury and Sepsis after Cardiac Surgery: The Roles of Tissue Inhibitor Metalloproteinase-2, Insulin-like Growth Factor Binding Protein-7, and Mid-Regional Pro-Adrenomedullin. J. Clin. Med. 2023, 12, 5193. [Google Scholar] [CrossRef] [PubMed]
- Leslie, J.A.; Meldrum, K.K. The role of interleukin-18 in renal injury. J. Surg. Res. 2008, 145, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Argyropoulos, C.P.; Chen, S.S.; Ng, Y.-H.; Roumelioti, M.-E.; Shaffi, K.; Singh, P.P.; Tzamaloukas, A.H. Rediscovering beta-2 microglobulin as a biomarker across the spectrum of kidney diseases. Front Med 2017, 4, 73. [Google Scholar] [CrossRef]
- Ortega-Loubon, C.; Martínez-Paz, P.; García-Morán, E.; Tamayo-Velasco, Á.; López-Hernández, F.J.; Jorge-Monjas, P.; Tamayo, E. Genetic Susceptibility to Acute Kidney Injury. J Clin Med 2021, 10, 3039. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Susantitaphong, P.; Perianayagam, M.C.; Tighiouart, H.; Liangos, O.; Bonventre, J.V.; Jaber, B.L. Tumor necrosis factor alpha promoter polymorphism and severity of acute kidney injury. Nephron Clin. Pract. 2013, 123, 67–73. [Google Scholar] [CrossRef]
- He, J.; Xie, G.; Wu, H.; Xu, S.; Xie, J.; Chen, Y.; Zhao, X. Association between inflammatory-response gene polymorphisms and risk of acute kidney injury in children. Biosci Rep 2018, 38, BSR20180537. [Google Scholar] [CrossRef] [PubMed]
- Tin, A.; Ko¨ttgen, A. Genome-Wide Association Studies of CKD and Related Traits. CJASN 2020, 15, 1643–1656. [Google Scholar] [CrossRef]
- Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; Vries, J.D.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D. Genome-wide association studies. Nat Rev Methods Primers 2021, 1, 59. [Google Scholar] [CrossRef]
- Bhatraju, P.K.; Stanaway, L.B.; Palmer, M.R.; Menon, R.; Schaub, J.A.; Menez, S.; Srivastava, A.; Wilson, F.P.; Kiryluk, K.; Palevsky, P.M.; et al. Genome-wide Association Study for AKI. KIDNEY360 2023, 4, 870–880. [Google Scholar] [CrossRef]
- Chirico, V.; Lacquaniti, A.; Tripodi, F.; Conti, G.; Marseglia, L.; Monardo, P.; Gitto, E.; Chimenz, R. Acute Kidney Injury in Neonatal Intensive Care Unit: Epidemiology, Diagnosis and Risk Factors. J. Clin. Med. 2024, 13, 3446. [Google Scholar] [CrossRef]
- Guo, C.; Dong, G.; Liang, X.; Dong, Z. Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications. Nat Rev Nephrol 2019, 15, 220–239. [Google Scholar] [CrossRef] [PubMed]
- Wanner, N.; Bechtel-Walz, W. Epigenetics of kidney disease. Cell Tissue Res 2017, 369, 75–92. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tang, Z.; Li, H.; Li, Y.; Tian, Q.; Yang, Z.; Miao, P.; Yang, X.; Li, M.; Xu, L.; et al. The development and validation of a predictive model for neonatal phototherapy outcome using admission indicators. Front Pediatr 2022, 10, 745423. [Google Scholar] [CrossRef]
- Ansong-Assoku, B.; Shah, S.D.; Adnan, M.; Ancola, P.A. Neonatal Jaundice. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; https://www.ncbi.nlm.nih.gov/books/NBK532930/.
- Stevenson, D.K.; Wells, G.S.; Wong, R.J. Is it time for a precision health approach to the management of newborn hyperbilirubinemia? J Perinatol 2024, 44, 920–923. [Google Scholar] [CrossRef]
- Wilson, N. Advancing Genomic-Driven Precision Medicine in the NICU: Pediatrics NATIONWIDE. 2023. https://pediatricsnationwide.org/2023/04/19advancing-genomic-driven-precision-medicine-in-the-nicu/.
- Tataranno, M.L.; Vijlbrief, D.C.; Dudink, J.; Benders, M.J.N.L. Precision Medicine in Neonates: A Tailored Approach to Neonatal Brain Injury. Front. Pediatr. 2021, 9, 634092. [Google Scholar] [CrossRef] [PubMed]
- Allegaert, K.; Simons, S. Precision Medicine in Neonates. Front Pediatr 2021, 9, 702760. [Google Scholar] [CrossRef]
- Feldman, A.G.; Sokol, R.J. Recent Developments in diagnostics and treatment of neonatal cholestasis. Semin Pediatr Surg 2020, 29, 150945. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sampurna, M.T.A.; Pratama, D.C.; Visuddho, V.; Oktaviana, N.; Putra, A.J.E.; Zakiyah, R.; Ahmad, J.M.; Etika, R.; Handayani, K.D.; Utomo, M.T.; et al. A review of existing neonatal hyperbilirubinemia guidelines in Indonesia. F1000Research 2023, 11, 1534. [Google Scholar] [CrossRef] [PubMed]
- ELMeneza, S.; Mohamed, A.; Abd Elsalam, R. Analysis and Identifying Risk Profile for Medication Errors in the Neonatal Intensive Care Units. EC Paediatrics 2018, 7, 669–684. [Google Scholar]
- Ruggiero, A.; Ariano, A.; Triarico, S.; Capozza, M.A.; Ferrara, P.; Attinà, G. Neonatal pharmacology and clinical implications. Drugs in Context 2019, 8, 212608. [Google Scholar] [CrossRef] [PubMed]
- Barbarino, J.M.; Whirl-Carrillo, M.; Altman, R.B.; Klein, T.E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdisciplinary Reviews. Systems Biology and Medicine 2018, 10, e1417. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.; Momin, S.; Bansal, R.; Gurram Venkata, S.K.R.; Ruser, L.; Yusuf, K. Pharmacokinetics of drugs: newborn perspective. Pediatr Med 2024, 7, 19. [Google Scholar] [CrossRef]
- Allegaert, K.; Mian, P.; van den Anker, J.N. Developmental pharmacokinetics in neonates: maturational changes and beyond. Curr Pharm Des 2017, 23, 5769–5778. [Google Scholar] [CrossRef]
- Allegaert, K.; van den Anker, J.N. Clinical pharmacology in neonates: small size, huge variability. Neonatology 2014, 105, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Emoto, C.; Johnson, T.N.; Neuhoff, S.; Hahn, D.; Vinks, A.A.; Fukuda, T. PBPK Model of Morphine Incorporating Developmental Changes in Hepatic OCT1 and UGT2B7 Proteins to Explain the Variability in Clearances in Neonates and Small Infants. CPT: pharmacometrics & systems pharmacology 2018, 7, 464–473. [Google Scholar] [CrossRef]
- Fanni, D.; Ambu, R.; Gerosa, C.; Nemolato, S.; Castagnola, M.; Van Eyken, P.; Faa, G.; Fanos, V. Cytochrome P450 genetic polymorphism in neonatal drug metabolism: role and practical consequences towards a new drug culture in neonatology. International Journal of Immunopathology and Pharmacology 2014, 27, 5–13. [Google Scholar] [CrossRef]
- Van den Anker, J.N.; Schwab, M.; Kearns, G.L. Developmental pharmacokinetics. Handbook of Experimental Pharmacology 2011, 205, 51–75. [Google Scholar] [CrossRef] [PubMed]
- Klotz, U. The role of pharmacogenetics in the metabolism of antiepileptic drugs: pharmacokinetics and therapeutic implications. Clin Pharmacokinet 2007, 46, 271–279. [Google Scholar] [CrossRef] [PubMed]
- García-Martín, E.; Martínez, C.; Tabarés, B.; Frías, J.; Agúndez, J.A. Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clinical Pharmacology and Therapeutics 2004, 76, 119–127. [Google Scholar] [CrossRef]
- Bouwmeester, N.J.; Anderson, B.J.; Tibboel, D.; Holford, N.H. Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children. Br J Anaesth 2004, 92, 208–217. [Google Scholar] [CrossRef]
- Dean, L. Irinotecan Therapy and UGT1A1 Genotype. In Medical Genetics Summaries [Internet]; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kattman, B.L., Malheiro, A.J., Eds.; National Center for Biotechnology Information: Bethesda, MD, USA, 2015. [Google Scholar] [PubMed]
- Huang, S.W.; Chen, H.S.; Wang, X.Q.; Huang, L.; Xu, D.L.; Hu, X.J.; Huang, Z.H.; He, Y.; Chen, K.M.; Xiang, D.K.; et al. Validation of VKORC1 and CYP2C9 genotypes on interindividual warfarin maintenance dose: a prospective study in Chinese patients. Pharmacogenetics and Genomics 2009, 19, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Gallaway, K.A.; Cann, K.; Oetting, K.; Rothenberger, M.; Raibulet, A.; Slaven, J.E.; Suhrie, K.; Tillman, E.M. The Potential Impact of Preemptive Pharmacogenetic Genotyping in the Neonatal Intensive Care Unit. The Journal of Pediatrics 2023, 259, 113489. [Google Scholar] [CrossRef]
- Madian, A.G.; Wheeler, H.E.; Jones, R.B.; Dolan, M.E. Relating human genetic variation to variation in drug responses. Trends in Genetics: TIG 2012, 28, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Ghaddar, F.; Cascorbi, I.; Zgheib, N.K. Clinical implementation of pharmacogenetics: a nonrepresentative explorative survey to participants of WorldPharma 2010. Pharmacogenomics 2011, 12, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Muflih, S.; Alshogran, O.Y.; Al-Azzam, S.; Al-Taani, G.; Khader, Y.S. Physicians' Knowledge and Attitudes Regarding Point-of-Care Pharmacogenetic Testing: A Hospital-Based Cross-Sectional Study. Pharmgenomics Pers Med 2021, 14, 655–665. [Google Scholar] [CrossRef]
- Swen, J.J.; van der Wouden, C.H.; Manson, L.E.; Abdullah-Koolmees, H.; Blagec, K.; Blagus, T.; Böhringer, S.; Cambon-Thomsen, A.; Cecchin, E.; Cheung, K.C.; et al. Ubiquitous Pharmacogenomics Consortium. A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomized crossover implementation study. Lancet 2023, 401, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Centanni, M.; Reijnhout, N.; Thijs, A.; Karlsson, M.O.; Friberg, L.E. Pharmacogenetic Testing or Therapeutic Drug Monitoring: A Quantitative Framework. Clinical pharmacokinetics 2014, 63, 871–884. [Google Scholar] [CrossRef]
- Scott, B.L.; Hornik, C.D.; Zimmerman, K. Pharmacokinetic, efficacy, and safety considerations for the use of antifungal drugs in the neonatal population. Expert Opinion on Drug Metabolism & Toxicology 2020, 16, 605–616. [Google Scholar] [CrossRef]
- Chen, X.; Xiao, Y.; Li, H.; Huang, Z.; Gao, J.; Zhang, X.; Li, Y.; Van Timothee, B.M.; Feng, X. Therapeutic drug monitoring and CYP2C19 genotyping guide the application of voriconazole in children. Transl Pediatr 2022, 11, 1311–1322. [Google Scholar] [CrossRef]
- Dilena, R.; De Liso, P.; Di Capua, M.; Consonni, D.; Capovilla, G.; Pisani, F.; Suppiej, A.; Vitaliti, G.; Falsaperla, R.; Pruna, D. Influence of etiology on treatment choices for neonatal seizures: A survey among pediatric neurologists. Brain & Development 2019, 41, 595–599. [Google Scholar] [CrossRef]
- De Rose, D.U.; Cairoli, S.; Dionisi, M.; Santisi, A.; Massenzi, L.; Goffredo, B.M.; Dionisi-Vici, C.; Dotta, A.; Auriti, C. Therapeutic Drug Monitoring Is a Feasible Tool to Personalize Drug Administration in Neonates Using New Techniques: An Overview on the Pharmacokinetics and Pharmacodynamics in Neonatal Age. International Journal of Molecular Sciences 2020, 21, 5898. [Google Scholar] [CrossRef]
- Touw, D.J.; van den Anker, J.N. Therapeutic Drug Monitoring of Antimicrobial Drugs in Neonates: An Opinion Article. Therapeutic Drug Monitoring 2022, 44, 65–74. [Google Scholar] [CrossRef] [PubMed]
- El-Dib, M.; Soul, J.S. The use of phenobarbital and other anti-seizure drugs in newborns. Seminars in Fetal & Neonatal Medicine 2017, 22, 321–327. [Google Scholar] [CrossRef]
- Filippi, L.; la Marca, G.; Cavallaro, G.; Fiorini, P.; Favelli, F.; Malvagia, S.; Donzelli, G.; Guerrini, R. Phenobarbital for neonatal seizures in hypoxic ischemic encephalopathy: a pharmacokinetic study during whole body hypothermia. Epilepsia 2011, 52, 794–801. [Google Scholar] [CrossRef] [PubMed]
- van den Broek, M.P.; Groenendaal, F.; Toet, M.C.; van Straaten, H.L.; van Hasselt, J.G.; Huitema, A.D.; de Vries, L.S.; Egberts, A.C.; Rademaker, C.M. Pharmacokinetics and clinical efficacy of phenobarbital in asphyxiated newborns treated with hypothermia: a thermopharmacological approach. Clinical Pharmacokinetics 2012, 51, 671–679. [Google Scholar] [CrossRef]
- Hutchinson, L.; Sinclair, M.; Reid, B.; Burnett, K.; Callan, B. A descriptive systematic review of salivary therapeutic drug monitoring in neonates and infants. British Journal of Clinical Pharmacology 2018, 84, 1089–1108. [Google Scholar] [CrossRef]
- Choi, D.W.; Park, J.H.; Lee, S.Y.; An, S.H. Effect of hypothermia treatment on gentamicin pharmacokinetics in neonates with hypoxic-ischaemic encephalopathy: A systematic review and meta-analysis. Journal of Clinical Pharmacy and Therapeutics 2018, 43, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Euteneuer, J.C.; Kamatkar, S.; Fukuda, T.; Vinks, A.A.; Akinbi, H.T. Suggestions for Model-Informed Precision Dosing to Optimize Neonatal Drug Therapy. Journal of Clinical Pharmacology 2019, 59, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.J.; Shin, S.H.; Oh, J.; Jung, Y.H.; Choi, C.W.; Kim, H.S.; Yu, K.S. Population pharmacokinetic analysis of sildenafil in term and preterm infants with pulmonary arterial hypertension. Scientific Reports 2022, 12, 7393. [Google Scholar] [CrossRef]
- Wu, Y.; Völler, S.; Flint, R.B.; Simons, S.H.P.; Allegaert, K.; Fellman, V.; Knibbe, C.A.J. Pre- and Postnatal Maturation are Important for Fentanyl Exposure in Preterm and Term Newborns: A Pooled Population Pharmacokinetic Study. Clin Pharmacokinet 2022, 61, 401–412. [Google Scholar] [CrossRef]
- van Hoogdalem, M.W.; Johnson, T.N.; McPhail, B.T.; Kamatkar, S.; Wexelblatt, S.L.; Ward, L.P.; Christians, U.; Akinbi, H.T.; Vinks, A.A.; Mizuno, T. Physiologically-Based Pharmacokinetic Modeling to Investigate the Effect of Maturation on Buprenorphine Pharmacokinetics in Newborns with Neonatal Opioid Withdrawal Syndrome. Clinical Pharmacology and Therapeutics 2022, 111, 496–508. [Google Scholar] [CrossRef]
- Autmizguine, J.; Guptill, J.T.; Cohen-Wolkowiez, M.; Benjamin, D.K., Jr.; Capparelli, E.V. Pharmacokinetics and pharmacodynamics of antifungals in children: clinical implications. Drugs 2014, 74, 891–909. [Google Scholar] [CrossRef]
- Mahmood, I.; Ahmad, T.; Mansoor, N.; Sharib, S.M. Prediction of Clearance in Neonates and Infants (≤ 3 Months of Age) for Drugs That Are Glucuronidated: A Comparative Study Between Allometric Scaling and Physiologically Based Pharmacokinetic Modeling. Journal of Clinical Pharmacology 2017, 57, 476–483. [Google Scholar] [CrossRef]
- Olafuyi, O.; Abbasi, M.Y.; Allegaert, K. Physiologically based pharmacokinetic modelling of acetaminophen in preterm neonates-The impact of metabolising enzyme ontogeny and reduced cardiac output. Biopharm Drug Dispos 2021, 42, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Tong, D.M.H.; Hughes, J.H.; Keizer, R.J. Evaluating and Improving Neonatal Gentamicin Pharmacokinetic Models Using Aggregated Routine Clinical Care Data. Pharmaceutics 2022, 14, 2089. [Google Scholar] [CrossRef]
- Kalamees, R.; Soeorg, H.; Ilmoja, M.; Margus, K.; Lutsar, I.; Metsvaht, T. Prospective validation of a model-informed precision dosing tool for vancomycin treatment in neonates. Antimicrob Agents Chemother 2024, 68, e01591-23. [Google Scholar] [CrossRef]
- Frymoyer, A.; Schwenk, H.T.; Zorn, Y.; Bio, L.; Moss, J.D.; Chasmawala, B.; Faulkenberry, J.; Goswami, S.; Keizer, R.J.; Ghaskari, S. Model-Informed Precision Dosing of Vancomycin in Hospitalized Children: Implementation and Adoption at an Academic Children's Hospital. Frontiers in Pharmacology 2020, 11, 551. [Google Scholar] [CrossRef]
- Dong, Q.; Leroux, S.; Shi, H.Y.; Xu, H.Y.; Kou, C.; Khan, M.W.; Jacqz-Aigrain, E.; Zhao, W. Pilot Study of Model-Based Dosage Individualization of Ganciclovir in Neonates and Young Infants with Congenital Cytomegalovirus Infection. Antimicrobial Agents and Chemotherapy 2018, 62, e00075-18. [Google Scholar] [CrossRef] [PubMed]
- ELMeneza, S.; ElBagoury, I.; Tawfik, E.; Tolba, A. Study of Neuropeptide Substance P As A Marker of Pain in Newborn Infant. Open Access Maced J Med Sci 2021, 9, 1615–1620. [Google Scholar] [CrossRef]
- Koszma, E.I.A.; Bispo, A.J.B.; Santana, I.A.O.; Santos, C.N.O.D.B.D. Use of off-Label Medications in A Neonatal Intensive Care Unit. Rev Paul Pediatr 2021, 39, E2020063. [Google Scholar] [CrossRef] [PubMed]
- Tayeh, M.K.; Gaedigk, A.; Goetz, M.P.; Klein, T.E.; Lyon, E.; McMillin, G.A.; Rentas, S.; Shinawi, M.; Pratt, V.M.; Scott, S.A. ACMG Laboratory Quality Assurance Committee. Clinical pharmacogenomic testing and reporting: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine 2022, 24, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Lewis, T.; Wade, K.C.; Davis, J.M. Challenges and opportunities for improving access to approved neonatal drugs and devices. Journal of Perinatology 2022, 42, 825–828. [Google Scholar] [CrossRef] [PubMed]
- Chalak, L. New Horizons in mild hypoxic ischemic encephalopathy: A standardized Algorithm to move past conundrum of care. ClinPrenatol 2022, 49, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Victor, S.; Rocha-Ferreira, E.; Rahim, A.; Hagberg, H.; Edwards, D. New possibilities for neuroprotection in neonatal hypoxic-ischemic encephalopathy. Eur J Pediatr 2022, 181, 875–887. [Google Scholar] [CrossRef]
- Gunn, A.J.; Battin, M. Towards faster studies of neonatal encephalopathy. Lancet Neurol 2019, 18, 21–22. [Google Scholar] [CrossRef] [PubMed]
- Tataranno, M.L.; Vijlbrief, D.C.; Dudink, J.; Benders, M.J.N.L. Precision Medicine in Neonates: A Tailored Approach to Neonatal Brain Injury. Front. Pediatr. 2021, 9, 634092. [Google Scholar] [CrossRef] [PubMed]
- Molloy, E.J.; El-Dib, M.; Juul, S.E.; Benders, M.; Gonzalez, F.; Bearer, C.; Wu, Y.W.; Robertson, N.J.; Hurley, T.; Baranagan, A.; et al. Neuroprotective therapies in the NICU in term infants: present and future. Pediatr Res 2023, 93, 1819–1827. [Google Scholar] [CrossRef]
- Wellmann, S.; Murray, D.M.; Kyng, K.J. Biomarkers of neonatal brain injury. Front. Pediatr. 2023, 11, 1271564. [Google Scholar] [CrossRef] [PubMed]
- Wassink, G.; Harrison, S.; Dhillon, S.; Bennet, L.; Gunn, A.J. Prognostic neurobiomarkers in neonatal encephalopathy. Dev Neurosci 2022, 44, 331–343. [Google Scholar] [CrossRef] [PubMed]
- van Bel, F.; Mintzer, J.P. Monitoring cerebral oxygenation of the immature brain: A neuroprotective strategy? Pediatr Res 2018, 84, 159–164. [Google Scholar] [CrossRef]
- Zhou, K.Q.; Dhillon, S.K.; Bennet, L.; Davidson, J.O.; Gunn, A.J. How do we reach the goal of personalized medicine for neuroprotection in neonatal hypoxic ischemic encephalopathy? Semin Prenatol 2024, 48, 151930. [Google Scholar] [CrossRef] [PubMed]
- Sakr, M.; Shah, M.; Balasundaram, P. Neonatal therapeutic hypothermia. StatPearls (Internet), Statpearls Publishin: Treasure Island, TL, USA, 2024. https://www.ncbi.nlm.nih.gov/books/NBK567714/.
- Dietrich, W.D.; Bramlett, H.M. Theraputic hypothermia and targeted temperature management for traumatic brain injury: Experimental and clinical experience. Brain Circ 2017, 3, 186–198. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Gulati, A. Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy. J Clin Med 2023, 12, 6653. [Google Scholar] [CrossRef] [PubMed]
- Bonifacio, S.L.; Chalak, L.F.; Van-Meurs, K.P.; Laptook, A.R.; Shankaran, S. Neuroprotection for hypoxic-ischemic encephalopathy: Contributions from the neonatal research network. Semin Perinatol 2022, 7, 151639. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
| Protein | SP-B | SP-C | ABCA3 | SP-A | SP-D | TTF-1 | GM-CSF Receptor [3,4] |
| Gene | SFTPB | SFTPC | ABCA3 |
SFTPA1 SFTPA2 |
SFTPD | NKX2-1 |
CSFR2A CSFR2B |
| Pulmonary Phenotypes | RDS | ILD PF RDS | RDS PPHN ILD PF | PF Lung cancer | None yet known | RDS ILD Recurrent Infection | Alveolar Proteinosis |
| Inheritance | AR | AD sporadic | AR | AD sporadic | N.A. | Sporadic AD | AR |
| Prognosis | Rapidly fatal | Variable | ~60% rapidly fatal; ~40% variable | Generally adult onset, progressive | N.A. | Variable | Childhood to adult-onset; variable |
| Incidence | <1 in 1,000,000 | Unknown | Uncertain, 1 in 10 K to 1 in 20 K | Unknown | N.A. | Unknown | Unknown |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
