Submitted:
06 December 2024
Posted:
09 December 2024
Read the latest preprint version here
Abstract
Background/Objectives: The dual forces of structured inquiry and serendipitous discovery have long shaped neuropsychiatric research, with groundbreaking treatments such as lithium and ketamine resulting from unexpected discoveries. However, relying on chance is becoming increasingly insufficient to address the rising prevalence of mental health disorders like depression and schizophrenia, which necessitate precise, innovative approaches. Emerging technologies like artificial intelligence, induced pluripotent stem cells, and multi-omics have the potential to transform this field by allowing for predictive, patient-specific interventions. Despite these advancements, traditional methodologies such as animal models and single-variable analyses continue to be used, frequently failing to capture the complexities of human neuropsychiatric conditions. Summary: This review critically evaluates the transition from serendipity to precision-based methodologies in neuropsychiatric research. It focuses on key innovations such as dynamic systems modeling and network-based approaches that use genetic, molecular, and environmental data to identify new therapeutic targets. Furthermore, it emphasizes the importance of interdisciplinary collaboration and human-specific models in overcoming the limitations of traditional approaches. Conclusion: We highlight precision psychiatry's transformative potential for revolutionizing mental health care. This paradigm shift, which combines cutting-edge technologies with systematic frameworks, promises increased diagnostic accuracy, reproducibility, and efficiency, paving the way for tailored treatments and better patient outcomes in neuropsychiatric care.
Keywords:
1. Introduction
| Year | Drug Name | Primary Targets | Expected Diseases to Treat | Mental Illnesses Treated | Ref. |
|---|---|---|---|---|---|
| 1940s-1950s | Iproniazid | Monoamine Oxidase | Tuberculosis | Depression | [9,22] |
| 1950s | Lithium | Unknown | N/A | Bipolar Disorder | [8] |
| 1950s | Chlorpromazine | Dopamine Receptors | Sedation | Schizophrenia | [10,22,61] |
| 1950s | Imipramine | Serotonin/Norepinephrine Reuptake | N/A | Depression | [9,22] |
| 1950s | Chlordiazepoxide | GABA Receptors | N/A | Anxiety | [22] |
| 1960s | Psilocybin | Serotonin Receptors | N/A | Depression | [10] |
| 2000s | Ketamine | NMDA Receptors | Anesthesia | Depression | [9,10,11] |
| 2010s | Minocycline | Unknown | Infection | Schizophrenia | [10] |
| 2010s | Warfarin | Blood Clotting Factors | Blood Clotting Disorders | Schizophrenia | [10] |
2. Integrative Models of Wet and Dry Research
3. Cyclic data processing
4. Interpreting Experimental Results
5. Towards Patient-Specific Models
6. Discussion
7. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AD | Alzheimer's disease |
| AI | artificial intelligence |
| GWAS | genome-wide association studies |
| iPSCs | pluripotent stem cells |
| ML | machine learning |
| ncRNAs | non-coding RNAs |
| PD | Parkinson's disease [93] |
| PPI | patient and public involvement |
References
- Pepys, M.B. Science and serendipity. Clin Med (Lond) 2007, 7, 562–578. [Google Scholar] [CrossRef]
- Li, T.; Vedula, S.S.; Hadar, N.; Parkin, C.; Lau, J.; Dickersin, K. Innovations in data collection, management, and archiving for systematic reviews. Annals of internal medicine 2015, 162, 287–294. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, C.; Ma, X.; Liang, H. Serendipity in human information behavior: A systematic review. Journal of Documentation 2022, 78, 435–462. [Google Scholar] [CrossRef]
- Meyers, M.A. Happy accidents: serendipity in major medical breakthroughs in the twentieth century; Simon and Schuster: 2011.
- Pievani, T. Serendipity: The Unexpected in Science; MIT Press: 2024.
- Bauer, M. Lithium: about discrepancies between efficacy and clinical use. 2020, 142, 159-160.
- Zarate Jr, C.A.; Brutsche, N.E.; Ibrahim, L.; Franco-Chaves, J.; Diazgranados, N.; Cravchik, A.; Selter, J.; Marquardt, C.A.; Liberty, V.; Luckenbaugh, D.A. Replication of ketamine's antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biological psychiatry 2012, 71, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Smoller, J.W. Psychiatric genetics and the future of personalized treatment. Depression and anxiety 2014, 31, 893. [Google Scholar] [CrossRef] [PubMed]
- Rappa, L.R.; Larose-Pierre, M.; Branch III, E.; Iglesias, A.J.; Norwood, D.A.; Simon, W.A. Desperately seeking serendipity: The past, present, and future of antidepressant therapy. Journal of Pharmacy Practice 2001, 14, 560–569. [Google Scholar] [CrossRef]
- Nutt, D. Help luck along to find psychiatric medicines. Nature 2014, 515, 165–165. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A. Inflammatory and immune responses in depression. Current Neuropharmacology 2016, 14, 663. [Google Scholar] [CrossRef]
- McMahon, F.J. Prediction of treatment outcomes in psychiatry—where do we stand? Dialogues in clinical neuroscience 2014, 16, 455–464. [Google Scholar] [CrossRef]
- Vaudano, E. Public–private partnerships as enablers of progress in the fight against mental disorders: the example of the European Innovative Medicines Initiative. European Psychiatry 2018, 50, 57–59. [Google Scholar] [CrossRef]
- Chekroud, A.M.; Bondar, J.; Delgadillo, J.; Doherty, G.; Wasil, A.; Fokkema, M.; Cohen, Z.; Belgrave, D.; DeRubeis, R.; Iniesta, R. The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry 2021, 20, 154–170. [Google Scholar] [CrossRef]
- Kessler, R.C.; Luedtke, A. Pragmatic precision psychiatry—a new direction for optimizing treatment selection. JAMA psychiatry 2021, 78, 1384–1390. [Google Scholar] [CrossRef]
- Millan, M.J.; Goodwin, G.M.; Meyer-Lindenberg, A.; Ögren, S.O. Learning from the past and looking to the future: emerging perspectives for improving the treatment of psychiatric disorders. European Neuropsychopharmacology 2015, 25, 599–656. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Vécsei, L. A Decade of Dedication: Pioneering Perspectives on Neurological Diseases and Mental Illnesses. 2024, 12, 1083.
- Leichsenring, F.; Steinert, C.; Rabung, S.; Ioannidis, J.P. The efficacy of psychotherapies and pharmacotherapies for mental disorders in adults: an umbrella review and meta-analytic evaluation of recent meta-analyses. World Psychiatry 2022, 21, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; Moseley, G.; Berk, M.; Jacka, F. Nutritional psychiatry: the present state of the evidence. Proceedings of the Nutrition Society 2017, 76, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Pesci, N.R.; Peracchia, S.; Teobaldi, E.; Maina, G.; Rosso, G. Impact of mean monthly temperature on psychiatric admissions: data from an acute inpatient unit. European Psychiatry 2024, 67, S473–S473. [Google Scholar] [CrossRef]
- Pieper, A.A.; Baraban, J.M. Moving beyond serendipity to mechanism-driven psychiatric therapeutics. 2017, 14, 533-536.
- Ban, T.A. The role of serendipity in drug discovery. Dialogues in clinical neuroscience 2006, 8, 335–344. [Google Scholar] [CrossRef]
- Punjabi, P.P. Serendipity and margin of safety. 2018, 33, 88-88.
- Campbell, W.C. Serendipity and new drugs for infectious disease. ILAR journal 2005, 46, 352–356. [Google Scholar] [CrossRef]
- Đurić, L.; Milanović, M.; Milošević, N.; Milić, N. New pharmaceuticals: The importance of serendipity. Medicinski časopis 2020, 54, 143–148. [Google Scholar] [CrossRef]
- Jeste, D.V.; Gillin, J.C.; Wyatt, R.J. Serendipity in biological psychiatry—A myth? Archives of General Psychiatry 1979, 36, 1173–1178. [Google Scholar] [CrossRef]
- Sverdlov, O.; Ryeznik, Y.; Wong, W.K. Opportunity for efficiency in clinical development: An overview of adaptive clinical trial designs and innovative machine learning tools, with examples from the cardiovascular field. Contemporary clinical trials 2021, 105, 106397. [Google Scholar] [CrossRef]
- Barkal, J.; Poi, M.; Dalton, W. Abstract IA27: An innovative approach to improve clinical trials using adaptive in silico design. Cancer Epidemiology, Biomarkers & Prevention 2020, 29, IA27–IA27. [Google Scholar]
- Wolkenhauer, O.; Auffray, C.; Jaster, R.; Steinhoff, G.; Dammann, O. The road from systems biology to systems medicine. Pediatric research 2013, 73, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Winter, N.R.; Blanke, J.; Leenings, R.; Ernsting, J.; Fisch, L.; Sarink, K.; Barkhau, C.; Emden, D.; Thiel, K.; Flinkenflügel, K. A Systematic Evaluation of Machine Learning–Based Biomarkers for Major Depressive Disorder. JAMA psychiatry 2024, 81, 386–395. [Google Scholar] [CrossRef]
- Di Camillo, F.; Grimaldi, D.A.; Cattarinussi, G.; Di Giorgio, A.; Locatelli, C.; Khuntia, A.; Enrico, P.; Brambilla, P.; Koutsouleris, N.; Sambataro, F. Magnetic resonance imaging–based machine learning classification of schizophrenia spectrum disorders: a meta-analysis. Psychiatry and Clinical Neurosciences 2024. [Google Scholar] [CrossRef]
- Abi-Dargham, A.; Moeller, S.J.; Ali, F.; DeLorenzo, C.; Domschke, K.; Horga, G.; Jutla, A.; Kotov, R.; Paulus, M.P.; Rubio, J.M. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 2023, 22, 236–262. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, V.D.; Pearlson, G.D.; Sui, J. Data-driven approaches to neuroimaging biomarkers for neurological and psychiatric disorders: emerging approaches and examples. Current opinion in neurology 2021, 34, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Wolfers, T.; Buitelaar, J.K.; Beckmann, C.F.; Franke, B.; Marquand, A.F. From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neuroscience & Biobehavioral Reviews 2015, 57, 328–349. [Google Scholar]
- Fonseka, T.M.; MacQueen, G.M.; Kennedy, S.H. Neuroimaging biomarkers as predictors of treatment outcome in major depressive disorder. Journal of affective disorders 2018, 233, 21–35. [Google Scholar] [CrossRef]
- Papageorgiou, I.E. Neuroscience Scaffolded by Informatics: A Raging Interdisciplinary Field. 2023, 15, 153.
- Mirmohammadi, H.; Fahmy, M.D.; Bidabadi, F.S.; Liang, H. Editorial Letter: Breaking Down Boundaries: Unleashing the Power of Interdisciplinary Research. Scientific Hypotheses 2024, 1. [Google Scholar] [CrossRef]
- Doom, T.; Raymer, M.; Krane, D.; Garcia, O. Crossing the interdisciplinary barrier: a baccalaureate computer science option in bioinformatics. IEEE Transactions on Education 2003, 46, 387–393. [Google Scholar] [CrossRef]
- Logan, S.; Arzua, T.; Canfield, S.G.; Seminary, E.R.; Sison, S.L.; Ebert, A.D.; Bai, X. Studying human neurological disorders using induced pluripotent stem cells: from 2D monolayer to 3D organoid and blood brain barrier models. Comprehensive Physiology 2019, 9, 565. [Google Scholar]
- Aboul-Soud, M.A.; Alzahrani, A.J.; Mahmoud, A. Induced pluripotent stem cells (iPSCs)—roles in regenerative therapies, disease modelling and drug screening. Cells 2021, 10, 2319. [Google Scholar] [CrossRef] [PubMed]
- Ho, B.X.; Pek, N.M.Q.; Soh, B.-S. Disease modeling using 3D organoids derived from human induced pluripotent stem cells. International journal of molecular sciences 2018, 19, 936. [Google Scholar] [CrossRef]
- Karagiannis, P.; Takahashi, K.; Saito, M.; Yoshida, Y.; Okita, K.; Watanabe, A.; Inoue, H.; Yamashita, J.K.; Todani, M.; Nakagawa, M. Induced pluripotent stem cells and their use in human models of disease and development. Physiological reviews 2019, 99, 79–114. [Google Scholar] [CrossRef]
- Marchetto, M.C.; Brennand, K.J.; Boyer, L.F.; Gage, F.H. Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises. Human molecular genetics 2011, 20, R109–R115. [Google Scholar] [CrossRef] [PubMed]
- Beevers, J.E.; Caffrey, T.M.; Wade-Martins, R. Induced pluripotent stem cell (iPSC)-derived dopaminergic models of Parkinson's disease. Biochemical Society Transactions 2013, 41, 1503–1508. [Google Scholar] [CrossRef]
- Nguyen, R.; Bae, S.D.W.; Qiao, L.; George, J. Developing liver organoids from induced pluripotent stem cells (iPSCs): An alternative source of organoid generation for liver cancer research. Cancer Letters 2021, 508, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Trillhaase, A.; Maertens, M.; Aherrahrou, Z.; Erdmann, J. Induced pluripotent stem cells (iPSCs) in vascular research: from two-to three-dimensional organoids. Stem Cell Reviews and Reports 2021, 17, 1741–1753. [Google Scholar] [CrossRef]
- Wörheide, M.A.; Krumsiek, J.; Kastenmüller, G.; Arnold, M. Multi-omics integration in biomedical research–A metabolomics-centric review. Analytica chimica acta 2021, 1141, 144–162. [Google Scholar] [CrossRef]
- Sanches, P.H.G.; de Melo, N.C.; Porcari, A.M.; de Carvalho, L.M. Integrating Molecular Perspectives: Strategies for Comprehensive Multi-Omics Integrative Data Analysis and Machine Learning Applications in Transcriptomics, Proteomics, and Metabolomics. Biology 2024, 13, 848. [Google Scholar] [CrossRef]
- Ge, H.; Walhout, A.J.; Vidal, M. Integrating ‘omic’information: a bridge between genomics and systems biology. TRENDS in Genetics 2003, 19, 551–560. [Google Scholar] [CrossRef]
- Menyhárt, O.; Győrffy, B. Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Computational and structural biotechnology journal 2021, 19, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Kuster, B. Proteomics is not an island: multi-omics integration is the key to understanding biological systems. Molecular & Cellular Proteomics 2019, 18, S1–S4. [Google Scholar]
- Song, Y.; Xu, X.; Wang, W.; Tian, T.; Zhu, Z.; Yang, C. Single cell transcriptomics: moving towards multi-omics. Analyst 2019, 144, 3172–3189. [Google Scholar] [CrossRef]
- Graw, S.; Chappell, K.; Washam, C.L.; Gies, A.; Bird, J.; Robeson, M.S.; Byrum, S.D. Multi-omics data integration considerations and study design for biological systems and disease. Molecular omics 2021, 17, 170–185. [Google Scholar] [CrossRef] [PubMed]
- Jendoubi, T. Approaches to integrating metabolomics and multi-omics data: a primer. Metabolites 2021, 11, 184. [Google Scholar] [CrossRef] [PubMed]
- Saxe, G.N.; Statnikov, A.; Fenyo, D.; Ren, J.; Li, Z.; Prasad, M.; Wall, D.; Bergman, N.; Briggs, E.C.; Aliferis, C. A complex systems approach to causal discovery in psychiatry. PloS one 2016, 11, e0151174. [Google Scholar] [CrossRef]
- Nelson, B.; McGorry, P.D.; Wichers, M.; Wigman, J.T.; Hartmann, J.A. Moving from static to dynamic models of the onset of mental disorder: a review. JAMA psychiatry 2017, 74, 528–534. [Google Scholar] [CrossRef]
- Gauld, C.; Depannemaecker, D. Dynamical systems in computational psychiatry: A toy-model to apprehend the dynamics of psychiatric symptoms. Frontiers in Psychology 2023, 14, 1099257. [Google Scholar] [CrossRef]
- Frank, B.; Jacobson, N.C.; Hurley, L.; McKay, D. A theoretical and empirical modeling of anxiety integrated with RDoC and temporal dynamics. Journal of anxiety disorders 2017, 51, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Bockting, C.L.; Borsboom, D.; Cools, R.; Delecroix, C.; Hartmann, J.A.; Kendler, K.S.; van de Leemput, I.; van der Maas, H.L.; van Nes, E. A Dynamical Systems View of Psychiatric Disorders—Practical Implications: A Review. JAMA psychiatry 2024. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Bockting, C.L.; Borsboom, D.; Cools, R.; Delecroix, C.; Hartmann, J.A.; Kendler, K.S.; van de Leemput, I.; van der Maas, H.L.; van Nes, E. A dynamical systems view of psychiatric disorders—theory: a review. JAMA psychiatry 2024. [Google Scholar] [CrossRef]
- K Shin, J.; T Malone, D.; T Crosby, I.; Capuano, B. Schizophrenia: a systematic review of the disease state, current therapeutics and their molecular mechanisms of action. Current medicinal chemistry 2011, 18, 1380–1404. [Google Scholar] [CrossRef]
- Meijboom, F.L.; Kostrzewa, E.; Leenaars, C.H. Joining forces: the need to combine science and ethics to address problems of validity and translation in neuropsychiatry research using animal models. Philosophy, Ethics, and Humanities in Medicine 2020, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Andersen, G.T.; Zhao, C.-M.; Grønbech, J.E.; Chen, Y.; Zayachkivska, O.; Røe, O.D.; Chen, D. Clinical aspects in translational research on gastric tumorigenesis and development of new treatments. Proceeding of the Shevchenko Scientific Society. Medical Sciences 2023, 72. [Google Scholar] [CrossRef]
- Kozler, P.; Marešová, D.; Pokorný, J. Determination of brain water content by dry/wet weight measurement for the detection of experimental brain edema. Physiological Research 2022, 71, S277. [Google Scholar] [CrossRef]
- Benrimoh, D.A.; Friston, K.J. All grown up: Computational theories of psychosis, complexity, and progress. 2020.
- Ambrosen, K.S.; Skjerbæk, M.W.; Foldager, J.; Axelsen, M.C.; Bak, N.; Arvastson, L.; Christensen, S.R.; Johansen, L.B.; Raghava, J.M.; Oranje, B. A machine-learning framework for robust and reliable prediction of short-and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data. Translational psychiatry 2020, 10, 276. [Google Scholar] [CrossRef]
- Li, L.; Song, C.; Ma, Y.; Zou, Y. “Half-wet-half-dry”: an innovation in undergraduate laboratory classes to generate transgenic mouse models using CRISPR/Cas9 and computer simulation. Journal of Biological Education 2023, 57, 1083–1091. [Google Scholar] [CrossRef]
- Nelson, B.; Lavoie, S.; Li, E.; Sass, L.; Koren, D.; McGorry, P.; Jack, B.; Parnas, J.; Polari, A.; Allott, K. The neurophenomenology of early psychosis: an integrative empirical study. Consciousness and Cognition 2020, 77, 102845. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Zhu, J.; Li, S.; Zhang, R.; Zhao, J.; Yang, X.; Wang, Y. Bibliometric analysis of quantitative electroencephalogram research in neuropsychiatric disorders from 2000 to 2021. Frontiers in Psychiatry 2022, 13, 830819. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-H.; Li, J.; Cho, W.C. Integrative analysis for complex disease biomarker discovery. 2023, 11, 1273084.
- Agarwal, D.; Marques, G.; de la Torre-Díez, I.; Franco Martin, M.A.; García Zapiraín, B.; Martín Rodríguez, F. Transfer learning for Alzheimer’s disease through neuroimaging biomarkers: a systematic review. Sensors 2021, 21, 7259. [Google Scholar] [CrossRef]
- Nyatega, C.O.; Qiang, L.; Adamu, M.J.; Kawuwa, H.B. Gray matter, white matter and cerebrospinal fluid abnormalities in Parkinson’s disease: A voxel-based morphometry study. Frontiers in Psychiatry 2022, 13, 1027907. [Google Scholar] [CrossRef] [PubMed]
- Younis, A.; Qiang, L.; Nyatega, C.O.; Adamu, M.J.; Kawuwa, H.B. Brain tumor analysis using deep learning and VGG-16 ensembling learning approaches. Applied Sciences 2022, 12, 7282. [Google Scholar] [CrossRef]
- de Lima, E.P.; Tanaka, M.; Lamas, C.B.; Quesada, K.; Detregiachi, C.R.P.; Araújo, A.C.; Guiguer, E.L.; Catharin, V.M.C.S.; de Castro, M.V.M.; Junior, E.B. Vascular Impairment, Muscle Atrophy, and Cognitive Decline: Critical Age-Related Conditions. Biomedicines 2024, 12, 2096. [Google Scholar] [CrossRef]
- Nunes, Y.C.; Mendes, N.M.; Pereira de Lima, E.; Chehadi, A.C.; Lamas, C.B.; Haber, J.F.; dos Santos Bueno, M.; Araújo, A.C.; Catharin, V.C.S.; Detregiachi, C.R.P. Curcumin: A golden approach to healthy aging: A systematic review of the evidence. Nutrients 2024, 16, 2721. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Tuka, B.; Vécsei, L. Navigating the Neurobiology of Migraine: from pathways to potential therapies. 2024, 13, 1098.
- Mirkin, S.; Albensi, B.C. Should artificial intelligence be used in conjunction with Neuroimaging in the diagnosis of Alzheimer’s disease? Frontiers in Aging Neuroscience 2023, 15, 1094233. [Google Scholar] [CrossRef]
- Ben-Naim, S.; Dienstag, A.; Freedman, S.A.; Ekstein, D.; Foul, Y.A.; Gilad, M.; Peled, O.; Waldman, A.; Oster, S.; Azoulay, M. A novel integrative psychotherapy for psychogenic nonepileptic seizures based on the biopsychosocial model: A retrospective pilot outcome study. Psychosomatics 2020, 61, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Velani, H.; Gledhill, J. Psychological & Behavioural Treatments of Nonepileptic Seizures in Children and Adolescents. BJPsych Open 2021, 7, S299–S299. [Google Scholar]
- Aziz, M.O.; Mehrinejad, S.A.; Hashemian, K.; Paivastegar, M. Integrative therapy (short-term psychodynamic psychotherapy & cognitive-behavioral therapy) and cognitive-behavioral therapy in the treatment of generalized anxiety disorder: A randomized controlled trial. Complementary therapies in clinical practice 2020, 39, 101122. [Google Scholar]
- Hall, M.-F.E.; Church, F.C. Integrative medicine and health therapy for Parkinson disease. Topics in Geriatric Rehabilitation 2020, 36, 176–186. [Google Scholar] [CrossRef]
- Church, F.C. Treatment options for motor and non-motor symptoms of Parkinson’s disease. Biomolecules 2021, 11, 612. [Google Scholar] [CrossRef]
- Nguyen, S.A.; Oughli, H.A.; Lavretsky, H. Use of complementary and integrative medicine for Alzheimer’s disease and cognitive decline. Journal of Alzheimer's Disease 2024, 1-18.
- Tanaka, M.; Vécsei, L. Revolutionizing our understanding of Parkinson’s disease: Dr. Heinz Reichmann’s pioneering research and future research direction. Journal of Neural Transmission 2024, 1-21.
- Pagotto, G.L.d.O.; Santos, L.M.O.d.; Osman, N.; Lamas, C.B.; Laurindo, L.F.; Pomini, K.T.; Guissoni, L.M.; Lima, E.P.d.; Goulart, R.d.A.; Catharin, V.M.S. Ginkgo biloba: A Leaf of Hope in the Fight against Alzheimer’s Dementia: Clinical Trial Systematic Review. Antioxidants 2024, 13, 651. [Google Scholar] [CrossRef] [PubMed]
- Burnett, S.D.; Blanchette, A.D.; Chiu, W.A.; Rusyn, I. Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes as an in vitro model in toxicology: strengths and weaknesses for hazard identification and risk characterization. Expert opinion on drug metabolism & toxicology 2021, 17, 887–902. [Google Scholar]
- Marcoux, P.; Hwang, J.W.; Desterke, C.; Imeri, J.; Bennaceur-Griscelli, A.; Turhan, A.G. Modeling RET-Rearranged Non-Small Cell Lung Cancer (NSCLC): Generation of Lung Progenitor Cells (LPCs) from Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Cells 2023, 12, 2847. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Vécsei, L. From Lab to Life: Exploring Cutting-Edge Models for Neurological and Psychiatric Disorders. Biomedicines 2024, 12, 613. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-Y.; Ting, H.-C.; Liu, C.-A.; Su, H.-L.; Chiou, T.-W.; Lin, S.-Z.; Harn, H.-J.; Ho, T.-J. Induced pluripotent stem cell (iPSC)-based neurodegenerative disease models for phenotype recapitulation and drug screening. Molecules 2020, 25, 2000. [Google Scholar] [CrossRef] [PubMed]
- Paolini Sguazzi, G.; Muto, V.; Tartaglia, M.; Bertini, E.; Compagnucci, C. Induced Pluripotent Stem Cells (iPSCs) and Gene Therapy: A New Era for the Treatment of Neurological Diseases. Int J Mol Sci 2021, 22. [Google Scholar] [CrossRef]
- Yao, X.; Glessner, J.T.; Li, J.; Qi, X.; Hou, X.; Zhu, C.; Li, X.; March, M.E.; Yang, L.; Mentch, F.D.; et al. Integrative analysis of genome-wide association studies identifies novel loci associated with neuropsychiatric disorders. Transl Psychiatry 2021, 11, 69. [Google Scholar] [CrossRef]
- Mallard, T.T.; Grotzinger, A.D.; Smoller, J.W. Examining the shared etiology of psychopathology with genome-wide association studies. Physiol Rev 2023, 103, 1645–1665. [Google Scholar] [CrossRef] [PubMed]
- Eyring, K.W.; Geschwind, D.H. Three decades of ASD genetics: building a foundation for neurobiological understanding and treatment. Hum Mol Genet 2021, 30, R236–r244. [Google Scholar] [CrossRef]
- Schwartzentruber, J.; Cooper, S.; Liu, J.Z.; Barrio-Hernandez, I.; Bello, E.; Kumasaka, N.; Young, A.M.H.; Franklin, R.J.M.; Johnson, T.; Estrada, K.; et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer's disease risk genes. Nat Genet 2021, 53, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Dalmasso, M.C.; de Rojas, I.; Olivar, N.; Muchnik, C.; Angel, B.; Gloger, S.; Sanchez Abalos, M.S.; Chacón, M.V.; Aránguiz, R.; Orellana, P.; et al. The first genome-wide association study in the Argentinian and Chilean populations identifies shared genetics with Europeans in Alzheimer's disease. Alzheimers Dement 2024, 20, 1298–1308. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S.J.; Fulton-Howard, B.; Goate, A. Interpretation of risk loci from genome-wide association studies of Alzheimer's disease. Lancet Neurol 2020, 19, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Uffelmann, E.; Posthuma, D. Emerging Methods and Resources for Biological Interrogation of Neuropsychiatric Polygenic Signal. Biol Psychiatry 2021, 89, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, L.M.; Kim, M.; Hoftman, G.D.; Haney, J.R.; de la Torre-Ubieta, L.; Pasaniuc, B.; Gandal, M.J. Transcriptomic Insight Into the Polygenic Mechanisms Underlying Psychiatric Disorders. Biol Psychiatry 2021, 89, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Gedik, H.; Nguyen, T.H.; Peterson, R.E.; Chatzinakos, C.; Vladimirov, V.I.; Riley, B.P.; Bacanu, S.A. Identifying potential risk genes and pathways for neuropsychiatric and substance use disorders using intermediate molecular mediator information. Front Genet 2023, 14, 1191264. [Google Scholar] [CrossRef]
- Yao, Y.; Guo, W.; Zhang, S.; Yu, H.; Yan, H.; Zhang, H.; Sanders, A.R.; Yue, W.; Duan, J. Cell type-specific and cross-population polygenic risk score analyses of MIR137 gene pathway in schizophrenia. iScience 2021, 24, 102785. [Google Scholar] [CrossRef]
- Kibinge, N.K.; Relton, C.L.; Gaunt, T.R.; Richardson, T.G. Characterizing the Causal Pathway for Genetic Variants Associated with Neurological Phenotypes Using Human Brain-Derived Proteome Data. Am J Hum Genet 2020, 106, 885–892. [Google Scholar] [CrossRef]
- Schwarz, E.L.; Pegolotti, L.; Pfaller, M.R.; Marsden, A.L. Beyond CFD: Emerging methodologies for predictive simulation in cardiovascular health and disease. Biophys Rev (Melville) 2023, 4, 011301. [Google Scholar] [CrossRef]
- Hirschhorn, M.; Tchantchaleishvili, V.; Stevens, R.; Rossano, J.; Throckmorton, A. Fluid-structure interaction modeling in cardiovascular medicine - A systematic review 2017-2019. Med Eng Phys 2020, 78, 1–13. [Google Scholar] [CrossRef]
- Cluitmans, M.; Walton, R.; Plank, G. Editorial: Computational methods in cardiac electrophysiology. Front Physiol 2023, 14, 1231342. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, R.P.; Akbarzadeh, M.; Paliwal, J.; Cenkowski, S. Computational fluid dynamics in drying process modelling—a technical review. Food and bioprocess technology 2018, 11, 271–292. [Google Scholar] [CrossRef]
- Defraeye, T. Advanced computational modelling for drying processes–A review. Applied Energy 2014, 131, 323–344. [Google Scholar] [CrossRef]
- Duruflé, H.; Selmani, M.; Ranocha, P.; Jamet, E.; Dunand, C.; Déjean, S. A powerful framework for an integrative study with heterogeneous omics data: from univariate statistics to multi-block analysis. Brief Bioinform 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Reel, P.S.; Reel, S.; Pearson, E.; Trucco, E.; Jefferson, E. Using machine learning approaches for multi-omics data analysis: A review. Biotechnol Adv 2021, 49, 107739. [Google Scholar] [CrossRef]
- Wörheide, M.A.; Krumsiek, J.; Kastenmüller, G.; Arnold, M. Multi-omics integration in biomedical research - A metabolomics-centric review. Anal Chim Acta 2021, 1141, 144–162. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Li, Y.; Love, M.I. MOSTWAS: Multi-Omic Strategies for Transcriptome-Wide Association Studies. PLoS Genet 2021, 17, e1009398. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, M. Multi-omics study for interpretation of genome-wide association study. J Hum Genet 2021, 66, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Paczkowska, M.; Barenboim, J.; Sintupisut, N.; Fox, N.S.; Zhu, H.; Abd-Rabbo, D.; Mee, M.W.; Boutros, P.C.; Reimand, J. Integrative pathway enrichment analysis of multivariate omics data. Nat Commun 2020, 11, 735. [Google Scholar] [CrossRef]
- Kawuwa, H.B.; Nyatega, C.O.; Younis, A.; Adamu, M.J. Neuroanatomical alterations in brain disorder: A magnetic resonance imaging analysis. International Journal of Science and Research Archive 2024, 12, 492–507. [Google Scholar] [CrossRef]
- Adamu, M.J.; Qiang, L.; Nyatega, C.O.; Younis, A.; Kawuwa, H.B.; Jabire, A.H.; Saminu, S. Unraveling the pathophysiology of schizophrenia: insights from structural magnetic resonance imaging studies. Frontiers in Psychiatry 2023, 14, 1188603. [Google Scholar] [CrossRef] [PubMed]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 2015, 13, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Nazzi, C.; Fullana, M.A.; di Pellegrino, G.; Borgomaneri, S. ‘Nip it in the bud’: Low-frequency rTMS of the prefrontal cortex disrupts threat memory consolidation in humans. Behaviour Research and Therapy 2024, 178, 104548. [Google Scholar] [CrossRef]
- Battineni, G.; Sagaro, G.G.; Chinatalapudi, N.; Amenta, F. Applications of Machine Learning Predictive Models in the Chronic Disease Diagnosis. J Pers Med 2020, 10. [Google Scholar] [CrossRef]
- El Naqa, I.; Bradley, J.D.; Lindsay, P.E.; Hope, A.J.; Deasy, J.O. Predicting radiotherapy outcomes using statistical learning techniques. Phys Med Biol 2009, 54, S9–s30. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Verkhivker, G.M.; Hu, G. Integration of network models and evolutionary analysis into high-throughput modeling of protein dynamics and allosteric regulation: theory, tools and applications. Brief Bioinform 2020, 21, 815–835. [Google Scholar] [CrossRef]
- Huang, N.F.; Chaudhuri, O.; Cahan, P.; Wang, A.; Engler, A.J.; Wang, Y.; Kumar, S.; Khademhosseini, A.; Li, S. Multi-scale cellular engineering: From molecules to organ-on-a-chip. APL Bioeng 2020, 4, 010906. [Google Scholar] [CrossRef]
- John-Herpin, A.; Kavungal, D.; von Mücke, L.; Altug, H. Infrared Metasurface Augmented by Deep Learning for Monitoring Dynamics between All Major Classes of Biomolecules. Adv Mater 2021, 33, e2006054. [Google Scholar] [CrossRef]
- Battaglia, S.; Avenanti, A.; Vécsei, L.; Tanaka, M. Neural correlates and molecular mechanisms of memory and learning. 2024, 25, 2724.
- Quettier, T.; Ippolito, G.; Però, L.; Cardellicchio, P.; Battaglia, S.; Borgomaneri, S. Individual differences in intracortical inhibition predict action control when facing emotional stimuli. Frontiers in Psychology 2024, 15, 1391723. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, S.; Darvish, E.; Narimani, F.; Moradi, S.Z.; Abbaszadeh, F.; Khan, H. The regulatory role of non-coding RNAs and their interactions with phytochemicals in neurodegenerative diseases: a systematic review. Brief Funct Genomics 2023, 22, 143–160. [Google Scholar] [CrossRef]
- Brennan, G.P.; Henshall, D.C. MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat Rev Neurol 2020, 16, 506–519. [Google Scholar] [CrossRef] [PubMed]
- Nicora, G.; Vitali, F.; Dagliati, A.; Geifman, N.; Bellazzi, R. Integrated Multi-Omics Analyses in Oncology: A Review of Machine Learning Methods and Tools. Front Oncol 2020, 10, 1030. [Google Scholar] [CrossRef]
- Terranova, N.; Venkatakrishnan, K. Machine Learning in Modeling Disease Trajectory and Treatment Outcomes: An Emerging Enabler for Model-Informed Precision Medicine. Clin Pharmacol Ther 2024, 115, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Koumakis, L. Deep learning models in genomics; are we there yet? Comput Struct Biotechnol J 2020, 18, 1466–1473. [Google Scholar] [CrossRef]
- Watson, D.S. Interpretable machine learning for genomics. Hum Genet 2022, 141, 1499–1513. [Google Scholar] [CrossRef]
- Martínez-García, M.; Hernández-Lemus, E. Data Integration Challenges for Machine Learning in Precision Medicine. Front Med (Lausanne) 2021, 8, 784455. [Google Scholar] [CrossRef]
- Wright, J.T.; Herzberg, M.C. Science for the Next Century: Deep Phenotyping. J Dent Res 2021, 100, 785–789. [Google Scholar] [CrossRef]
- Schalkamp, A.K.; Rahman, N.; Monzón-Sandoval, J.; Sandor, C. Deep phenotyping for precision medicine in Parkinson's disease. Dis Model Mech 2022, 15. [Google Scholar] [CrossRef]
- Bourgeais, V.; Zehraoui, F.; Ben Hamdoune, M.; Hanczar, B. Deep GONet: self-explainable deep neural network based on Gene Ontology for phenotype prediction from gene expression data. BMC Bioinformatics 2021, 22, 455. [Google Scholar] [CrossRef]
- Liu, M.; Shen, X.; Pan, W. Deep reinforcement learning for personalized treatment recommendation. Stat Med 2022, 41, 4034–4056. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Ting, H.C.; Liu, C.A.; Su, H.L.; Chiou, T.W.; Lin, S.Z.; Harn, H.J.; Ho, T.J. Induced Pluripotent Stem Cell (iPSC)-Based Neurodegenerative Disease Models for Phenotype Recapitulation and Drug Screening. Molecules 2020, 25. [Google Scholar] [CrossRef] [PubMed]
- Jusop, A.S.; Thanaskody, K.; Tye, G.J.; Dass, S.A.; Wan Kamarul Zaman, W.S.; Nordin, F. Development of brain organoid technology derived from iPSC for the neurodegenerative disease modelling: a glance through. Front Mol Neurosci 2023, 16, 1173433. [Google Scholar] [CrossRef]
- Valadez-Barba, V.; Cota-Coronado, A.; Hernández-Pérez, O.R.; Lugo-Fabres, P.H.; Padilla-Camberos, E.; Díaz, N.F.; Díaz-Martínez, N.E. iPSC for modeling neurodegenerative disorders. Regen Ther 2020, 15, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Tcw, J. Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. Int J Mol Sci 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Pomeshchik, Y.; Klementieva, O.; Gil, J.; Martinsson, I.; Hansen, M.G.; de Vries, T.; Sancho-Balsells, A.; Russ, K.; Savchenko, E.; Collin, A.; et al. Human iPSC-Derived Hippocampal Spheroids: An Innovative Tool for Stratifying Alzheimer Disease Patient-Specific Cellular Phenotypes and Developing Therapies. Stem Cell Reports 2020, 15, 256–273. [Google Scholar] [CrossRef]
- Trombetta-Lima, M.; Sabogal-Guáqueta, A.M.; Dolga, A.M. Mitochondrial dysfunction in neurodegenerative diseases: A focus on iPSC-derived neuronal models. Cell Calcium 2021, 94, 102362. [Google Scholar] [CrossRef] [PubMed]
- Amponsah, A.E.; Guo, R.; Kong, D.; Feng, B.; He, J.; Zhang, W.; Liu, X.; Du, X.; Ma, Z.; Liu, B.; et al. Patient-derived iPSCs, a reliable in vitro model for the investigation of Alzheimer's disease. Rev Neurosci 2021, 32, 379–402. [Google Scholar] [CrossRef]
- Li, J.; Fraenkel, E. Phenotyping Neurodegeneration in Human iPSCs. Annu Rev Biomed Data Sci 2021, 4, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Hyman, S.E. Use of mouse models to investigate the contributions of CNVs associated with schizophrenia and autism to disease mechanisms. Curr Opin Genet Dev 2021, 68, 99–105. [Google Scholar] [CrossRef]
- Neuhaus, C.P. Threats to Benefits: Assessing Knowledge Production in Nonhuman Models of Human Neuropsychiatric Disorders. Hastings Cent Rep 2022, 52 Suppl 2, S34–s40. [Google Scholar] [CrossRef]
- Voikar, V.; Gaburro, S. Three Pillars of Automated Home-Cage Phenotyping of Mice: Novel Findings, Refinement, and Reproducibility Based on Literature and Experience. Front Behav Neurosci 2020, 14, 575434. [Google Scholar] [CrossRef]
- Palmer, D.; Dumont, J.R.; Dexter, T.D.; Prado, M.A.M.; Finger, E.; Bussey, T.J.; Saksida, L.M. Touchscreen cognitive testing: Cross-species translation and co-clinical trials in neurodegenerative and neuropsychiatric disease. Neurobiol Learn Mem 2021, 182, 107443. [Google Scholar] [CrossRef] [PubMed]
- Winiarski, M.; Kondrakiewicz, L.; Kondrakiewicz, K.; Jędrzejewska-Szmek, J.; Turzyński, K.; Knapska, E.; Meyza, K. Social deficits in BTBR T+ Itpr3tf/J mice vary with ecological validity of the test. Genes Brain Behav 2022, 21, e12814. [Google Scholar] [CrossRef] [PubMed]
- Cwiek, A.; Rajtmajer, S.M.; Wyble, B.; Honavar, V.; Grossner, E.; Hillary, F.G. Feeding the machine: Challenges to reproducible predictive modeling in resting-state connectomics. Netw Neurosci 2022, 6, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Myszczynska, M.A.; Ojamies, P.N.; Lacoste, A.M.B.; Neil, D.; Saffari, A.; Mead, R.; Hautbergue, G.M.; Holbrook, J.D.; Ferraiuolo, L. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol 2020, 16, 440–456. [Google Scholar] [CrossRef] [PubMed]
- Rasero, J.; Sentis, A.I.; Yeh, F.C.; Verstynen, T. Integrating across neuroimaging modalities boosts prediction accuracy of cognitive ability. PLoS Comput Biol 2021, 17, e1008347. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Woo, C.W.; Qi, S.; Wu, J.; Sui, J. Interpreting Brain Biomarkers: Challenges and solutions in interpreting machine learning-based predictive neuroimaging. IEEE Signal Process Mag 2022, 39, 107–118. [Google Scholar] [CrossRef]
- Kohoutová, L.; Heo, J.; Cha, S.; Lee, S.; Moon, T.; Wager, T.D.; Woo, C.W. Toward a unified framework for interpreting machine-learning models in neuroimaging. Nat Protoc 2020, 15, 1399–1435. [Google Scholar] [CrossRef] [PubMed]
- Eitel, F.; Schulz, M.A.; Seiler, M.; Walter, H.; Ritter, K. Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research. Exp Neurol 2021, 339, 113608. [Google Scholar] [CrossRef]
- Wachinger, C.; Rieckmann, A.; Pölsterl, S. Detect and correct bias in multi-site neuroimaging datasets. Med Image Anal 2021, 67, 101879. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Jiang, R.; Bustillo, J.; Calhoun, V. Neuroimaging-based Individualized Prediction of Cognition and Behavior for Mental Disorders and Health: Methods and Promises. Biol Psychiatry 2020, 88, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Vaden, K.I., Jr.; Gebregziabher, M.; Dyslexia Data, C.; Eckert, M.A. Fully synthetic neuroimaging data for replication and exploration. Neuroimage 2020, 223, 117284. [Google Scholar] [CrossRef]
- Saha, D.K.; Calhoun, V.D.; Du, Y.; Fu, Z.; Kwon, S.M.; Sarwate, A.D.; Panta, S.R.; Plis, S.M. Privacy-preserving quality control of neuroimaging datasets in federated environments. Hum Brain Mapp 2022, 43, 2289–2310. [Google Scholar] [CrossRef] [PubMed]
- Mirkin, S.; Albensi, B.C. Should artificial intelligence be used in conjunction with Neuroimaging in the diagnosis of Alzheimer's disease? Front Aging Neurosci 2023, 15, 1094233. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Battaglia, S.; Giménez-Llort, L.; Chen, C.; Hepsomali, P.; Avenanti, A.; Vécsei, L. Innovation at the intersection: emerging translational research in neurology and psychiatry. 2024, 13, 790.
- Panov, G.; Panova, P. Neurobiochemical disturbances in psychosis and their implications for therapeutic intervention. Current Topics in Medicinal Chemistry 2024, 24, 1784–1798. [Google Scholar] [CrossRef]
- Bonanno, M.; Calabrò, R.S. Bridging the Gap between Basic Research and Clinical Practice: The Growing Role of Translational Neurorehabilitation. Medicines (Basel) 2023, 10. [Google Scholar] [CrossRef]
- Heider, J.; Vogel, S.; Volkmer, H.; Breitmeyer, R. Human iPSC-Derived Glia as a Tool for Neuropsychiatric Research and Drug Development. Int J Mol Sci 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Lakiotaki, K.; Papadovasilakis, Z.; Lagani, V.; Fafalios, S.; Charonyktakis, P.; Tsagris, M.; Tsamardinos, I. Automated machine learning for genome wide association studies. Bioinformatics 2023, 39. [Google Scholar] [CrossRef]
- Xiao, Q.; Bai, X.; Zhang, C.; He, Y. Advanced high-throughput plant phenotyping techniques for genome-wide association studies: A review. J Adv Res 2022, 35, 215–230. [Google Scholar] [CrossRef]
- Reynolds, T.; Johnson, E.C.; Huggett, S.B.; Bubier, J.A.; Palmer, R.H.C.; Agrawal, A.; Baker, E.J.; Chesler, E.J. Interpretation of psychiatric genome-wide association studies with multispecies heterogeneous functional genomic data integration. Neuropsychopharmacology 2021, 46, 86–97. [Google Scholar] [CrossRef] [PubMed]
- McGill, M.P.; Threadgill, D.W. Adding robustness to rigor and reproducibility for the three Rs of improving translational medical research. J Clin Invest 2023, 133. [Google Scholar] [CrossRef] [PubMed]
- Schubert, R.; Geoffroy, E.; Gregga, I.; Mulford, A.J.; Aguet, F.; Ardlie, K.; Gerszten, R.; Clish, C.; Van Den Berg, D.; Taylor, K.D.; et al. Protein prediction for trait mapping in diverse populations. PLoS One 2022, 17, e0264341. [Google Scholar] [CrossRef] [PubMed]
- Sesia, M.; Bates, S.; Candès, E.; Marchini, J.; Sabatti, C. False discovery rate control in genome-wide association studies with population structure. Proc Natl Acad Sci U S A 2021, 118. [Google Scholar] [CrossRef] [PubMed]
- Wegner, C.D.; Mount, B.A.; Colvis, C.M. A public-private collaboration model for clinical innovation. Clin Transl Sci 2022, 15, 1581–1591. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.L.; Knebel, A.R.; Faupel-Badger, J.M.; Portilla, L.M.; Simeonov, A. A systems approach to enable effective team science from the internal research program of the National Center for Advancing Translational Sciences. J Clin Transl Sci 2021, 5, e163. [Google Scholar] [CrossRef]
- Becich, M.J. Clinical Trial Strategies Fueled by Informatics Innovation Catalyze Translational Research. JAMA Netw Open 2023, 6, e2336480. [Google Scholar] [CrossRef]
- McGill, M.P.; Threadgill, D.W. Adding robustness to rigor and reproducibility for the three Rs of improving translational medical research. The Journal of Clinical Investigation 2023, 133. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Faes, A.A.; Llopis, O.; D’Este, P.; Molas-Gallart, J. Assessing the variety of collaborative practices in translational research: An analysis of scientists’ ego-networks. Research Evaluation 2023, 32, 426–440. [Google Scholar] [CrossRef]
- Lenze, E.J.; Nicol, G.E.; Barbour, D.L.; Kannampallil, T.; Wong, A.W.K.; Piccirillo, J.; Drysdale, A.T.; Sylvester, C.M.; Haddad, R.; Miller, J.P.; et al. Precision clinical trials: a framework for getting to precision medicine for neurobehavioural disorders. J Psychiatry Neurosci 2021, 46, E97–e110. [Google Scholar] [CrossRef] [PubMed]
- Nabbout, R.; Kuchenbuch, M. Impact of predictive, preventive and precision medicine strategies in epilepsy. Nat Rev Neurol 2020, 16, 674–688. [Google Scholar] [CrossRef]
- Rees, E.; Owen, M.J. Translating insights from neuropsychiatric genetics and genomics for precision psychiatry. Genome Med 2020, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Salazar de Pablo, G.; Studerus, E.; Vaquerizo-Serrano, J.; Irving, J.; Catalan, A.; Oliver, D.; Baldwin, H.; Danese, A.; Fazel, S.; Steyerberg, E.W.; et al. Implementing Precision Psychiatry: A Systematic Review of Individualized Prediction Models for Clinical Practice. Schizophr Bull 2021, 47, 284–297. [Google Scholar] [CrossRef]
- Alciati, A.; Reggiani, A.; Caldirola, D.; Perna, G. Human-Induced Pluripotent Stem Cell Technology: Toward the Future of Personalized Psychiatry. J Pers Med 2022, 12. [Google Scholar] [CrossRef]
- Battaglia, S.; Avenanti, A.; Vécsei, L.; Tanaka, M. Neurodegeneration in cognitive impairment and mood disorders for experimental, clinical and translational neuropsychiatry. 2024, 12, 574.
- Jester, D.J.; Thomas, M.L.; Sturm, E.T.; Harvey, P.D.; Keshavan, M.; Davis, B.J.; Saxena, S.; Tampi, R.; Leutwyler, H.; Compton, M.T.; et al. Review of Major Social Determinants of Health in Schizophrenia-Spectrum Psychotic Disorders: I. Clinical Outcomes. Schizophr Bull 2023, 49, 837–850. [Google Scholar] [CrossRef]
- Panov, G. Gender-associated role in patients with schizophrenia. Is there a connection with the resistance 2022. [Google Scholar]
- Panov, G.; Dyulgerova, S.; Panova, P.; Stefanova, S. Untangling Depression in Schizophrenia: The Role of Disorganized and Obsessive-Compulsive Symptoms and the Duration of Untreated Psychosis. Biomedicines 2024, 12, 2646. [Google Scholar] [CrossRef] [PubMed]
- Panov, G.; Dyulgerova, S.; Panova, P. Cognition in Patients with Schizophrenia: Interplay between Working Memory, Disorganized Symptoms, Dissociation, and the Onset and Duration of Psychosis, as Well as Resistance to Treatment. Biomedicines 2023, 11, 3114. [Google Scholar] [CrossRef]
- Panov, G.; Panova, P. Obsessive-compulsive symptoms in patient with schizophrenia: The influence of disorganized symptoms, duration of schizophrenia, and drug resistance. Frontiers in Psychiatry 2023, 14, 1120974. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, M.A.; Goodkind, J.R.; Yeater, E.A.; Van Horn, M.L. Predictors of mental health outcomes of three refugee groups in an advocacy-based intervention: A precision medicine perspective. J Consult Clin Psychol 2024, 92, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Beaudoin, M.; Hudon, A.; Giguère, C.E.; Potvin, S.; Dumais, A. Prediction of quality of life in schizophrenia using machine learning models on data from Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial. Schizophrenia (Heidelb) 2022, 8, 29. [Google Scholar] [CrossRef]
- Ambrosen, K.S.; Skjerbæk, M.W.; Foldager, J.; Axelsen, M.C.; Bak, N.; Arvastson, L.; Christensen, S.R.; Johansen, L.B.; Raghava, J.M.; Oranje, B.; et al. A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data. Transl Psychiatry 2020, 10, 276. [Google Scholar] [CrossRef] [PubMed]
- Shim, M.; Lee, S.H.; Hwang, H.J. Inflated prediction accuracy of neuropsychiatric biomarkers caused by data leakage in feature selection. Sci Rep 2021, 11, 7980. [Google Scholar] [CrossRef]
- Davatzikos, C.; Barnholtz-Sloan, J.S.; Bakas, S.; Colen, R.; Mahajan, A.; Quintero, C.B.; Capellades Font, J.; Puig, J.; Jain, R.; Sloan, A.E.; et al. AI-based prognostic imaging biomarkers for precision neuro-oncology: the ReSPOND consortium. Neuro Oncol 2020, 22, 886–888. [Google Scholar] [CrossRef] [PubMed]
- Khanna, N.N.; Maindarkar, M.A.; Viswanathan, V.; Puvvula, A.; Paul, S.; Bhagawati, M.; Ahluwalia, P.; Ruzsa, Z.; Sharma, A.; Kolluri, R.; et al. Cardiovascular/Stroke Risk Stratification in Diabetic Foot Infection Patients Using Deep Learning-Based Artificial Intelligence: An Investigative Study. J Clin Med 2022, 11. [Google Scholar] [CrossRef]
- Ben-Naim, S.; Dienstag, A.; Freedman, S.A.; Ekstein, D.; Foul, Y.A.; Gilad, M.; Peled, O.; Waldman, A.; Oster, S.; Azoulay, M.; et al. A Novel Integrative Psychotherapy for Psychogenic Nonepileptic Seizures Based on the Biopsychosocial Model: A Retrospective Pilot Outcome Study. Psychosomatics 2020, 61, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Cobb, S.J.; Vaughn, B.V.; Sagherian, K. Nonpharmacologic Interventions and Seizure Frequency in Patients With Psychogenic Nonepileptic Seizures: An Integrative Review. J Am Psychiatr Nurses Assoc 2023, 29, 290–306. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Balaji, S.; Jeyaraman, N.; Yadav, S. Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare. Cureus 2023, 15, e43262. [Google Scholar] [CrossRef] [PubMed]
- Angehrn, Z.; Sostar, J.; Nordon, C.; Turner, A.; Gove, D.; Karcher, H.; Keenan, A.; Mittelstadt, B.; de Reydet-de Vulpillieres, F. Ethical and Social Implications of Using Predictive Modeling for Alzheimer's Disease Prevention: A Systematic Literature Review. J Alzheimers Dis 2020, 76, 923–940. [Google Scholar] [CrossRef] [PubMed]
- Larson, D.B.; Magnus, D.C.; Lungren, M.P.; Shah, N.H.; Langlotz, C.P. Ethics of Using and Sharing Clinical Imaging Data for Artificial Intelligence: A Proposed Framework. Radiology 2020, 295, 675–682. [Google Scholar] [CrossRef]
- Kassam, I.; Ilkina, D.; Kemp, J.; Roble, H.; Carter-Langford, A.; Shen, N. Patient Perspectives and Preferences for Consent in the Digital Health Context: State-of-the-art Literature Review. J Med Internet Res 2023, 25, e42507. [Google Scholar] [CrossRef] [PubMed]
- Yarborough, B.J.H.; Stumbo, S.P. A Stakeholder-Informed Ethical Framework to Guide Implementation of Suicide Risk Prediction Models Derived from Electronic Health Records. Arch Suicide Res 2023, 27, 704–717. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhao, J.; Chen, Y.; Bandara, E.; Shetty, S. Architectural Design of a Blockchain-Enabled, Federated Learning Platform for Algorithmic Fairness in Predictive Health Care: Design Science Study. J Med Internet Res 2023, 25, e46547. [Google Scholar] [CrossRef]
- Bear Don't Walk, O.J.t.; Reyes Nieva, H.; Lee, S.S.; Elhadad, N. A scoping review of ethics considerations in clinical natural language processing. JAMIA Open 2022, 5, ooac039. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, R.M.; Lipnick, S.; Bateman, J.W.; Chen, L.; Cousins, H.C.; Hubbard, E.G.; Jowett, G.; LaPointe, D.S.; McGredy, M.J.; Odonkor, M.N. Toward precision medicine for neurological and neuropsychiatric disorders. Cell Stem Cell 2018, 23, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Haggarty, S.J.; Karmacharya, R.; Perlis, R.H. Advances toward precision medicine for bipolar disorder: mechanisms & molecules. Molecular psychiatry 2021, 26, 168–185. [Google Scholar] [PubMed]
- Malhi, G.S.; Outhred, T. Therapeutic mechanisms of lithium in bipolar disorder: recent advances and current understanding. CNS drugs 2016, 30, 931–949. [Google Scholar] [CrossRef]
- Kavalali, E.T.; Monteggia, L.M. Targeting homeostatic synaptic plasticity for treatment of mood disorders. Neuron 2020, 106, 715–726. [Google Scholar] [CrossRef]
- Gao, T.-H.; Ni, R.-J.; Liu, S.; Tian, Y.; Wei, J.; Zhao, L.; Wang, Q.; Ni, P.; Ma, X.; Li, T. Chronic lithium exposure attenuates ketamine-induced mania-like behavior and c-Fos expression in the forebrain of mice. Pharmacology Biochemistry and Behavior 2021, 202, 173108. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.; Etain, B.; Bellivier, F. Can an integrated science approach to precision medicine research improve lithium treatment in bipolar disorders? Frontiers in psychiatry 2018, 9, 360. [Google Scholar] [CrossRef]
- Nasrallah, H.A. The hazards of serendipity. Current Psychiatry 2012, 11, 14–16. [Google Scholar]
- Nestler, E.J.; Gould, E.; Manji, H. Preclinical models: status of basic research in depression. Biological psychiatry 2002, 52, 503–528. [Google Scholar] [CrossRef]
- Hayashi-Takagi, A.; Araki, Y.; Nakamura, M.; Vollrath, B.; Duron, S.G.; Yan, Z.; Kasai, H.; Huganir, R.L.; Campbell, D.A.; Sawa, A. PAKs inhibitors ameliorate schizophrenia-associated dendritic spine deterioration in vitro and in vivo during late adolescence. Proceedings of the National Academy of Sciences 2014, 111, 6461–6466. [Google Scholar] [CrossRef]
- Papakostas, G.; Ionescu, D. Towards new mechanisms: an update on therapeutics for treatment-resistant major depressive disorder. Molecular psychiatry 2015, 20, 1142–1150. [Google Scholar] [CrossRef] [PubMed]
- Hartl, D.; de Luca, V.; Kostikova, A.; Laramie, J.; Kennedy, S.; Ferrero, E.; Siegel, R.; Fink, M.; Ahmed, S.; Millholland, J. Translational precision medicine: an industry perspective. Journal of translational medicine 2021, 19, 245. [Google Scholar] [CrossRef]
- Gandal, M.J.; Leppa, V.; Won, H.; Parikshak, N.N.; Geschwind, D.H. The road to precision psychiatry: translating genetics into disease mechanisms. Nature neuroscience 2016, 19, 1397–1407. [Google Scholar] [CrossRef]
- Lenze, E.J.; Nicol, G.E.; Barbour, D.L.; Kannampallil, T.; Wong, A.W.; Piccirillo, J.; Drysdale, A.T.; Sylvester, C.M.; Haddad, R.; Miller, J.P. Precision clinical trials: a framework for getting to precision medicine for neurobehavioural disorders. Journal of Psychiatry and Neuroscience 2021, 46, E97–E110. [Google Scholar] [CrossRef]
- Srinivasan, N.; Mehra, E.; Dommaraju, S.; Kakavetsis, E. Neurogenetics: Precision Medicine-Based Approaches to Neurological Disorders with an Emphasis on Addressing Alzheimer’s Disease and Schizophrenia. Berkeley Pharma Tech Journal of Medicine 2024, 4, 14–33. [Google Scholar] [CrossRef]
- Mumtaz, H.; Saqib, M.; Jabeen, S.; Muneeb, M.; Mughal, W.; Sohail, H.; Safdar, M.; Mehmood, Q.; Khan, M.A.; Ismail, S.M. Exploring alternative approaches to precision medicine through genomics and artificial intelligence–a systematic review. Frontiers in Medicine 2023, 10, 1227168. [Google Scholar] [CrossRef]
- Uddin, M.; Wang, Y.; Woodbury-Smith, M. Artificial intelligence for precision medicine in neurodevelopmental disorders. NPJ digital medicine 2019, 2, 112. [Google Scholar] [CrossRef] [PubMed]
- Marques, L.; Costa, B.; Pereira, M.; Silva, A.; Santos, J.; Saldanha, L.; Silva, I.; Magalhães, P.; Schmidt, S.; Vale, N. Advancing precision medicine: A review of innovative In Silico approaches for drug development, clinical pharmacology and personalized healthcare. Pharmaceutics 2024, 16, 332. [Google Scholar] [CrossRef] [PubMed]
- Kuch, D.; Kearnes, M.; Gulson, K. The promise of precision: datafication in medicine, agriculture and education. Policy Studies 2020, 41, 527–546. [Google Scholar] [CrossRef]
- Cirillo, D.; Valencia, A. Big data analytics for personalized medicine. Current opinion in biotechnology 2019, 58, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Nedungadi, P.; Iyer, A.; Gutjahr, G.; Bhaskar, J.; Pillai, A.B. Data-driven methods for advancing precision oncology. Current pharmacology reports 2018, 4, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Kosorok, M.R.; Laber, E.B. Precision medicine. Annual review of statistics and its application 2019, 6, 263–286. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z. Multi-omics strategies for personalized and predictive medicine: past, current, and future translational opportunities. Emerging topics in life sciences 2022, 6, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Agur, Z.; Elishmereni, M.; Foryś, U.; Kogan, Y. Accelerating the development of personalized cancer immunotherapy by integrating molecular patients’ profiles with dynamic mathematical models. Clinical Pharmacology & Therapeutics 2020, 108, 515–527. [Google Scholar]
- Prosperi, M.; Min, J.S.; Bian, J.; Modave, F. Big data hurdles in precision medicine and precision public health. BMC medical informatics and decision making 2018, 18, 1–15. [Google Scholar] [CrossRef]
- Manchia, M.; Pisanu, C.; Squassina, A.; Carpiniello, B. Challenges and future prospects of precision medicine in psychiatry. Pharmacogenomics and personalized medicine 2020, 127–140. [Google Scholar] [CrossRef]
- DeLisi, L.E.; Fleischhacker, W.W. How precise is precision medicine for schizophrenia? Current opinion in psychiatry 2016, 29, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Wamsley, B.; Geschwind, D.H. Functional genomics links genetic origins to pathophysiology in neurodegenerative and neuropsychiatric disease. Current opinion in genetics & development 2020, 65, 117–125. [Google Scholar]
- Lago, S.G.; Tomasik, J.; van Rees, G.F.; Ramsey, J.M.; Haenisch, F.; Cooper, J.D.; Broek, J.A.; Suarez-Pinilla, P.; Ruland, T.; Auyeug, B. Exploring the neuropsychiatric spectrum using high-content functional analysis of single-cell signaling networks. Molecular Psychiatry 2020, 25, 2355–2372. [Google Scholar] [CrossRef] [PubMed]
- Goud Alladi, C.; Etain, B.; Bellivier, F.; Marie-Claire, C. DNA methylation as a biomarker of treatment response variability in serious mental illnesses: a systematic review focused on bipolar disorder, schizophrenia, and major depressive disorder. International journal of molecular sciences 2018, 19, 3026. [Google Scholar] [CrossRef]
- Hollander, J.A.; Cory-Slechta, D.A.; Jacka, F.N.; Szabo, S.T.; Guilarte, T.R.; Bilbo, S.D.; Mattingly, C.J.; Moy, S.S.; Haroon, E.; Hornig, M. Beyond the looking glass: recent advances in understanding the impact of environmental exposures on neuropsychiatric disease. Neuropsychopharmacology 2020, 45, 1086–1096. [Google Scholar] [CrossRef] [PubMed]
- Fries, G.R. Genetics and epigenetics as tools to inform the pathophysiology of neuropsychiatric disorders. 2019, 41, 5-6.
- van de Leemput, J.; Glatt, S.J.; Tsuang, M.T. The potential of genetic and gene expression analysis in the diagnosis of neuropsychiatric disorders. Expert Review of Molecular Diagnostics 2016, 16, 677–695. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.; Aboharb, F.; Zeltner, N.; Studer, L. Pluripotent stem cells in neuropsychiatric disorders. Molecular psychiatry 2017, 22, 1241–1249. [Google Scholar] [CrossRef]
- Magwai, T.; Oginga, F.O.; Chiliza, B.; Mpofana, T.; Xulu, K.R. Genome-wide DNA methylation in an animal model and human studies of schizophrenia: a protocol for a meta-analysis. BMJ Open Science 2022, 6. [Google Scholar] [CrossRef] [PubMed]
- O’Halloran, R.; Kopell, B.H.; Sprooten, E.; Goodman, W.K.; Frangou, S. Multimodal neuroimaging-informed clinical applications in neuropsychiatric disorders. Frontiers in psychiatry 2016, 7, 63. [Google Scholar] [CrossRef]
- Bansal, R.; Staib, L.H.; Laine, A.F.; Hao, X.; Xu, D.; Liu, J.; Weissman, M.; Peterson, B.S. Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses. PloS one 2012, 7, e50698. [Google Scholar] [CrossRef] [PubMed]
- Striano, P.; Minassian, B.A. From genetic testing to precision medicine in epilepsy. Neurotherapeutics 2020, 17, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Lachman, H.M.; Zheng, D. Transcriptomics analysis of iPSC-derived neurons and modeling of neuropsychiatric disorders. Molecular and Cellular Neuroscience 2016, 73, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Skampardoni, I.; Tian, Y.E.; Yang, Z.; Cui, Y.; Erus, G.; Hwang, G.; Varol, E.; Boquet-Pujadas, A.; Chand, G.B. Nine Neuroimaging-AI Endophenotypes Unravel Disease Heterogeneity and Partial Overlap across Four Brain Disorders: A Dimensional Neuroanatomical Representation. medRxiv 2024, 2023.2008. 2016.23294179.
- Whitfield-Gabrieli, S.; Ghosh, S.; Nieto-Castanon, A.; Saygin, Z.; Doehrmann, O.; Chai, X.; Reynolds, G.; Hofmann, S.; Pollack, M.; Gabrieli, J. Brain connectomics predict response to treatment in social anxiety disorder. Molecular psychiatry 2016, 21, 680–685. [Google Scholar] [CrossRef]
- Martin, R.F.; Leppink-Shands, P.; Tlachac, M.; DuBois, M.; Conelea, C.; Jacob, S.; Morellas, V.; Morris, T.; Papanikolopoulos, N. The use of immersive environments for the early detection and treatment of neuropsychiatric disorders. Frontiers in Digital Health 2021, 2, 576076. [Google Scholar] [CrossRef]
- Grezenko, H.; Rodoshi, Z.N.; Mimms, C.S.; Ahmed, M.; Sabani, A.; Hlaing, M.S.; Batu, B.J.; Hundesa, M.I.; Ayalew, B.D.; Shehryar, A. From Alzheimer’s Disease to Anxiety, Epilepsy to Schizophrenia: A Comprehensive Dive Into Neuro-Psychiatric Disorders. Cureus 2024, 16. [Google Scholar] [CrossRef] [PubMed]
- Kas, M.J.; Penninx, B.; Sommer, B.; Serretti, A.; Arango, C.; Marston, H. A quantitative approach to neuropsychiatry: the why and the how. Neuroscience & Biobehavioral Reviews 2019, 97, 3–9. [Google Scholar]
- Malhi, G.S.; Sachdev, P. Novel physical treatments for the management of neuropsychiatric disorders. Journal of Psychosomatic Research 2002, 53, 709–719. [Google Scholar] [CrossRef]
- Berk, M. Pathways to new drug discovery in neuropsychiatry. BMC medicine 2012, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Gandal, M.J.; Geschwind, D.H. The genetics-driven revival in neuropsychiatric drug development. Biological psychiatry 2016, 79, 628–630. [Google Scholar] [CrossRef]
- Spicer, T.P.; Hubbs, C.; Vaissiere, T.; Collia, D.; Rojas, C.; Kilinc, M.; Vick, K.; Madoux, F.; Baillargeon, P.; Shumate, J. Improved scalability of neuron-based phenotypic screening assays for therapeutic discovery in neuropsychiatric disorders. Molecular Neuropsychiatry 2018, 3, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Asgharian, P.; Quispe, C.; Herrera-Bravo, J.; Sabernavaei, M.; Hosseini, K.; Forouhandeh, H.; Ebrahimi, T.; Sharafi-Badr, P.; Tarhriz, V.; Soofiyani, S.R. Pharmacological effects and therapeutic potential of natural compounds in neuropsychiatric disorders: An update. Frontiers in Pharmacology 2022, 13, 926607. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, P.; Rosen, L.; Alexander, R.; Murthy, V.; Davies, C.H.; Ratti, E. Strategies to address challenges in neuroscience drug discovery and development. International Journal of Neuropsychopharmacology 2019, 22, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Bearden, C.E.; Winkler, A.; Karlsgodt, K.H.; Bilder, R. Cognitive phenotypes and endophenotypes: concepts and criteria. Neurophenotypes: Advancing Psychiatry and Neuropsychology in the" OMICS" Era 2016, 61-80.
- Hannan, A.J. Nature, Nurture and neurobiology: Gene-environment interactions in neuropsychiatric disorders. Neurobiology of Disease 2013, 57, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Willsey, A.J.; Morris, M.T.; Wang, S.; Willsey, H.R.; Sun, N.; Teerikorpi, N.; Baum, T.B.; Cagney, G.; Bender, K.J.; Desai, T.A. The psychiatric cell map initiative: a convergent systems biological approach to illuminating key molecular pathways in neuropsychiatric disorders. Cell 2018, 174, 505–520. [Google Scholar] [CrossRef] [PubMed]
- Tropea, D. New challenges and frontiers in the research for neuropsychiatric disorders. 2012, 3, 69.
- Sanders, S.J.; Sahin, M.; Hostyk, J.; Thurm, A.; Jacquemont, S.; Avillach, P.; Douard, E.; Martin, C.L.; Modi, M.E.; Moreno-De-Luca, A. A framework for the investigation of rare genetic disorders in neuropsychiatry. Nature medicine 2019, 25, 1477–1487. [Google Scholar] [CrossRef]
- Dauncey, M.J. Genomic and epigenomic insights into nutrition and brain disorders. Nutrients 2013, 5, 887–914. [Google Scholar] [CrossRef]
- Afridi, R.; Seol, S.; Kang, H.J.; Suk, K. Brain-immune interactions in neuropsychiatric disorders: Lessons from transcriptome studies for molecular targeting. Biochemical Pharmacology 2021, 188, 114532. [Google Scholar] [CrossRef]
- Alter, O.; Newman, E.; Ponnapalli, S.P.; Tsai, J.W. AI/ML-derived mechanistically interpretable whole-genome biomarkers of patient survival in pre-treatment primary neuroblastoma tumors and whole blood. 2024.
- Vadapalli, S.; Abdelhalim, H.; Zeeshan, S.; Ahmed, Z. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Briefings in bioinformatics 2022, 23, bbac191. [Google Scholar] [CrossRef] [PubMed]
- Bello, B.; Bundey, Y.N.; Bhave, R.; Khotimchenko, M.; Baran, S.W.; Chakravarty, K.; Varshney, J. Integrating AI/ML models for patient stratification leveraging omics dataset and clinical biomarkers from COVID-19 patients: A promising approach to personalized medicine. International Journal of Molecular Sciences 2023, 24, 6250. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Brietzke, E. Omics-based biomarkers: application of metabolomics in neuropsychiatric disorders. International Journal of Neuropsychopharmacology 2016, 19, pyv096. [Google Scholar] [CrossRef]
- Kobeissy, F.; Goli, M.; Yadikar, H.; Shakkour, Z.; Kurup, M.; Haidar, M.A.; Alroumi, S.; Mondello, S.; Wang, K.K.; Mechref, Y. Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects. Frontiers in Neurology 2023, 14, 1288740. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.A.; Lee, E.E.; Jeste, D.V.; Van Patten, R.; Twamley, E.W.; Nebeker, C.; Yamada, Y.; Kim, H.-C.; Depp, C.A. Artificial intelligence approaches to predicting and detecting cognitive decline in older adults: A conceptual review. Psychiatry research 2020, 284, 112732. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.-C.; Dutta, A. Network Modeling and Control of Dynamic Disease Pathways, Review and Perspectives. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2024.
- Fan, X.; Zhu, P.; Tang, X.-Q. VD-analysis: a dynamic network framework for analyzing disease progressions. IEEE Access 2020, 8, 153202–153214. [Google Scholar] [CrossRef]
- Shmulevich, I.; Dougherty, E.R.; Zhang, W. Gene perturbation and intervention in probabilistic Boolean networks. Bioinformatics 2002, 18, 1319–1331. [Google Scholar] [CrossRef]
- Perrone, M.C.; Lerner, M.G.; Dunworth, M.; Ewald, A.J.; Bader, J.S. Prioritizing drug targets by perturbing biological network response functions. PLoS computational biology 2024, 20, e1012195. [Google Scholar] [CrossRef]
- McGarry, K.; McDonald, S. Complex network theory for the identification and assessment of candidate protein targets. Computers in Biology and Medicine 2018, 97, 113–123. [Google Scholar] [CrossRef]
- Cadeddu, C.; Ianuale, C.; Lindert, J. Public mental health. A systematic review of key issues in public health 2015, 205–221. [Google Scholar]
- Singla, D.R.; Kohrt, B.A.; Murray, L.K.; Anand, A.; Chorpita, B.F.; Patel, V. Psychological treatments for the world: lessons from low-and middle-income countries. Annual review of clinical psychology 2017, 13, 149–181. [Google Scholar] [CrossRef] [PubMed]
- Heider, J.; Vogel, S.; Volkmer, H.; Breitmeyer, R. Human iPSC-derived glia as a tool for neuropsychiatric research and drug development. International journal of molecular sciences 2021, 22, 10254. [Google Scholar] [CrossRef] [PubMed]
- Agid, Y.; Buzsáki, G.; Diamond, D.M.; Frackowiak, R.; Giedd, J.; Girault, J.-A.; Grace, A.; Lambert, J.J.; Manji, H.; Mayberg, H. How can drug discovery for psychiatric disorders be improved? Nature reviews Drug discovery 2007, 6, 189–201. [Google Scholar] [CrossRef]
- Squassina, A. Personalized treatments in neuropsychiatric disorders. Drug Development Research 2021, 82, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Ilomäki, J.; Bell, J.S.; Chan, A.Y.; Tolppanen, A.-M.; Luo, H.; Wei, L.; Lai, E.C.-C.; Shin, J.-Y.; De Paoli, G.; Pajouheshnia, R. Application of healthcare ‘Big Data’in CNS drug research: the example of the neurological and mental health Global Epidemiology Network (NeuroGEN). CNS drugs 2020, 34, 897–913. [Google Scholar] [CrossRef] [PubMed]
- Vervoort, I.; Delger, C.; Soubry, A. A multifactorial model for the etiology of neuropsychiatric disorders: the role of advanced paternal age. Pediatric Research 2022, 91, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Liloia, D.; Zamfira, D.A.; Tanaka, M.; Manuello, J.; Crocetta, A.; Keller, R.; Cozzolino, M.; Duca, S.; Cauda, F.; Costa, T. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neuroscience & Biobehavioral Reviews 2024, 105791.
- Goulao, B.; Bruhn, H.; Campbell, M.; Ramsay, C.; Gillies, K. Patient and public involvement in numerical aspects of trials (PoINT): exploring patient and public partners experiences and identifying stakeholder priorities. Trials 2021, 22, 499. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, R.; Tang, V.; Nevitt, S.J.; Wagner, J.L.; Modi, A.C.; LaFrance, W.C., Jr.; Goldstein, L.H.; Gandy, M.; Bresnahan, R.; Valente, K.; et al. Psychological treatments for people with epilepsy. Cochrane Database Syst Rev 2020, 8, Cd012081. [Google Scholar] [CrossRef]
- Thompson, P.M.; Jahanshad, N.; Ching, C.R.K.; Salminen, L.E.; Thomopoulos, S.I.; Bright, J.; Baune, B.T.; Bertolín, S.; Bralten, J.; Bruin, W.B.; et al. ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl Psychiatry 2020, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Lorents, A.; Colin, M.E.; Bjerke, I.E.; Nougaret, S.; Montelisciani, L.; Diaz, M.; Verschure, P.; Vezoli, J. Human Brain Project Partnering Projects Meeting: Status Quo and Outlook. eNeuro 2023, 10. [Google Scholar] [CrossRef]
- Tanaka, M. 10th Anniversary of Biomedicines—Translational Laboratory and Experimental Medicine for the Sake of Neurological Diseases and Mental Illnesses. 2024.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
