Submitted:
16 December 2024
Posted:
17 December 2024
You are already at the latest version
Abstract
Surface Plasmon Resonance (SPR)-based biodetection systems have emerged as powerful tools for real-time, label-free biomolecular interaction analysis, revolutionizing fields such as diagnostics, drug discovery, and environmental monitoring. This review highlights the foundational principles of SPR, focusing on the interplay of evanescent waves and surface plasmons that underpin its high sensitivity and specificity. Recent advancements in SPR technology, including enhancements in sensor chip materials, integration with nanostructures, and coupling with complementary detection techniques, are discussed to showcase their role in improving analytical performance. The paper also explores diverse applications of SPR biodetection systems, ranging from pathogen detection and cancer biomarker identification to food safety monitoring and environmental toxin analysis. By providing a comprehensive overview of technological progress and emerging trends, this review underscores the transformative potential of SPR-based biodetection systems in addressing critical scientific and societal challenges. Future directions and challenges, including miniaturization, cost reduction, and expanding multiplexing capabilities, are also presented to guide ongoing research and development in this rapidly evolving field.
Keywords:
1. Introduction
2. Working Principle, Configurations and Detection Methods of SPR-Based Biodetection Systems
2.1. Working Principle of SPR-Based Biodetection Systems
2.2. SPR Configurations and Detection Methods
2.2.1. Prism Coupling (Kretschmann and Otto Configurations)
2.2.2. Optical Waveguides and Fibre-Optic SPR
2.2.3. Nanoarray-Based and Localized SPR (LSPR)
3. Key Components of SPR-Based Biodetection Systems
3.1. Metallic Layers
3.2. Surface Chemistry and Functionalization
3.3. Optical Setup and Instrumentation
4. Applications for SPR-Based Biodetection Systems
4.1. Biomedical Diagnostics
4.2. Pharmaceutical and Drug Discovery
4.3. Environmental Monitoring
4.4. Food Safety and Quality Control
4.5. Emerging Applications
5. Advancement in SPR Technology
5.1. LSPR
5.2. Hybrid and Multi-Modal Systems
5.3. Portable and Wearable SPR Devices
6. Challenges and Future Perspectives
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, Q.; Liu, Y.; Chang, S.; Chen, H.; Chen, J. Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. Sensors 2021, 21, 5262. [Google Scholar] [CrossRef]
- Divya, J.; Selvendran, S.; Raja, A.S.; Sivasubramanian, A. Surface Plasmon Based Plasmonic Sensors: A Review on Their Past, Present and Future. Biosensors and Bioelectronics: X 2022, 11, 100175. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Plasmonics: A Necessity in the Field of Sensing-A Review (Invited). Fiber and Integrated Optics 2021, 40, 14–47. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.A.; Li, J.-F.; Ling, X.Y. Introduction to Advances in Plasmonics and Its Applications. Nanoscale 2021, 13, 5935–5936. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.A. Plasmonic Sensors Based on a Metal–Insulator–Metal Waveguide—What Do We Know So Far? Sensors 2024, 24, 7158. [Google Scholar] [CrossRef] [PubMed]
- Bin-Alam, M.S.; Reshef, O.; Mamchur, Y.; Alam, M.Z.; Carlow, G.; Upham, J.; Sullivan, B.T.; Ménard, J.-M.; Huttunen, M.J.; Boyd, R.W.; et al. Ultra-High-Q Resonances in Plasmonic Metasurfaces. Nat Commun 2021, 12, 974. [Google Scholar] [CrossRef]
- Nikitin, P.I.; Beloglazov, A.A. A Multi-Purpose Sensor Based on Surface Plasmon Polariton Resonance in a Schottky Structure. Sensors and Actuators A: Physical 1994, 42, 547–552. [Google Scholar] [CrossRef]
- Joseph, S.; Sarkar, S.; Joseph, J. Grating-Coupled Surface Plasmon-Polariton Sensing at a Flat Metal–Analyte Interface in a Hybrid-Configuration. ACS Appl. Mater. Interfaces 2020, 12, 46519–46529. [Google Scholar] [CrossRef]
- Caucheteur, C.; Guo, T.; Albert, J. Review of Plasmonic Fiber Optic Biochemical Sensors: Improving the Limit of Detection. Anal Bioanal Chem 2015, 407, 3883–3897. [Google Scholar] [CrossRef]
- Wu, L.; Guo, J.; Xu, H.; Dai, X.; Xiang, Y. Ultrasensitive Biosensors Based on Long-Range Surface Plasmon Polariton and Dielectric Waveguide Modes. Photon. Res., PRJ 2016, 4, 262–266. [Google Scholar] [CrossRef]
- Kuang, K.; Wang, Q.; Chang, F.; Yang, Y.; Peng, W. Highly Sensitive Surface Plasmon Sensor With an Ultra-Narrow Linewidth. IEEE Photonics Technology Letters 2024, 36, 873–876. [Google Scholar] [CrossRef]
- Del Vecchio, K.; Stahelin, R.V. Using Surface Plasmon Resonance to Quantitatively Assess Lipid–Protein Interactions. In Lipid Signaling Protocols; Waugh, M.G., Ed.; Springer: New York, NY, 2016; pp. 141–153. ISBN 978-1-4939-3170-5. [Google Scholar]
- Scarano, S.; Mascini, M.; Turner, A.P.F.; Minunni, M. Surface Plasmon Resonance Imaging for Affinity-Based Biosensors. Biosensors and Bioelectronics 2010, 25, 957–966. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Xu, W. Surface Plasmon Polaritons: Physics and Applications. J. Phys. D: Appl. Phys. 2012, 45, 113001. [Google Scholar] [CrossRef]
- A Frequency-Controlled Wide-Angle Scanning Antenna Based on Spoof Surface Plasmon Polariton | IEEE Journals & Magazine | IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/9915580 (accessed on 3 December 2024).
- Zheng, L.; Zywietz, U.; Evlyukhin, A.; Roth, B.; Overmeyer, L.; Reinhardt, C. Experimental Demonstration of Surface Plasmon Polaritons Reflection and Transmission Effects. Sensors 2019, 19, 4633. [Google Scholar] [CrossRef]
- Characterization of Protein−DNA Interactions Using Surface Plasmon Resonance Spectroscopy with Various Assay Schemes | Biochemistry. Available online: https://pubs.acs.org/doi/10.1021/bi061903t (accessed on 3 December 2024).
- Surface Plasmon Resonance Mass Spectrometry: Recent Progress and Outlooks—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0167779903001410?via%3Dihub (accessed on 3 December 2024).
- Dai, S.; Mi, J.; Dou, J.; Lu, H.; Dong, C.; Ren, L.; Zhao, R.; Shi, W.; Zhang, N.; Zhou, Y.; et al. Optical Tweezers Integrated Surface Plasmon Resonance Holographic Microscopy for Characterizing Cell-Substrate Interactions under Noninvasive Optical Force Stimuli. Biosensors and Bioelectronics 2022, 206, 114131. [Google Scholar] [CrossRef]
- Foote, K.D. A Brief History of Machine Learning. DATAVERSITY 2021.
- XLII. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum : The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science: Vol 4, No 21. Available online: https://www.tandfonline.com/doi/abs/10.1080/14786440209462857 (accessed on 3 December 2024).
- Otto, A. Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection. Z. Physik 1968, 216, 398–410. [Google Scholar] [CrossRef]
- Kretschmann, E.; Raether, H. Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Zeitschrift für Naturforschung A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Biacore Available online:. Available online: https://biosensorcore.com/biacore-overview/surface-plasmon-resonance/ (accessed on 3 December 2024).
- Gao, M.; He, Y.; Chen, Y.; Shih, T.-M.; Yang, W.; Wang, J.; Zhao, F.; Li, M.-D.; Chen, H.; Yang, Z. Tunable Surface Plasmon Polaritons and Ultrafast Dynamics in 2D Nanohole Arrays. Nanoscale 2019, 11, 16428–16436. [Google Scholar] [CrossRef]
- Schepler, K.L.; Yessenov, M.; Zhiyenbayev, Y.; Abouraddy, A.F. Space–Time Surface Plasmon Polaritons: A New Propagation-Invariant Surface Wave Packet. ACS Photonics 2020, 7, 2966–2977. [Google Scholar] [CrossRef]
- Mcoyi, M.P.; Mpofu, K.T.; Sekhwama, M.; Mthunzi-Kufa, P. Developments in Localized Surface Plasmon Resonance. Plasmonics 2024. [Google Scholar] [CrossRef]
- Hu, L.-X.; Hu, M.; Liu, S.-G. Investigation on Surface Plasmon Polaritons and Localized Surface Plasmon Production Mechanism in Micro-Nano Structures. Journal of Electronic Science and Technology 2022, 20, 100148. [Google Scholar] [CrossRef]
- M.A. Butt Insight into Plasmonics: Resurrection of Modern-Day Science (Invited). Computer Optics 48, 5–17.
- Novel SSPP Based Highly Sensitive EM Biosensor for Noninvasive Measurement of Blood Glucose | IEEE Conference Publication | IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/10466051 (accessed on 3 December 2024).
- Janith, G.I.; Herath, H.S.; Hendeniya, N.; Attygalle, D.; Amarasinghe, D.A.S.; Logeeshan, V.; Wickramasinghe, P.M.T.B.; Wijayasinghe, Y.S. Advances in Surface Plasmon Resonance Biosensors for Medical Diagnostics: An Overview of Recent Developments and Techniques. Journal of Pharmaceutical and Biomedical Analysis Open 2023, 2, 100019. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, B.-C.; Oh, B.-K.; Choi, J.-W. Highly Sensitive Localized Surface Plasmon Resonance Immunosensor for Label-Free Detection of HIV-1. Nanomedicine: Nanotechnology, Biology and Medicine 2013, 9, 1018–1026. [Google Scholar] [CrossRef]
- Hossain, M.M.; Talukder, M.A. Graphene Surface Plasmon Sensor for Ultra-Low-Level SARS-CoV-2 Detection. PLOS ONE 2023, 18, e0284812. [Google Scholar] [CrossRef]
- Ma, T.-F.; Chen, Y.-P.; Shen, Y. Chapter Seven—Progress in the Applications of Surface Plasmon Resonance for Food Safety. In Comprehensive Analytical Chemistry; Chen, Y.-P., Ma, T.-F., Eds.; Surface Plasmon Resonance in Bioanalysis; Elsevier, 2021; Vol. 95, pp. 237–275.
- Chegel, V.I.; Shirshov, Yu.M.; Piletskaya, E.V.; Piletsky, S.A. Surface Plasmon Resonance Sensor for Pesticide Detection. Sensors and Actuators B: Chemical 1998, 48, 456–460. [Google Scholar] [CrossRef]
- Sadrolhosseini, A.R.; Ghasemi, E.; Pirkarimi, A.; Hamidi, S.M.; Taheri Ghahrizjani, R. Highly Sensitive Surface Plasmon Resonance Sensor for Detection of Methylene Blue and Methylene Orange Dyes Using NiCo-Layered Double Hydroxide. Optics Communications 2023, 529, 129057. [Google Scholar] [CrossRef]
- On Surface-Plasmon-Polariton Waves Excited in the Turbadar–Otto Configuration | Plasmonics Available online:. Available online: https://link.springer.com/article/10.1007/s11468-021-01568-6 (accessed on 3 December 2024).
- Yanase, Y.; Hiragun, T.; Ishii, K.; Kawaguchi, T.; Yanase, T.; Kawai, M.; Sakamoto, K.; Hide, M. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis. Sensors 2014, 14, 4948–4959. [Google Scholar] [CrossRef]
- Vinogradov, A.P.; Dorofeenko, A.V.; Pukhov, A.A.; Lisyansky, A.A. Exciting Surface Plasmon Polaritons in the Kretschmann Configuration by a Light Beam. Phys. Rev. B 2018, 97, 235407. [Google Scholar] [CrossRef]
- Khan, Q.; Sohrab, A.; Khan, M.A.; Khesro, A. Surface Plasmon Polariton Resonance Sensing at Metal-Dielectric Interface Based on Wavelength Interrogation. Plasmonics 2024. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Najiminaini, M.; Singh, M.R.; Carson, J.J.L. A Study of Angle Dependent Surface Plasmon Polaritons in Nano-Hole Array Structures. Journal of Applied Physics 2016, 120, 034302. [Google Scholar] [CrossRef]
- Shen, Z.; Yu, H.; Zhang, L.; Chen, Y. Refractive Index Sensing Based on Surface Plasmon-Coupled Emission Excited by Reverse Kretschmann or Tamm Structure. Opt. Lett., OL 2022, 47, 5068–5071. [Google Scholar] [CrossRef] [PubMed]
- Vala, M.; Dostálek, J.; Homola, J. Diffraction Grating-Coupled Surface Plasmon Resonance Sensor Based on Spectroscopy of Long-Range and Short-Range Surface Plasmons. In Proceedings of the Optical Sensing Technology and Applications; SPIE, May 16 2007; Vol. 6585; pp. 557–565. [Google Scholar]
- Motogaito, A.; Ito, Y. Excitation Mechanism of Surface Plasmon Polaritons for Surface Plasmon Sensor With 1D Metal Grating Structure for High Refractive Index Medium. Photonic Sens 2019, 9, 11–18. [Google Scholar] [CrossRef]
- Hageneder, S.; Fossati, S.; Ferrer, N.-G.; Güngörmez, B.; Auer, S.K.; Dostalek, J. Multi-Diffractive Grating for Surface Plasmon Biosensors with Direct Back-Side Excitation. Opt. Express, OE 2020, 28, 39770–39780. [Google Scholar] [CrossRef]
- Cao, J.; Sun, Y.; Kong, Y.; Qian, W. The Sensitivity of Grating-Based SPR Sensors with Wavelength Interrogation. Sensors 2019, 19, 405. [Google Scholar] [CrossRef]
- Hsu, W.-T.; Lin, Y.-C.; Yang, H.-C.; Barshilia, D.; Chen, P.-L.; Huang, F.-C.; Chau, L.-K.; Hsieh, W.-H.; Chang, G.-E. Label-Free Biosensor Based on Particle Plasmon Resonance Coupled with Diffraction Grating Waveguide. Sensors 2024, 24, 5536. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, J.; Sim, S.; Llamas-Garro, I.; Kim, J. Air-Gap Interrogation of Surface Plasmon Resonance in Otto Configuration. Micromachines 2021, 12, 998. [Google Scholar] [CrossRef]
- Odacı, C.; Aydemir, U. The Surface Plasmon Resonance-Based Fiber Optic Sensors: A Theoretical Comparative Study with 2D TMDC Materials. Results in Optics 2021, 3, 100063. [Google Scholar] [CrossRef]
- Sharif, V.; Pakarzadeh, H. High-Performance Surface Plasmon Resonance Fiber Sensor Based on Cylindrical Vector Modes. Sci Rep 2023, 13, 4563. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, D.; Qian, Y.; Yin, X.; Wang, L.; Zhang, S.; Wang, Y. Research on Fiber Optic Surface Plasmon Resonance Biosensors: A Review. Photonic Sens 2024, 14, 240201. [Google Scholar] [CrossRef]
- Lv, J.; Wang, J.; Yang, L.; Liu, W.; Fu, H.; K. Chu, P.; Liu, C. Recent Advances of Optical Fiber Biosensors Based on Surface Plasmon Resonance: Sensing Principles, Structures, and Prospects. Sensors & Diagnostics 2024, 3, 1369–1391. [Google Scholar] [CrossRef]
- Teng, C.; Li, X.; Chen, M.; Deng, S.; Deng, H.; Xue, M.; Yuan, L.; Min, R.; Fu, X.; Hu, X. Cascaded Plastic Optical Fiber Based SPR Sensor for Simultaneous Measurement of Refractive Index and Temperature. Biomed. Opt. Express, BOE 2024, 15, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Optical Fiber-Based SPR Sensor for Chemical and Biological Samples Detection Using 2-D Materials | IEEE Journals & Magazine | IEEE Xplore Available online:. Available online: https://ieeexplore.ieee.org/document/10599160 (accessed on 3 December 2024).
- Teng, C.; Wang, Y.; Yuan, L. Polymer Optical Fibers Based Surface Plasmon Resonance Sensors and Their Applications: A Review. Optical Fiber Technology 2023, 77, 103256. [Google Scholar] [CrossRef]
- Li, C.; Gao, J.; Shafi, M.; Liu, R.; Zha, Z.; Feng, D.; Liu, M.; Du, X.; Yue, W.; Jiang, S. Optical Fiber SPR Biosensor Complying with a 3D Composite Hyperbolic Metamaterial and a Graphene Film. Photon. Res., PRJ 2021, 9, 379–388. [Google Scholar] [CrossRef]
- Meng, G.; Luan, N.; He, H.; Lei, F.; Liu, J. Side-Opened Hollow Fiber-Based SPR Sensor for High Refractive Index Detection. Sensors 2024, 24, 4335. [Google Scholar] [CrossRef]
- Calatayud-Sanchez, A.; Ortega-Gomez, A.; Barroso, J.; Zubia, J.; Benito-Lopez, F.; Villatoro, J.; Basabe-Desmonts, L. A Method for the Controllable Fabrication of Optical Fiber-Based Localized Surface Plasmon Resonance Sensors. Sci Rep 2022, 12, 9566. [Google Scholar] [CrossRef]
- Harris, R.D.; Wilkinson, J.S. Waveguide Surface Plasmon Resonance Sensors. Sensors and Actuators B: Chemical 1995, 29, 261–267. [Google Scholar] [CrossRef]
- Walter, J.-G.; Eilers, A.; Alwis, L.S.M.; Roth, B.W.; Bremer, K. SPR Biosensor Based on Polymer Multi-Mode Optical Waveguide and Nanoparticle Signal Enhancement. Sensors 2020, 20, 2889. [Google Scholar] [CrossRef]
- Lee, D.-J.; Yim, H.-D.; Lee, S.-G.; O, B.-H. Tiny Surface Plasmon Resonance Sensor Integrated on Silicon Waveguide Based on Vertical Coupling into Finite Metal-Insulator-Metal Plasmonic Waveguide. Opt. Express, OE 2011, 19, 19895–19900. [Google Scholar] [CrossRef]
- Bremer, K.; Walter, J.-G.; Roth, B. Optical Waveguide Based Surface Plasmon Resonance Sensor System for Smartphones. In Proceedings of the Imaging and Applied Optics 2016 (2016), July 25 2016; p. AIW2B.1., paper AIW2B.1; Optica Publishing Group.
- Feiler, M.; Ziman, M.; Kovac, J.; Kuzma, A.; Uherek, F. Design of Optimal SPR-Based Multimode Waveguide Sensor for a Wide Range of Liquid Analytes. Photonics 2023, 10, 618. [Google Scholar] [CrossRef]
- Walter, J.-G.; Alwis, L.S.M.; Roth, B.; Bremer, K. All-Optical Planar Polymer Waveguide-Based Biosensor Chip Designed for Smartphone-Assisted Detection of Vitamin D. Sensors 2020, 20, 6771. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.M.; Park, J.S.; Jung, S.-W.; Yeom, J.; Yoo, S.M. Biosensing Applications Using Nanostructure-Based Localized Surface Plasmon Resonance Sensors. Sensors 2021, 21, 3191. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, B.; Angelomé, P.C.; Lechuga, L.M.; Liz-Marzán, L.M. LSPR-Based Nanobiosensors. Nano Today 2009, 4, 244–251. [Google Scholar] [CrossRef]
- Li, R.; Fan, H.; Chen, Y.; Huang, J.; Liu, G.L.; Huang, L. Application of Nanoplasmonic Biosensors Based on Nanoarrays in Biological and Chemical Detection. Opt. Express, OE 2023, 31, 21586–21613. [Google Scholar] [CrossRef] [PubMed]
- Label-Free Nucleic Acid Biosensing Using Nanomaterial-Based Localized Surface Plasmon Resonance Imaging: A Review | ACS Applied Nano Materials. Available online: https://pubs.acs.org/doi/10.1021/acsanm.0c01457 (accessed on 4 December 2024).
- Wang, L.; Wang, Q.; Wang, T.-Q.; Zhao, W.-M.; Yin, X.-Y.; Jiang, J.-X.; Zhang, S.-S. Plasmonic Crescent Nanoarray-Based Surface Lattice Resonance Sensor with a High Figure of Merit. Nanoscale 2022, 14, 6144–6151. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, X.; Li, S.; Ding, F.; Li, N.; Meng, S.; Li, R.; Qi, J.; Liu, Q.; Liu, G.L. Plasmonic Nano-Arrays for Ultrasensitive Bio-Sensing. Nanophotonics 2018, 7, 1517–1531. [Google Scholar] [CrossRef]
- Yang, Y.; Murray, J.; Haverstick, J.; Tripp, R.A.; Zhao, Y. Silver Nanotriangle Array Based LSPR Sensor for Rapid Coronavirus Detection. Sensors and Actuators B: Chemical 2022, 359, 131604. [Google Scholar] [CrossRef]
- Dang, T.; Hu, W.; Zhang, W.; Song, Z.; Wang, Y.; Chen, M.; Xu, H.; Liu, G.L. Protein Binding Kinetics Quantification via Coupled Plasmonic-Photonic Resonance Nanosensors in Generic Microplate Reader. Biosensors and Bioelectronics 2019, 142, 111494. [Google Scholar] [CrossRef]
- Zhang, W.; Dang, T.; Li, Y.; Liang, J.; Xu, H.; Liu, G.L.; Hu, W. Digital Plasmonic Immunosorbent Assay for Dynamic Imaging Detection of Protein Binding. Sensors and Actuators B: Chemical 2021, 348, 130711. [Google Scholar] [CrossRef]
- Bruijn, H.E. de; Kooyman, R.P.H.; Greve, J. Choice of Metal and Wavelength for Surface-Plasmon Resonance Sensors: Some Considerations. Appl. Opt., AO 1992, 31, 440_1–442. [Google Scholar] [CrossRef]
- Gold Coated Surface Plasmon Resonance Based Biosensor: An Hexagonal Photonic Crystal Fiber Platform—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S221418042300034X (accessed on 5 December 2024).
- Divya, J.; Selvendran, S. Surface Plasmon Resonance-Based Gold-Coated Hollow-Core Negative Curvature Optical Fiber Sensor. Biosensors 2023, 13, 148. [Google Scholar] [CrossRef] [PubMed]
- Sayed, F.A.; Elsayed, H.A.; Al-Dossari, M.; Eissa, M.F.; Mehaney, A.; Aly, A.H. Angular Surface Plasmon Resonance-Based Sensor with a Silver Nanocomposite Layer for Effective Water Pollution Detection. Sci Rep 2023, 13, 21793. [Google Scholar] [CrossRef]
- Li, W.; Ren, K.; Zhou, J. Aluminum-Based Localized Surface Plasmon Resonance for Biosensing. TrAC Trends in Analytical Chemistry 2016, 80, 486–494. [Google Scholar] [CrossRef]
- Barchiesi, D.; Gharbi, T.; Cakir, D.; Anglaret, E.; Fréty, N.; Kessentini, S.; Maâlej, R. Performance of Surface Plasmon Resonance Sensors Using Copper/Copper Oxide Films: Influence of Thicknesses and Optical Properties. Photonics 2022, 9, 104. [Google Scholar] [CrossRef]
- Nesterenko, D.V.; Saif-ur-Rehman; Sekkat, Z. Surface Plasmon Sensing with Different Metals in Single and Double Layer Configurations. Appl. Opt., AO 2012, 51, 6673–6682. [Google Scholar] [CrossRef]
- Vasudevan Pillai Radha, S.; Santhakumari Amma Ravindran Nair, S.K.; Sankaranarayana Iyer, S. Surface Plasmon Resonance-Based Fiber-Optic Metallic Multilayer Biosensors. ACS Omega 2021, 6, 15068–15077. [Google Scholar] [CrossRef]
- Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs | ACS Applied Materials & Interfaces. Available online: https://pubs.acs.org/doi/10.1021/acsami.7b01583 (accessed on 6 December 2024).
- Armini, S.; Vandelaer, Y.; Lesniewska, A.; Cherman, V.; Preter, I.D.; Inoue, F.; Derakhshandeh, J.; Vakanas, G.; Beyne, E. Thiol-Based Self-Assembled Monolayers (SAMs) as an Alternative Surface Finish for 3D Cu Microbumps. In Proceedings of the TMS 2015 144th Annual Meeting & Exhibition; Springer International Publishing: Cham, 2016; pp. 1355–1360. [Google Scholar]
- Stability of Thiol-Based Self-Assembled Monolayer Functionalized Electrodes in EG-OFET-Based Applications—ScienceDirect Available online:. Available online: https://www.sciencedirect.com/science/article/pii/S2452262723000855 (accessed on 5 December 2024).
- Islam, N.; Shen, F.; Gurgel, P.V.; Rojas, O.J.; Carbonell, R.G. Dynamic and Equilibrium Performance of Sensors Based on Short Peptide Ligands for Affinity Adsorption of Human IgG Using Surface Plasmon Resonance. Biosensors and Bioelectronics 2014, 58, 380–387. [Google Scholar] [CrossRef]
- Zeni, L.; Perri, C.; Cennamo, N.; Arcadio, F.; D’Agostino, G.; Salmona, M.; Beeg, M.; Gobbi, M. A Portable Optical-Fibre-Based Surface Plasmon Resonance Biosensor for the Detection of Therapeutic Antibodies in Human Serum. Sci Rep 2020, 10, 11154. [Google Scholar] [CrossRef]
- Xiao, C.; Ross, G.; Nielen, M.W.F.; Eriksson, J.; Salentijn, G.IJ.; Mak, W.C. A Portable Smartphone-Based Imaging Surface Plasmon Resonance Biosensor for Allergen Detection in Plant-Based Milks. Talanta 2023, 257, 124366. [Google Scholar] [CrossRef]
- Le, D.; Ranta-Lassila, A.; Sipola, T.; Karppinen, M.; Petäjä, J.; Kehusmaa, M.; Aikio, S.; Guo, T.-L.; Roussey, M.; Hiltunen, J.; et al. High-Performance Portable Grating-Based Surface Plasmon Resonance Sensor Using a Tunable Laser at Normal Incidence. Photon. Res., PRJ 2024, 12, 947–958. [Google Scholar] [CrossRef]
- Pandey, P.S.; Raghuwanshi, S.K.; Shadab, A.; Ansari, M.T.I.; Tiwari, U.K.; Kumar, S. SPR Based Biosensing Chip for COVID-19 Diagnosis—A Review. IEEE Sensors Journal 2022, 22, 13800–13810. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.S.; Raghuwanshi, S.K.; Singh, R.; Kumar, S. Surface Plasmon Resonance Biosensor Chip for Human Blood Groups Identification Assisted with Silver-Chromium-Hafnium Oxide. Magnetochemistry 2023, 9, 21. [Google Scholar] [CrossRef]
- Yoo, H.; Shin, J.; Sim, J.; Cho, H.; Hong, S. Reusable Surface Plasmon Resonance Biosensor Chip for the Detection of H1N1 Influenza Virus. Biosensors and Bioelectronics 2020, 168, 112561. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, J.; Khan, S.A.; Li, F.; Shen, J.; Duan, Q.; Liu, X.; Zhu, J. Plasmonic Metasurfaces for Medical Diagnosis Applications: A Review. Sensors 2022, 22, 133. [Google Scholar] [CrossRef]
- Zanchetta, G.; Lanfranco, R.; Giavazzi, F.; Bellini, T.; Buscaglia, M. Emerging Applications of Label-Free Optical Biosensors. Nanophotonics 2017, 6, 627–645. [Google Scholar] [CrossRef]
- Masson, J.-F. Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics. ACS Sens. 2017, 2, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, Y.; Ling, H.; Zhang, J.; Li, K.; Yuan, C.; Ma, H.; Huang, W.; Wang, Q.; Su, X. Label-Free Diagnosis of Ovarian Cancer Using Spoof Surface Plasmon Polariton Resonant Biosensor. Sensors and Actuators B: Chemical 2022, 352, 130996. [Google Scholar] [CrossRef]
- Acharya, B.; Behera, A.; Behera, S. Optimizing Drug Discovery: Surface Plasmon Resonance Techniques and Their Multifaceted Applications. Chemical Physics Impact 2024, 8, 100414. [Google Scholar] [CrossRef]
- Schneider, C.S.; Bhargav, A.G.; Perez, J.G.; Wadajkar, A.S.; Winkles, J.A.; Woodworth, G.F.; Kim, A.J. Surface Plasmon Resonance as a High Throughput Method to Evaluate Specific and Non-Specific Binding of Nanotherapeutics. Journal of Controlled Release 2015, 219, 331–344. [Google Scholar] [CrossRef]
- Buzavaite-Verteliene, E.; Plikusiene, I.; Tolenis, T.; Valavicius, A.; Anulyte, J.; Ramanavicius, A.; Balevicius, Z. Hybrid Tamm-Surface Plasmon Polariton Mode for Highly Sensitive Detection of Protein Interactions. Opt. Express, OE 2020, 28, 29033–29043. [Google Scholar] [CrossRef]
- Patching, S.G. Surface Plasmon Resonance Spectroscopy for Characterisation of Membrane Protein–Ligand Interactions and Its Potential for Drug Discovery. Biochimica et Biophysica Acta (BBA)—Biomembranes 2014, 1838, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Singh, S.; Chawla, V.; Chawla, P.A.; Bhatia, R. Surface Plasmon Resonance as a Fascinating Approach in Target-Based Drug Discovery and Development. TrAC Trends in Analytical Chemistry 2024, 171, 117501. [Google Scholar] [CrossRef]
- Frontiers | Surface Plasmon Resonance as a Characterization Tool for Lipid Nanoparticles Used in Drug Delivery. Available online: https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2020.605307/full (accessed on 10 December 2024).
- Kulkarni, J.A.; Witzigmann, D.; Thomson, S.B.; Chen, S.; Leavitt, B.R.; Cullis, P.R.; van der Meel, R. The Current Landscape of Nucleic Acid Therapeutics. Nat. Nanotechnol. 2021, 16, 630–643. [Google Scholar] [CrossRef]
- Emerging Nano-Strategies against Tumour Microenvironment (TME): A Review—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S2352952022000743 (accessed on 10 December 2024).
- Targeting of Nanotherapeutics to Infection Sites for Antimicrobial Therapy—Dong—2019—Advanced Therapeutics—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/adtp.201900095 (accessed on 10 December 2024).
- Nano-Engineered Delivery Systems for Cancer Imaging and Therapy: Recent Advances, Future Direction and Patent Evaluation—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S1359644618301181?via%3Dihub (accessed on 10 December 2024).
- The Principle of Nanomaterials Based Surface Plasmon Resonance Biosensors and Its Potential for Dopamine Detection. Available online: https://www.mdpi.com/1420-3049/25/12/2769 (accessed on 10 December 2024).
- Libánská, A.; Špringer, T.; Peštová, L.; Kotalík, K.; Konefał, R.; Šimonová, A.; Křížek, T.; Homola, J.; Randárová, E.; Etrych, T. Using Surface Plasmon Resonance, Capillary Electrophoresis and Diffusion-Ordered NMR Spectroscopy to Study Drug Release Kinetics. Commun Chem 2023, 6, 1–12. [Google Scholar] [CrossRef]
- Khokhlova, A.; Zolotovskii, I.; Sokolovski, S.; Saenko, Y.; Rafailov, E.; Stoliarov, D.; Pogodina, E.; Svetukhin, V.; Sibirny, V.; Fotiadi, A. The Light-Oxygen Effect in Biological Cells Enhanced by Highly Localized Surface Plasmon-Polaritons. Sci Rep 2019, 9, 18435. [Google Scholar] [CrossRef]
- Jung, S.O.; Ro, H.-S.; Kho, B.H.; Shin, Y.-B.; Kim, M.G.; Chung, B.H. Surface Plasmon Resonance Imaging-Based Protein Arrays for High-Throughput Screening of Protein-Protein Interaction Inhibitors. PROTEOMICS 2005, 5, 4427–4431. [Google Scholar] [CrossRef]
- Güler, K.Ç.; Göktürk, I.; Yılmaz, F.; Araz, A.; Denizli, A. Plasmonic Nanosensors for Environmental Pollutants Sensing: Recent Advances and Perspectives. Essential Chem 2024. [Google Scholar]
- Gas Sensors Based on Localized Surface Plasmon Resonances: Synthesis of Oxide Films with Embedded Metal Nanoparticles, Theory and Simulation, and Sensitivity Enhancement Strategies. Available online: https://www.mdpi.com/2076-3417/11/12/5388 (accessed on 10 December 2024).
- Kumar, R.; Pal, S.; Verma, A.; Prajapati, Y.K. Enhanced No2 Gas Sensing Using Surface Plasmon Resonance Sensor Based on MXene and Black Phosphorus. IEEE Transactions on Plasma Science 2023, 51, 1427–1433. [Google Scholar] [CrossRef]
- Yang, W.; Ang, L.K.; Zhang, W.; Han, J.; Xu, Y. High Sensitivity Gas Sensor Based on Surface Exciton Polariton Enhanced Photonic Spin Hall Effect. Opt. Express, OE 2023, 31, 27041–27053. [Google Scholar] [CrossRef]
- Proença, M.; Lednický, T.; Meira, D.I.; Rodrigues, M.S.; Vaz, F.; Borges, J.; Bonyár, A. New Parameter for Benchmarking Plasmonic Gas Sensors Demonstrated with Densely Packed Au Nanoparticle Layers. ACS Appl. Mater. Interfaces 2024, 16, 57832–57842. [Google Scholar] [CrossRef]
- Balbinot, S.; Srivastav, A.M.; Vidic, J.; Abdulhalim, I.; Manzano, M. Plasmonic Biosensors for Food Control. Trends in Food Science & Technology 2021, 111, 128–140. [Google Scholar] [CrossRef]
- Ansari, M.T.I.; Raghuwanshi, S.K.; Kumar, S. Recent Advancement in Fiber-Optic-Based SPR Biosensor for Food Adulteration Detection—A Review. IEEE Transactions on NanoBioscience 2023, 22, 978–988. [Google Scholar] [CrossRef]
- Homola, J. Surface Plasmon Resonance Biosensors for Food Safety. In Optical Sensors; Springer, Berlin, Heidelberg, 2004; pp. 145–172 ISBN 978-3-662-09111-1.
- El biyari, N.; Zekriti, M. WITHDRAWN: Advancements in Surface Plasmon Resonance Biosensors: A Comprehensive Review of Technologies, Applications, and Future Prospects. Biotechnology Notes 2024. [Google Scholar] [CrossRef]
- Podunavac, I.; Radonic, V.; Bengin, V.; Jankovic, N. Microwave Spoof Surface Plasmon Polariton-Based Sensor for Ultrasensitive Detection of Liquid Analyte Dielectric Constant. Sensors 2021, 21, 5477. [Google Scholar] [CrossRef]
- Tseng, S.-Y.; Li, S.-Y.; Yi, S.-Y.; Sun, A.Y.; Gao, D.-Y.; Wan, D. Food Quality Monitor: Paper-Based Plasmonic Sensors Prepared Through Reversal Nanoimprinting for Rapid Detection of Biogenic Amine Odorants. ACS Appl. Mater. Interfaces 2017, 9, 17306–17316. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, P.; Jindal, P. Machine Learning Approach to Surface Plasmon Resonance Sensor Based on MXene Coated PCF for Malaria Disease Detection in RBCs. Optik 2023, 274, 170549. [Google Scholar] [CrossRef]
- Ehyaee, A.; Rahmati, A.; Bosaghzadeh, A.; Olyaee, S. Machine Learning-Enhanced Surface Plasmon Resonance Based Photonic Crystal Fiber Sensor. Opt. Express, OE 2024, 32, 13369–13383. [Google Scholar] [CrossRef]
- Jafrasteh, F.; Farmani, A.; Mohamadi, J. Meticulous Research for Design of Plasmonics Sensors for Cancer Detection and Food Contaminants Analysis via Machine Learning and Artificial Intelligence. Sci Rep 2023, 13, 15349. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, W.; Qin, Y.; Li, Y.; Liu, G.L.; Hu, W. Applying Machine Learning with Localized Surface Plasmon Resonance Sensors to Detect SARS-CoV-2 Particles. Biosensors 2022, 12, 173. [Google Scholar] [CrossRef]
- Das, C.M.; Yang, F.; Yang, Z.; Liu, X.; Hoang, Q.T.; Xu, Z.; Neermunda, S.; Kong, K.V.; Ho, H.-P.; Ju, L.A.; et al. Computational Modeling for Intelligent Surface Plasmon Resonance Sensor Design and Experimental Schemes for Real-Time Plasmonic Biosensing: A Review. Advanced Theory and Simulations 2023, 6, 2200886. [Google Scholar] [CrossRef]
- Kaziz, S.; Echouchene, F.; Gazzah, M.H. Optimizing PCF-SPR Sensor Design through Taguchi Approach, Machine Learning, and Genetic Algorithms. Sci Rep 2024, 14, 7837. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.P.; Sardana, N. Smartphone-Based Surface Plasmon Resonance Sensors: A Review. Plasmonics 2022, 17, 1869–1888. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Peng, W. Fiber-Optic Surface Plasmon Resonance Sensors and Biochemical Applications: A Review. Journal of Lightwave Technology 2021, 39, 3781–3791. [Google Scholar] [CrossRef]
- Mohseni-Dargah, M.; Falahati, Z.; Dabirmanesh, B.; Nasrollahi, P.; Khajeh, K. Chapter 12—Machine Learning in Surface Plasmon Resonance for Environmental Monitoring. In Artificial Intelligence and Data Science in Environmental Sensing; Asadnia, M., Razmjou, A., Beheshti, A., Eds.; Cognitive Data Science in Sustainable Computing; Academic Press, 2022; pp. 269–298 ISBN 978-0-323-90508-4.
- Gomes, J.C.M.; Souza, L.C.; Oliveira, L.C. SmartSPR Sensor: Machine Learning Approaches to Create Intelligent Surface Plasmon Based Sensors. Biosensors and Bioelectronics 2021, 172, 112760. [Google Scholar] [CrossRef] [PubMed]
- Thadson, K.; Sasivimolkul, S.; Suvarnaphaet, P.; Visitsattapongse, S.; Pechprasarn, S. Measurement Precision Enhancement of Surface Plasmon Resonance Based Angular Scanning Detection Using Deep Learning. Sci Rep 2022, 12, 2052. [Google Scholar] [CrossRef]
- Xu, Y.; Song, Y.; Hao, H.; Zhao, Z.; Jin, Y.; Wang, Q. Sensitivity-Enhanced Plasmonic Sensor Modified with ZIF-8. Optics & Laser Technology 2025, 181, 111885. [Google Scholar] [CrossRef]
- Yang, X.; Guo, J.; Yang, F.; Yang, G.; Wu, Y.; Li, Z.; Liu, Y.; Yang, X.; Yao, J. Tapered Optical Fiber LRSPR Biosensor Based on Gold Nanoparticle Amplification for Label-Free BSA Detection. Sensors and Actuators B: Chemical 2025, 426, 136986. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, Z.; Jing, X.; Hu, L.; Li, S.; Li, J. Near-Infrared SPR Biosensor Based on Photonic Crystal Fiber for DNA Hybridization Detection. Analytica Chimica Acta 2025, 1333, 343385. [Google Scholar] [CrossRef]
- Strategic Approaches to Enhance Efficiency and Commercial Feasibility of Copper-Based Surface Plasmon Resonance Sensing—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S2949822824002740?via%3Dihub (accessed on 8 December 2024).
- Zhou, Y.; Liu, H.; Zhang, W.; Wu, J.; Koh, K.; Chen, H. MoS2-Mediated Gap-Mode Surface Plasmon Enhancement: Construction of SPR Biosensor for Direct Detection of LECT2. Sensors and Actuators B: Chemical 2025, 425, 136938. [Google Scholar] [CrossRef]
- Chithravel, A.; Murugan, D.; Shekhawat, A.S.; Diwan, A.; Srivastava, T.; Munjal, S.; Lakkakula, S.; Saxena, S.K.; Shrivastav, A.M. 2D Material Assisted Prism Based Surface Plasmon Resonance Sensors: A Comprehensive Survey. Optics and Lasers in Engineering 2024, 182, 108452. [Google Scholar] [CrossRef]
- Ying, Y.; Shang, T.; Gao, Z.; Si, G. Refractive Index Sensing Characteristics of PCF-SPR Based on Dual-Plasmon Materials. J. Opt. 2024, 26, 125101. [Google Scholar] [CrossRef]
- Das, A.; Huraiya, M.A.; Raj R, V.; Tabata, H.; Ramaraj, S.G. Ultra-Sensitive Refractive Index Detection with Gold-Coated PCF-Based SPR Sensor. Talanta Open 2024, 10, 100384. [Google Scholar] [CrossRef]
- Praharaj, C.; Nara, S. Nanotechnology Driven Biorecognition Element and Label Free Sensing of Pesticides. Journal of Environmental Chemical Engineering 2024, 12, 114218. [Google Scholar] [CrossRef]
- Rutirawut, T.; Joonmasa, K.; Rasritat, A.; Chitaree, R.; Meemon, P.; Ismaeel, R.; Sangtawesin, S.; Talataisong, W. Optical Fiber-Coupled Kretschmann SPR Sensor with Re-Attachable Gold Nano-Thin Film Sensing Chip. Opt. Express, OE 2024, 32, 39924–39937. [Google Scholar] [CrossRef]
- Ammonia-Trapping Multilayer Polymer Urease Film Amplifier Coated Surface Plasmon Resonance Sensor for Ultra-Sensitive Urea Detection. Sensors and Actuators B: Chemical 2024, 414, 135929. [CrossRef]
- Unser, S.; Bruzas, I.; He, J.; Sagle, L. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors 2015, 15, 15684–15716. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, X.; Li, X.; Gong, P.; Zhang, Y.; Zhao, Y. Recent Advancements of LSPR Fiber-Optic Biosensing: Combination Methods, Structure, and Prospects. Biosensors 2023, 13, 405. [Google Scholar] [CrossRef]
- Hao, X.; St-Pierre, J.-P.; Zou, S.; Cao, X. Localized Surface Plasmon Resonance Biosensor Chip Surface Modification and Signal Amplifications toward Rapid and Sensitive Detection of COVID-19 Infections. Biosensors and Bioelectronics 2023, 236, 115421. [Google Scholar] [CrossRef]
- Meira, D.I.; Barbosa, A.I.; Borges, J.; Reis, R.L.; Correlo, V.M.; Vaz, F. Label-Free Localized Surface Plasmon Resonance (LSPR) Biosensor, Based on Au-Ag NPs Embedded in TiO2 Matrix, for Detection of Ochratoxin-A (OTA) in Wine. Talanta 2025, 284, 127238. [Google Scholar] [CrossRef]
- Yang, C.; Xiao, S.; Wang, Q.; Zhang, H.; Yu, H.; Jia, D. Nanoparticle-Based FM-MCF LSPR Biosensor With Open Air-Hole. Front. Sens. 2021, 2. [Google Scholar] [CrossRef]
- Singh, P. LSPR Biosensing: Recent Advances and Approaches. In Reviews in Plasmonics 2016; Geddes, C.D., Ed.; Springer International Publishing: Cham, 2017; ISBN 978-3-319-48081-7. [Google Scholar]
- Zhou, M.; Geng, Z. Integrated LSPR Biosensing Signal Processing Strategy and Visualization Implementation. Micromachines 2024, 15, 631. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Cheng, Y.; He, L.; Feng, Y.; Tian, Y.; Chen, Z.; Feng, Y.; Li, Y.; Xie, W.; Huang, W.; et al. T-Shaped Aptamer-Based LSPR Biosensor Using Ω-Shaped Fiber Optic for Rapid Detection of SARS-CoV-2. Anal. Chem. 2023, 95, 1599–1607. [Google Scholar] [CrossRef] [PubMed]
- Smartphone Based LSPR Biosensor. Available online: https://ieeexplore.ieee.org/document/8596229 (accessed on 4 December 2024).
- Islam, M.S.; Sultana, J.; Aoni, R.A.; Habib, M.S.; Dinovitser, A.; Ng, B.W.-H.; Abbott, D. Localized Surface Plasmon Resonance Biosensor: An Improved Technique for SERS Response Intensification. Opt. Lett., OL 2019, 44, 1134–1137. [Google Scholar] [CrossRef] [PubMed]
- Lugongolo, M.Y.; Ombinda-Lemboumba, S.; Hlekelele, L.; Nyokana, N.; Mthunzi-Kufa, P. Localized Surface Plasmon Resonance Optical Biosensor for Simple Detection of Deoxyribonucleic Acid Mismatches. Advanced Photonics Research 2024, 5, 2300283. [Google Scholar] [CrossRef]
- Paswan, M.K.; Basu, R. Hybrid Structure–Based SPR Sensor for Chemical Sensing with Enhanced Sensitivity. Plasmonics 2024, 19, 765–776. [Google Scholar] [CrossRef]
- A Study of Surface Plasmon Resonance (SPR) Based Biosensor with Improved Sensitivity. Photonics and Nanostructures—Fundamentals and Applications 2018, 31, 99–106. [CrossRef]
- Villarim, M.R.; Belfort, D.R.; de Souza, C.P. A Surface Plasmon Resonance (SPR)-Based Biosensor Simulation Platform for Performance Evaluation of Different Constructional Configurations. Coatings 2023, 13, 546. [Google Scholar] [CrossRef]
- Elsayed, H.; Kumar Awasthi, S.; M. Almawgani, A.H.; Mehaney, A.; Ali, Y.A.A.; Alzahrani, A.; M. Ahmed, A. High-Performance Biosensors Based on Angular Plasmonic of a Multilayer Design: New Materials for Enhancing Sensitivity of One-Dimensional Designs. RSC Advances 2024, 14, 7877–7890. [Google Scholar] [CrossRef]
- Zakirov, N.; Zhu, S.; Bruyant, A.; Lérondel, G.; Bachelot, R.; Zeng, S. Sensitivity Enhancement of Hybrid Two-Dimensional Nanomaterials-Based Surface Plasmon Resonance Biosensor. Biosensors 2022, 12, 810. [Google Scholar] [CrossRef]
- Wekalao, J.; Kumaresan, M.S.; Mallan, S.; Murthy, G.S.; Nagarajan, N.R.; Karthikeyan, S.; Dorairajan, N.; Prabu, R.T.; Rashed, A.N.Z. Metasurface Based Surface Plasmon Resonance (SPR) Biosensor for Cervical Cancer Detection with Behaviour Prediction Using Machine Learning Optimization Based on Support Vector Regression. Plasmonics 2024. [Google Scholar] [CrossRef]
- Wekalao, J.; Patel, S.K.; Al-zahrani, F.A. Graphene Metasurfaces-Based Surface Plasmon Resonance Biosensor for Virus Detection with Sensitivity Enhancement Using Perovskite Materials. Plasmonics 2024. [Google Scholar] [CrossRef]
- Koresawa, H.; Seki, K.; Nishimoto, K.; Hase, E.; Tokizane, Y.; Yano, T.-A.; Kajisa, T.; Minamikawa, T.; Yasui, T. Real-Time Hybrid Angular-Interrogation Surface Plasmon Resonance Sensor in the near-Infrared Region for Wide Dynamic Range Refractive Index Sensing. Sci Rep 2023, 13, 15655. [Google Scholar] [CrossRef] [PubMed]
- Samarentsis, A.G.; Pantazis, A.K.; Tsortos, A.; Friedt, J.-M.; Gizeli, E. Hybrid Sensor Device for Simultaneous Surface Plasmon Resonance and Surface Acoustic Wave Measurements. Sensors 2020, 20, 6177. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Hu, S.; Xia, J.; Anderson, T.; Dinh, X.-Q.; Meng, X.-M.; Coquet, P.; Yong, K.-T. Graphene–MoS2 Hybrid Nanostructures Enhanced Surface Plasmon Resonance Biosensors. Sensors and Actuators B: Chemical 2015, 207, 801–810. [Google Scholar] [CrossRef]
- Hong, Q.; Luo, J.; Wen, C.; Zhang, J.; Zhu, Z.; Qin, S.; Yuan, X. Hybrid Metal-Graphene Plasmonic Sensor for Multi-Spectral Sensing in Both near- and Mid-Infrared Ranges. Opt. Express, OE 2019, 27, 35914–35924. [Google Scholar] [CrossRef]
- Nan, M.; Darmawan, B.A.; Go, G.; Zheng, S.; Lee, J.; Kim, S.; Lee, T.; Choi, E.; Park, J.-O.; Bang, D. Wearable Localized Surface Plasmon Resonance-Based Biosensor with Highly Sensitive and Direct Detection of Cortisol in Human Sweat. Biosensors 2023, 13, 184. [Google Scholar] [CrossRef]
- Sommers, D.R.; Stubbs, D.D.; Hunt, W.D. A PDA-Based Wireless Biosensor Using Industry Standard Components. IEEE Sensors Journal 2004, 4, 551–558. [Google Scholar] [CrossRef]
- Kassal, P.; Steinberg, M.D.; Steinberg, I.M. Wireless Chemical Sensors and Biosensors: A Review. Sensors and Actuators B: Chemical 2018, 266, 228–245. [Google Scholar] [CrossRef]
- Dubois, C.; Ducas, É.; Laforce-Lavoie, A.; Robidoux, J.; Delorme, A.; Live, L.S.; Brouard, D.; Masson, J.-F. A Portable Surface Plasmon Resonance (SPR) Sensor for the Detection of Immunoglobulin A in Plasma. Transfusion 2024, 64, 881–892. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Chen, S.; Cheng, F.; Wang, H.; Peng, W. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms. Sci Rep 2015, 5, 12864. [Google Scholar] [CrossRef]
- Singh, P. SPR Biosensors: Historical Perspectives and Current Challenges. Sensors and Actuators B: Chemical 2016, 229, 110–130. [Google Scholar] [CrossRef]
- Surface Plasmon Resonance (SPR)-Based Biosensors as Instruments with High Versatility and Sensitivity. Available online: https://www.mdpi.com/1424-8220/20/11/3010 (accessed on 5 December 2024).
- Chopra, A.; Mohanta, G.C.; Sarkar, S. Addressing the Challenge of Non-Specificity in Surface Plasmon Resonance (Spr) Biosensors on a Fiber-Optic Platform 2023.
- Tazi, I.; Riana, D.; Syahadi, M.; Muthmainnah, M.; Sasmitaninghidayah, W.; Aprilia, L.; Tresna, W.P. Performance Evaluation of Single-Mode Fiber Optic-Based Surface Plasmon Resonance Sensor on Material and Geometrical Parameters. International Journal of Electrical and Computer Engineering (IJECE) 2024, 14, 5072–5082. [Google Scholar] [CrossRef]
- Vachali, P.P.; Li, B.; Bartschi, A.; Bernstein, P.S. Surface Plasmon Resonance (SPR)-Based Biosensor Technology for the Quantitative Characterization of Protein–Carotenoid Interactions. Archives of Biochemistry and Biophysics 2015, 572, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Rakibul Islam, M.; Khan, M.M.I.; Mehjabin, F.; Alam Chowdhury, J.; Islam, M. Design of a Fabrication Friendly & Highly Sensitive Surface Plasmon Resonance-Based Photonic Crystal Fiber Biosensor. Results in Physics 2020, 19, 103501. [Google Scholar] [CrossRef]
- Butt, M.A.; Mateos, X.; Piramidowicz, R. Photonics Sensors: A Perspective on Current Advancements, Emerging Challenges, and Potential Solutions (Invited). Physics Letters A 2024, 516, 129633. [Google Scholar] [CrossRef]
- Jin, X.; Liu, C.; Xu, T.; Su, L.; Zhang, X. Artificial Intelligence Biosensors: Challenges and Prospects. Biosensors and Bioelectronics 2020, 165, 112412. [Google Scholar] [CrossRef]
- Ansari, G.; Pal, A.; Srivastava, A.K.; Verma, G. Machine Learning Approach to Surface Plasmon Resonance Bio-Chemical Sensor Based on Nanocarbon Allotropes for Formalin Detection in Water. Sensing and Bio-Sensing Research 2023, 42, 100605. [Google Scholar] [CrossRef]
- Zain, H.A.; Batumalay, M.; Harith, Z.; Rahim, H.R.A.; Harun, S.W. Machine Learning Algorithms for Surface Plasmon Resonance Bio-Detection Applications, A Short Review. J. Phys.: Conf. Ser. 2022, 2411, 012013. [Google Scholar] [CrossRef]
- Mondal, H.S.; Ahmed, K.A.; Birbilis, N.; Hossain, M.Z. Machine Learning for Detecting DNA Attachment on SPR Biosensor. Sci Rep 2023, 13, 3742. [Google Scholar] [CrossRef]
- Williams, C.; Addona, T.A. The Integration of SPR Biosensors with Mass Spectrometry: Possible Applications for Proteome Analysis. Trends in Biotechnology 2000, 18, 45–48. [Google Scholar] [CrossRef]
- Ramirez-Priego, P.; Mauriz, E.; Giarola, J.F.; Lechuga, L.M. Overcoming Challenges in Plasmonic Biosensors Deployment for Clinical and Biomedical Applications: A Systematic Review and Meta-Analysis. Sensing and Bio-Sensing Research 2024, 46, 100717. [Google Scholar] [CrossRef]
- Topor, C.-V.; Puiu, M.; Bala, C. Strategies for Surface Design in Surface Plasmon Resonance (SPR) Sensing. Biosensors 2023, 13, 465. [Google Scholar] [CrossRef] [PubMed]
- Shrivastav, A.M.; Cvelbar, U.; Abdulhalim, I. A Comprehensive Review on Plasmonic-Based Biosensors Used in Viral Diagnostics. Commun Biol 2021, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]














| Application | Key Features | Examples of Detection Targets | Benefits |
|---|---|---|---|
| Biomedical Diagnostics | High sensitivity, real-time monitoring, label-free detection [132] | Biomolecules (e.g., proteins, DNA, antibodies), disease biomarkers [133,134] | Rapid diagnosis, early detection, personalized medicine [135,136] |
| Pharmaceutical and Drug Discovery | High-throughput screening, kinetic studies, quantitative binding analysis | Drug-target interactions, ligand-receptor binding, enzyme activity | Accelerates drug discovery, precise kinetic profiling, reduced reagent consumption |
| Environmental Monitoring | Detection of pollutants, toxins, and pathogens in water, air, and soil | Heavy metals, pesticides, pathogens, harmful gases | Real-time monitoring, early warning systems, high specificity |
| Food Safety and Quality Control | Assessment of contaminants, pathogens, and adulterants [137] | Foodborne pathogens (e.g., E. coli, Salmonella), toxins, allergens [138] | Ensures food safety, compliance with regulations, non-destructive testing [139,140,141,142] |
| Emerging Applications | Innovations in wearable sensors, remote monitoring, and integration with IoT | Continuous glucose monitoring, pathogen detection in smart packaging | Versatility, integration with advanced technologies, enhanced accessibility and convenience |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).