Submitted:
05 December 2024
Posted:
05 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Utility of AI in Cardiovascular Disease
2.1. Disease Diagnosis
2.1.1. AI Utility in Electrocardiograms (EKG)
2.1.2. AI Utility in Echocardiogram
2.1.3. AI Utility in Cardiac CT and MRI
2.1.4. AI Utility in Other Aspects of Diagnostic Imaging
2.1.5. Future AI Utility for Cardiovascular Disease Diagnosis
2.2. Disease Prediction
3. Current AI Models for Cardiovascular Disease
| Study | Data | AI Model | Performance |
| Dritsas et al. [162] | Clinical | Stacking ensemble model with Synthetic Minority Oversampling TEchnique (SMOTE) | 87.8% accuracy, 88.3% recall, 88% precision, and 98.2% AUC. |
| Bhat et al. [163] | Kaggle | Multi-Layer Perceptron (MLP) | 87.28% accuracy |
| Nadakinamani et al. [164] | Clinical | RF | 100% accuracy |
| Bashaar et al. [165] | Clinical | ANN, Gradient Boosting Machine (GBM), SVM, RF | ANN: OR of 0.0905, CI of [0.0489; 0.1673]; GBM: average accuracy of 91.10%; SVM: OR of 25.0801, CI of [11.4824; 54.7803]; RF: OR of 10.8527, CI [4.7434; 24.8305] |
| Lee et al. [166] | Wearable Devices | DNN | AUROC of 0.981 |
| Krittanawong et al. [61] | SVM, Boosting Algorithms, CNN | SVM: AUC of 0.92; Boosting Algorithms: AUC of 0.91; CNN: AUC of 0.90 | |
| Mohan et al. [167] | Clinical | RF with a Linear Model | 88.7% accuracy |
| Abdar et al. [168] | Clinical | SVM | 93.08% accuracy, 91.51% F1-score |
3.1. Machine Learning Models
3.2. Deep Learning Models
3.3. Other Models and Use Cases
4. AI in Cardiovascular Disease Diagnosis, Management, and Prognostication
4.1. Cardiovascular Research
4.2. Myocardial Infarction (MI)
4.3. Cardiac Arrhythmia
4.4. Heart Failure (HF)
4.5. Right Ventricular Failure (RVF)
4.6. Cardiogenic Shock (CS)
4.7. Mechanical Circulatory Support (MCS)
4.8. Cardiac Transplantation
4.9. Inherited and Rare Cardiovascular Diseases
4.10. Pulmonary Hypertension (PH)
4.11. Cardiac Amyloidosis (CA)
4.12. Cardio-Oncology
4.13. Implantable and Wearable Medical Devices
4.14. Improve Healthcare Resource Utilization
5. Challenges of AI in Cardiovascular Disease
6. Policy and Ethical Consideration of AI in Cardiovascular Disease
7. The Future of AI in Cardiovascular Disease
Conflicts of Interests
Acknowledgments
References
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J Am Coll Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I. , et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation. 2024, 149, e347–e913. [Google Scholar] [CrossRef] [PubMed]
- Joynt Maddox, K.E.; Elkind, M.S.V.; Aparicio, H.J. , et al. Forecasting the Burden of Cardiovascular Disease and Stroke in the United States Through 2050—Prevalence of Risk Factors and Disease: A Presidential Advisory From the American Heart Association. Circulation. 2024, 150, e65–e88. [Google Scholar] [CrossRef] [PubMed]
- Fairweather, D.; Beetler, D.J.; Di Florio, D.N.; Musigk, N.; Heidecker, B.; Cooper, L.T., Jr. COVID-19, Myocarditis and Pericarditis. Circ Res. 2023, 132, 1302–1319. [Google Scholar] [CrossRef]
- Knight, R.; Walker, V.; Ip, S. , et al. Association of COVID-19 With Major Arterial and Venous Thrombotic Diseases: A Population-Wide Cohort Study of 48 Million Adults in England and Wales. Circulation. 2022, 146, 892–906. [Google Scholar] [CrossRef]
- Rahman, A.; Debnath, T.; Kundu, D. , et al. Machine learning and deep learning-based approach in smart healthcare: Recent advances, applications, challenges and opportunities. AIMS Public Health. 2024, 11, 58–109. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H. Artificial intelligence in radiology. Nat Rev Cancer. 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Filipp, F.V. Opportunities for Artificial Intelligence in Advancing Precision Medicine. Current Genetic Medicine Reports. 2019, 7, 208–213. [Google Scholar] [CrossRef]
- Vatansever, S.; Schlessinger, A.; Wacker, D. , et al. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med Res Rev. 2021, 41, 1427–1473. [Google Scholar] [CrossRef]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support systems: benefits, risks, and strategies for success. npj Digital Medicine. 2020, 3, 17. [Google Scholar] [CrossRef]
- Niazi, S.K. The Coming of Age of AI/ML in Drug Discovery, Development, Clinical Testing, and Manufacturing: The FDA Perspectives. Drug Des Devel Ther. 2023, 17, 2691. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.B.; Wei, W.Q.; Weeraratne, D. , et al. Precision Medicine, AI, and the Future of Personalized Health Care. Clin Transl Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Kourou, K.; Exarchos, K.P.; Papaloukas, C.; Sakaloglou, P.; Exarchos, T.; Fotiadis, D.I. Applied machine learning in cancer research: A systematic review for patient diagnosis, classification and prognosis. Comput Struct Biotechnol J. 2021, 19, 5546. [Google Scholar] [CrossRef]
- Khera, R.; Oikonomou, E.K.; Nadkarni, G.N. , et al. Transforming Cardiovascular Care With Artificial Intelligence: From Discovery to Practice. Journal of the American College of Cardiology. 2024, 84, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Shu, S.; Ren, J.; Song, J. Clinical Application of Machine Learning-Based Artificial Intelligence in the Diagnosis, Prediction, and Classification of Cardiovascular Diseases. Circ J. 2021, 85, 1416–1425. [Google Scholar] [CrossRef]
- Dixon, D.; Sattar, H.; Moros, N. , et al. Unveiling the Influence of AI Predictive Analytics on Patient Outcomes: A Comprehensive Narrative Review. Cureus. 2024, 16, e59954. [Google Scholar]
- Daniore, P.; Nittas, V.; Haag, C.; Bernard, J.; Gonzenbach, R.; von Wyl, V. From wearable sensor data to digital biomarker development: ten lessons learned and a framework proposal. npj Digital Medicine. 2024, 7, 161. [Google Scholar] [CrossRef]
- Cai, Y.; Cai, Y.-Q.; Tang, L.-Y. , et al. Artificial intelligence in the risk prediction models of cardiovascular disease and development of an independent validation screening tool: a systematic review. BMC Medicine. 2024, 22, 56. [Google Scholar] [CrossRef]
- Benjamins, J.W.; Hendriks, T.; Knuuti, J.; Juarez-Orozco, L.E.; van der Harst, P. A primer in artificial intelligence in cardiovascular medicine. Neth Heart J. 2019, 27, 392–402. [Google Scholar] [CrossRef]
- Karatzia, L.; Aung, N.; Aksentijevic, D. Artificial intelligence in cardiology: Hope for the future and power for the present. Front Cardiovasc Med. 2022, 9, 945726. [Google Scholar] [CrossRef]
- Chaudhary, I.; Anwar, H. The Impact of Artificial Intelligence on Cardiovascular Disease Diagnosis: A Review. Pakistan Journal of Medical and Health Sciences. 2024. [CrossRef]
- Quinn, G.R.; Ranum, D.; Song, E. , et al. Missed Diagnosis of Cardiovascular Disease in Outpatient General Medicine: Insights from Malpractice Claims Data. Jt Comm J Qual Patient Saf. 2017, 43, 508–516. [Google Scholar] [PubMed]
- El Naqa, I.; Das, S. The role of machine and deep learning in modern medical physics. Med Phys. 2020, 47, e125–e126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, G.; Xu, Y.; Tang, X. Application of Artificial Intelligence in the MRI Classification Task of Human Brain Neurological and Psychiatric Diseases: A Scoping Review. Diagnostics (Basel). 2021; 11, 8. [Google Scholar]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M. , et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine. 2019, 25, 65–69. [Google Scholar] [CrossRef]
- Siontis, K.C.; Noseworthy, P.A.; Attia, Z.I.; Friedman, P.A. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nature Reviews Cardiology. 2021, 18, 465–478. [Google Scholar] [CrossRef]
- Vaid, A.; Johnson, K.W.; Badgeley, M.A. , et al. Using Deep-Learning Algorithms to Simultaneously Identify Right and Left Ventricular Dysfunction From the Electrocardiogram. JACC Cardiovasc Imaging. 2022, 15, 395–410. [Google Scholar] [CrossRef]
- Zhou, J.; Du, M.; Chang, S.; Chen, Z. Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis. Cardiovascular Ultrasound. 2021, 19, 29. [Google Scholar] [CrossRef]
- Zhang, J.; Gajjala, S.; Agrawal, P. , et al. Fully Automated Echocardiogram Interpretation in Clinical Practice. Circulation. 2018, 138, 1623–1635. [Google Scholar] [CrossRef]
- Narula, S.; Shameer, K.; Salem Omar, A.M.; Dudley, J.T.; Sengupta, P.P. Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography. J Am Coll Cardiol. 2016, 68, 2287–2295. [Google Scholar] [CrossRef]
- Kelkar, A.A.; Schultz, W.M.; Khosa, F. , et al. Long-Term Prognosis After Coronary Artery Calcium Scoring Among Low-Intermediate Risk Women and Men. Circulation: Cardiovascular Imaging. 2016, 9, e003742. [Google Scholar]
- Wolterink, J.M.; Leiner, T.; de Vos, B.D.; van Hamersvelt, R.W.; Viergever, M.A.; Išgum, I. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal. 2016, 34, 123. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, B.; Moody, J.B.; Tang, J. Improved myocardial perfusion PET imaging using artificial neural networks. Phys Med Biol. 2020, 65, 145010. [Google Scholar] [CrossRef] [PubMed]
- Kwiecinski, J.; Tzolos, E.; Meah, M.N. , et al. Machine Learning with (18)F-Sodium Fluoride PET and Quantitative Plaque Analysis on CT Angiography for the Future Risk of Myocardial Infarction. J Nucl Med. 2022, 63, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yang, G.; Gao, Z. , et al. Deep Learning for Diagnosis of Chronic Myocardial Infarction on Nonenhanced Cardiac Cine MRI. Radiology. 2019, 291, 606–617. [Google Scholar] [CrossRef]
- Chong, L.R.; Tsai, K.T.; Lee, L.L.; Foo, S.G.; Chang, P.C. Artificial Intelligence Predictive Analytics in the Management of Outpatient MRI Appointment No-Shows. AJR American journal of roentgenology. 2020, 1–8. [Google Scholar] [CrossRef]
- Ritchie, A.J.; Sanghera, C.; Jacobs, C. , et al. Computer Vision Tool and Technician as First Reader of Lung Cancer Screening CT Scans. J Thorac Oncol. 2016, 11, 709–717. [Google Scholar] [CrossRef]
- Rodríguez-Ruiz, A.; Krupinski, E.; Mordang, J.J. , et al. Detection of Breast Cancer with Mammography: Effect of an Artificial Intelligence Support System. Radiology. 2019, 290, 305–314. [Google Scholar] [CrossRef]
- Wolterink, J.M.; Leiner, T.; Viergever, M.A.; Išgum, I. Generative Adversarial Networks for Noise Reduction in Low-Dose CT. IEEE Transactions on Medical Imaging. 2017, 36, 2536–2545. [Google Scholar] [CrossRef]
- van Leeuwen, K.G.; de Rooij, M.; Schalekamp, S.; van Ginneken, B.; Rutten, M. How does artificial intelligence in radiology improve efficiency and health outcomes? Pediatr Radiol. 2022, 52, 2087–2093. [Google Scholar] [CrossRef]
- Chen, H.; Ouyang, D.; Baykaner, T.; Jamal, F.; Cheng, P.; Rhee, J.W. Artificial intelligence applications in cardio-oncology: Leveraging high dimensional cardiovascular data. Front Cardiovasc Med. 2022; 9, 941148. [Google Scholar]
- Muehlematter, U.J.; Bluethgen, C.; Vokinger, K.N. FDA-cleared artificial intelligence and machine learning-based medical devices and their 510(k) predicate networks. Lancet Digit Health. 2023, 5, e618–e626. [Google Scholar] [CrossRef]
- Khera, R.; Oikonomou, E.K.; Nadkarni, G.N. , et al. Transforming Cardiovascular Care With Artificial Intelligence: From Discovery to Practice: JACC State-of-the-Art Review. J Am Coll Cardiol. 2024, 84, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Chiarito, M.; Luceri, L.; Oliva, A.; Stefanini, G.; Condorelli, G. Artificial Intelligence and Cardiovascular Risk Prediction: All That Glitters is not Gold. Eur Cardiol. 2022, 17, e29. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Cai, Y.Q.; Tang, L.Y. , et al. Artificial intelligence in the risk prediction models of cardiovascular disease and development of an independent validation screening tool: a systematic review. BMC Med. 2024, 22, 56. [Google Scholar] [CrossRef] [PubMed]
- Pettit, R.W.; Fullem, R.; Cheng, C.; Amos, C.I. Artificial intelligence, machine learning, and deep learning for clinical outcome prediction. Emerg Top Life Sci. 2021, 5, 729–745. [Google Scholar] [CrossRef] [PubMed]
- Pinton, P. Impact of artificial intelligence on prognosis, shared decision-making, and precision medicine for patients with inflammatory bowel disease: a perspective and expert opinion. Ann Med. 2023, 55, 2300670. [Google Scholar] [CrossRef] [PubMed]
- Doudesis, D.; Lee, K.K.; Boeddinghaus, J. , et al. Machine learning for diagnosis of myocardial infarction using cardiac troponin concentrations. Nature Medicine. 2023, 29, 1201–1210. [Google Scholar] [CrossRef]
- Boeddinghaus, J.; Doudesis, D.; Lopez-Ayala, P. , et al. Machine Learning for Myocardial Infarction Compared With Guideline-Recommended Diagnostic Pathways. Circulation. 2024, 149, 1090–1101. [Google Scholar] [CrossRef]
- Al'Aref, S.J.; Anchouche, K.; Singh, G. , et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J. 2019, 40, 1975–1986. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Deng, X.; Fan, Y. Interplay between Artificial Intelligence and Biomechanics Modeling in the Cardiovascular Disease Prediction. Biomedicines. 2022; 10, 9. [Google Scholar]
- Wessler, B.S.; Lai, Y.H.L.; Kramer, W. , et al. Clinical Prediction Models for Cardiovascular Disease. Circulation: Cardiovascular Quality and Outcomes. 2015, 8, 368–375. [Google Scholar]
- Mallya, S.; Overhage, M.; Srivastava, N.; Arai, T.; Erdman, C. Effectiveness of lstms in predicting congestive heart failure onset. arXiv, 2019; arXiv:190202443. [Google Scholar]
- Motwani, M.; Dey, D.; Berman, D.S. , et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2017, 38, 500–507. [Google Scholar]
- Mathur, P.; Srivastava, S.; Xu, X.; Mehta, J.L. Artificial Intelligence, Machine Learning, and Cardiovascular Disease. Clin Med Insights Cardiol. 2020, 14, 1179546820927404. [Google Scholar] [CrossRef] [PubMed]
- Kampaktsis, P.N.; Emfietzoglou, M.; Al Shehhi, A., et al. Artificial intelligence in atherosclerotic disease: Applications and trends. Front Cardiovasc Med. 2022, 9:949454.
- Mohsen, F.; Al-Saadi, B.; Abdi, N.; Khan, S.; Shah, Z. Artificial Intelligence-Based Methods for Precision Cardiovascular Medicine. J Pers Med.
- Sun, X.; Yin, Y.; Yang, Q.; Huo, T. Artificial intelligence in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur J Med Res. 2023, 28, 242.
- >Bernand, C.; Mirand, E.; Aryun, M. Coronary heart disease prediction models using machine learning and deep learning algorithms. PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON ENGINEERING, TECHNOLOGY, AND INDUSTRIAL APPLICATIONS 2021 (8th ICETIA 2021): Engineering, Environment, and Health: Exploring the Opportunities for the Future. 2024.
- Srinivasan, S.; Gunasekaran, S.; Mathivanan, S.K.; M B BAM, Jayagopal P, Dalu GT. An active learning machine technique based prediction of cardiovascular heart disease from UCI-repository database. Scientific Reports. 2023, 13, 13588. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Virk, H.U.H.; Bangalore, S. , et al. Machine learning prediction in cardiovascular diseases: a meta-analysis. Scientific Reports. 2020, 10, 16057. [Google Scholar] [CrossRef] [PubMed]
- Khera, R.; Haimovich, J.; Hurley, N.C. , et al. Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction. JAMA Cardiology. 2021, 6, 633–641. [Google Scholar] [CrossRef]
- Chen, R.; Stewart, W.F.; Sun, J.; Ng, K.; Yan, X. Recurrent Neural Networks for Early Detection of Heart Failure From Longitudinal Electronic Health Record Data. Circulation: Cardiovascular Quality and Outcomes. 2019, 12, e005114. [Google Scholar] [CrossRef]
- Choi, E.; Schuetz, A.; Stewart, W.F.; Sun, J. Using recurrent neural network models for early detection of heart failure onset. Journal of the American Medical Informatics Association. 2016, 24, 361–370. [Google Scholar] [CrossRef]
- Wang, H.; Fu, T.; Du, Y. , et al. Scientific discovery in the age of artificial intelligence. Nature. 2023, 620, 47–60. [Google Scholar] [CrossRef]
- Jajcay, N.; Bezak, B.; Segev, A. , et al. Data processing pipeline for cardiogenic shock prediction using machine learning. Front Cardiovasc Med. 2023, 10, 1132680. [Google Scholar] [CrossRef]
- Cunningham, J.W.; Singh, P.; Reeder, C.; et al. Natural Language Processing for Adjudication of Heart Failure Hospitalizations in a Multi-Center Clinical Trial. medRxiv. 2023. [CrossRef]
- Khurshid, S.; Reeder, C.; Harrington, L.X. , et al. Cohort design and natural language processing to reduce bias in electronic health records research. npj Digital Medicine. 2022, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, M.A.; Olesen, K.K.W.; Koul, S. , et al. Development and validation of an artificial neural network algorithm to predict mortality and admission to hospital for heart failure after myocardial infarction: a nationwide population-based study. The Lancet Digital Health. 2022, 4, e37–e45. [Google Scholar] [CrossRef] [PubMed]
- Frampton, J.; Ortengren, A.R.; Zeitler, E.P. Arrhythmias After Acute Myocardial Infarction. Yale J Biol Med. 2023, 96, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Dillon, S.M.; Allessie, M.A.; Ursell, P.C.; Wit, A.L. Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts. Circulation research. 1988, 63, 182–206. [Google Scholar] [CrossRef]
- De Bakker, J.; Van Capelle, F.; Janse, M.J. , et al. Slow conduction in the infarcted human heart.'Zigzag'course of activation. Circulation. 1993, 88, 915–926. [Google Scholar] [CrossRef]
- Arevalo, H.J.; Vadakkumpadan, F.; Guallar, E. , et al. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nature Communications. 2016, 7, 11437. [Google Scholar] [CrossRef]
- Stevenson, W.G.; Friedman, P.L.; Kocovic, D.; Sager, P.T.; Saxon, L.A.; Pavri, B. Radiofrequency catheter ablation of ventricular tachycardia after myocardial infarction. Circulation. 1998, 98, 308–314. [Google Scholar] [CrossRef]
- Prakosa, A.; Arevalo, H.J.; Deng, D. , et al. Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nat Biomed Eng. 2018, 2, 732–740. [Google Scholar] [CrossRef]
- Kornej, J.; Börschel, C.S.; Benjamin, E.J.; Schnabel, R.B. Epidemiology of Atrial Fibrillation in the 21st Century: Novel Methods and New Insights. Circ Res. 2020, 127, 4–20. [Google Scholar] [CrossRef]
- Tang, S.; Razeghi, O.; Kapoor, R. , et al. Machine Learning–Enabled Multimodal Fusion of Intra-Atrial and Body Surface Signals in Prediction of Atrial Fibrillation Ablation Outcomes. Circulation: Arrhythmia and Electrophysiology. 2022, 15, e010850. [Google Scholar]
- Deisenhofer, I.; Albenque, J.-P.; Busch, S., et al. LB-469805-01 TAILORED CARDIAC ABLATION PROCEDURE FOR PERSISTENT ATRIAL FIBRILLATION GUIDED BY ARTIFICIAL INTELLIGENCE: THE TAILORED-AF RANDOMIZED CLINICAL TRIAL. Heart Rhythm.
- Mehra, M.R.; Canter, C.E.; Hannan, M.M. , et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10-year update. The Journal of Heart and Lung Transplantation. 2016, 35, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Hearn, J.; Ross, H.J.; Mueller, B. , et al. Neural Networks for Prognostication of Patients With Heart Failure. Circulation: Heart Failure. 2018, 11, e005193. [Google Scholar] [PubMed]
- Adler, E.D.; Voors, A.A.; Klein, L. , et al. Improving risk prediction in heart failure using machine learning. Eur J Heart Fail. 2020, 22, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Konstam, M.A.; Kiernan, M.S.; Bernstein, D. , et al. Evaluation and Management of Right-Sided Heart Failure: A Scientific Statement From the American Heart Association. Circulation. 2018, 137, e578–e622. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Cook, J.M.; Moukarbel, G.V. , et al. Pre-operative right ventricular echocardiographic parameters associated with short-term outcomes and long-term mortality after CABG. Echo Res Pract. 2018, 5, 155–166. [Google Scholar] [CrossRef]
- Hameed, A.; Condliffe, R.; Swift, A.J.; Alabed, S.; Kiely, D.G.; Charalampopoulos, A. Assessment of Right Ventricular Function-a State of the Art. Curr Heart Fail Rep. 2023, 20, 194–207. [Google Scholar] [CrossRef]
- Shad, R.; Quach, N.; Fong, R. , et al. Predicting post-operative right ventricular failure using video-based deep learning. Nat Commun. 2021, 12, 5192. [Google Scholar] [CrossRef]
- Van Diepen, S.; Katz, J.N.; Albert, N.M. , et al. Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association. Circulation. 2017, 136, e232–e268. [Google Scholar] [CrossRef]
- Vahdatpour, C.; Collins, D.; Goldberg, S. Cardiogenic Shock. Journal of the American Heart Association. 2019, 8, e011991. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Yao, R. , et al. Identification of distinct clinical phenotypes of cardiogenic shock using machine learning consensus clustering approach. BMC Cardiovascular Disorders. 2023, 23, 426. [Google Scholar] [CrossRef]
- Rahman, F.; Finkelstein, N.; Alyakin, A. , et al. Using Machine Learning for Early Prediction of Cardiogenic Shock in Patients With Acute Heart Failure. Journal of the Society for Cardiovascular Angiography & Interventions. 2022, 1, 100308. [Google Scholar]
- Chang, Y.; Antonescu, C.; Ravindranath, S. , et al. Early Prediction of Cardiogenic Shock Using Machine Learning. Early Prediction of Cardiogenic Shock Using Machine Learning. Frontiers in Cardiovascular Medicine. 2022, 9. [Google Scholar]
- Stephens, A.F.; Šeman, M.; Diehl, A. , et al. ECMO PAL: using deep neural networks for survival prediction in venoarterial extracorporeal membrane oxygenation. Intensive Care Medicine. 2023, 49, 1090–1099. [Google Scholar] [CrossRef] [PubMed]
- Ayers, B.; Wood, K.; Gosev, I.; Prasad, S. Predicting Survival After Extracorporeal Membrane Oxygenation by Using Machine Learning. Ann Thorac Surg. 2020, 110, 1193–1200. [Google Scholar] [CrossRef]
- Kourou, K.; Rigas, G.; Exarchos, K.P. , et al. Prediction of time dependent survival in HF patients after VAD implantation using pre- and post-operative data. Comput Biol Med. 2016, 70, 99. [Google Scholar] [CrossRef]
- Kilic, A.; Macickova, J.; Duan, L. , et al. Machine Learning Approaches to Analyzing Adverse Events Following Durable LVAD Implantation. The Annals of Thoracic Surgery. 2021, 112, 770–777. [Google Scholar] [CrossRef]
- Kilic, A.; Dochtermann, D.; Padman, R.; Miller, J.K.; Dubrawski, A. Using machine learning to improve risk prediction in durable left ventricular assist devices. PLoS One. 2021, 16, e0247866. [Google Scholar] [CrossRef]
- Bellavia, D.; Iacovoni, A.; Agnese, V. , et al. Usefulness of regional right ventricular and right atrial strain for prediction of early and late right ventricular failure following a left ventricular assist device implant: A machine learning approach. Int J Artif Organs. 2020, 43, 297–314. [Google Scholar] [CrossRef]
- Misumi, Y.; Miyagawa, S.; Yoshioka, D. , et al. Prediction of aortic valve regurgitation after continuous-flow left ventricular assist device implantation using artificial intelligence trained on acoustic spectra. J Artif Organs. 2021, 24, 164–172. [Google Scholar] [CrossRef]
- Topkara, V.K.; Elias, P.; Jain, R.; Sayer, G.; Burkhoff, D.; Uriel, N. Machine Learning-Based Prediction of Myocardial Recovery in Patients With Left Ventricular Assist Device Support. Circulation: Heart Failure. 2022, 15, e008711. [Google Scholar] [CrossRef]
- Bernhardt, A.M.; Schlöglhofer, T.; Lauenroth, V. , et al. Prevention and early treatment of driveline infections in ventricular assist device patients - The DESTINE staging proposal and the first standard of care protocol. J Crit Care. 2020, 56, 106. [Google Scholar] [CrossRef] [PubMed]
- Skaria, R.; Aras, S.; Johnson, T., et al. Artificial Intelligence Improves Left Ventricular Assist Device Driveline Infections. Journal of the American College of Surgeons. 2018, 227(4, Supplement 2):e85.
- Bhagra, S.K.; Pettit, S.; Parameshwar, J. Cardiac transplantation: indications, eligibility and current outcomes. Heart. 2019, 105, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Medved, D.; Ohlsson, M.; Höglund, P.; Andersson, B.; Nugues, P.; Nilsson, J. Improving prediction of heart transplantation outcome using deep learning techniques. Scientific Reports. 2018, 8, 3613. [Google Scholar] [CrossRef] [PubMed]
- Medved, D.; Nugues, P.; Nilsson, J. Simulating the Outcome of Heart Allocation Policies Using Deep Neural Networks. Annu Int Conf IEEE Eng Med Biol Soc. 2018, 2018, 6141. [Google Scholar]
- Yoon, J.; Zame, W.R.; Banerjee, A.; Cadeiras, M.; Alaa, A.M.; van der Schaar, M. Personalized survival predictions via Trees of Predictors: An application to cardiac transplantation. PLOS ONE. 2018, 13, e0194985. [Google Scholar] [CrossRef]
- Miller, P.E.; Pawar, S.; Vaccaro, B. , et al. Predictive Abilities of Machine Learning Techniques May Be Limited by Dataset Characteristics: Insights From the UNOS Database. J Card Fail. 2019, 25, 479–483. [Google Scholar] [CrossRef]
- Parkes, M.D.; Aliabadi, A.Z.; Cadeiras, M. , et al. An integrated molecular diagnostic report for heart transplant biopsies using an ensemble of diagnostic algorithms. The Journal of Heart and Lung Transplantation. 2019, 38, 636–646. [Google Scholar] [CrossRef]
- Nilsson, J.; Ohlsson, M.; Höglund, P.; Ekmehag, B.; Koul, B.; Andersson, B. The International Heart Transplant Survival Algorithm (IHTSA): a new model to improve organ sharing and survival. PLoS One. 2015, 10, e0118644. [Google Scholar] [CrossRef]
- Gotlieb, N.; Azhie, A.; Sharma, D. , et al. The promise of machine learning applications in solid organ transplantation. npj Digital Medicine. 2022, 5, 89. [Google Scholar] [CrossRef]
- Adedinsewo, D.; Hardway, H.D.; Morales-Lara, A.C. , et al. Non-invasive detection of cardiac allograft rejection among heart transplant recipients using an electrocardiogram based deep learning model. European Heart Journal - Digital Health. 2023, 4, 71–80. [Google Scholar] [CrossRef]
- Seraphin, T.P.; Luedde, M.; Roderburg, C. , et al. Prediction of heart transplant rejection from routine pathology slides with self-supervised deep learning. Eur Heart J Digit Health. 2023, 4, 265–274. [Google Scholar] [CrossRef]
- Hoda, M.R.; Grimm, M.; Laufer, G. Prediction of cyclosporine blood levels in heart transplantation patients using a pharmacokinetic model identified by evolutionary algorithms. J Heart Lung Transplant. 2005, 24, 1855–1862. [Google Scholar] [CrossRef] [PubMed]
- Woillard, J.-B.; Labriffe, M.; Debord, J.; Marquet, P. Tacrolimus Exposure Prediction Using Machine Learning. Clinical Pharmacology & Therapeutics. 2021, 110, 361–369. [Google Scholar]
- Musunuru, K.; Hershberger, R.E.; Day, S.M. , et al. Genetic Testing for Inherited Cardiovascular Diseases: A Scientific Statement From the American Heart Association. Circulation: Genomic and Precision Medicine. 2020, 13, e000067. [Google Scholar] [PubMed]
- Mao, D.; Liu, C.; Wang, L. , et al. AI-MARRVEL — A Knowledge-Driven AI System for Diagnosing Mendelian Disorders. NEJM AI. 2024, 1, AIoa2300009. [Google Scholar] [CrossRef] [PubMed]
- Rich, J.D.; Rich, S. Clinical Diagnosis of Pulmonary Hypertension. Circulation. 2014, 130, 1820–1830. [Google Scholar] [CrossRef]
- Tchuente Foguem, G.; Teguede Keleko, A. Artificial intelligence applied in pulmonary hypertension: a bibliometric analysis. AI Ethics. 2023, 1–31. [Google Scholar] [CrossRef]
- Hyde, B.; Paoli, C.J.; Panjabi, S.; Bettencourt, K.C.; Bell Lynum, K.S.; Selej, M. A claims-based, machine-learning algorithm to identify patients with pulmonary arterial hypertension. Pulm Circ. 2023, 13, e12237. [Google Scholar] [CrossRef]
- Anand, V.; Weston, A.D.; Scott, C.G.; Kane, G.C.; Pellikka, P.A.; Carter, R.E. Machine Learning for Diagnosis of Pulmonary Hypertension by Echocardiography. Mayo Clin Proc. 2024, 99, 260–270. [Google Scholar] [CrossRef]
- Swinnen, K.; Verstraete, K.; Baratto, C., et al. Machine learning to differentiate pulmonary hypertension due to left heart disease from pulmonary arterial hypertension. ERJ Open Res. 2023, 9(5).
- Maurer, M.S.; Bokhari, S.; Damy, T. , et al. Expert Consensus Recommendations for the Suspicion and Diagnosis of Transthyretin Cardiac Amyloidosis. Circulation: Heart Failure. 2019, 12, e006075. [Google Scholar]
- Grogan, M.; Murphree, D.H.; Shelly, M., et al. ARTIFICIAL-INTELLIGENCE ENHANCED SCREENING FOR CARDIAC AMYLOIDOSIS BY ELECTROCARDIOGRAPHY. Journal of the American College of Cardiology. 2021, 77(18_Supplement_1):527-527.
- Harmon, D.M.; Mangold, K.; Suarez, A.B., et al. Postdevelopment Performance and Validation of the Artificial Intelligence-Enhanced Electrocardiogram for Detection of Cardiac Amyloidosis. JACC Adv. 2023, 2(8).
- Martinez, D.S.; Noseworthy, P.A.; Akbilgic, O., et al. Artificial intelligence opportunities in cardio-oncology: Overview with spotlight on electrocardiography. Am Heart J Plus. 2022, 15.
- Lin, C.; Liu, W.-T.; Chang, C.-H. , et al. Artificial Intelligence–Powered Rapid Identification of ST-Elevation Myocardial Infarction via Electrocardiogram (ARISE) — A Pragmatic Randomized Controlled Trial. NEJM AI. 2024, 1, AIoa2400190. [Google Scholar] [CrossRef]
- Lin, C.-S.; Liu, W.-T.; Tsai, D.-J. , et al. AI-enabled electrocardiography alert intervention and all-cause mortality: a pragmatic randomized clinical trial. Nature Medicine. 2024, 30, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Noseworthy, P.A.; Attia, Z.I.; Behnken, E.M. , et al. Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: a prospective non-randomised interventional trial. The Lancet. 2022, 400, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.V.; Mahaffey, K.W.; Hedlin, H. , et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N Engl J Med. 2019, 381, 1909–1917. [Google Scholar] [CrossRef]
- . The complexities of physician supply and demand: projections from 2016 to 2030. Retrieved from https://aamc-black.global.ssl.fastly.net/production/media/filer_public/85/d7/85d7b689-f417-4ef0-97fb-ecc129836829/aamc_2018_workforce_projections_update_april_11_2018.pdf.
- Martin, B.; Kaminski-Ozturk, N.; O'Hara, C.; Smiley, R. Examining the Impact of the COVID-19 Pandemic on Burnout and Stress Among U.S. Nurses. J Nurs Regul. 2023, 14, 4–12. [Google Scholar] [CrossRef]
- Costa, D.K.; Friese, C.R. Policy Strategies for Addressing Current Threats to the U.S. Nursing Workforce. N Engl J Med. 2022, 386, 2454–2456. [Google Scholar] [CrossRef]
- Kane, R.L.; Shamliyan, T.A.; Mueller, C.; Duval, S.; Wilt, T.J. The association of registered nurse staffing levels and patient outcomes: systematic review and meta-analysis. Med Care. 2007, 45, 1195–1204. [Google Scholar] [CrossRef]
- Birger, M.; Kaldjian, A.S.; Roth, G.A.; Moran, A.E.; Dieleman, J.L.; Bellows, B.K. Spending on Cardiovascular Disease and Cardiovascular Risk Factors in the United States: 1996 to 2016. Circulation. 2021, 144, 271–282. [Google Scholar] [CrossRef]
- Clifton, D.A.; Wong, D.; Clifton, L. , et al. A large-scale clinical validation of an integrated monitoring system in the emergency department. IEEE journal of biomedical and health informatics. 2012, 17, 835–842. [Google Scholar] [CrossRef]
- Guglin, M.E.; Thatai, D. Common errors in computer electrocardiogram interpretation. International journal of cardiology. 2006, 106, 232–237. [Google Scholar] [CrossRef]
- Gandhi, T.K.; Classen, D.; Sinsky, C.A. , et al. How can artificial intelligence decrease cognitive and work burden for front line practitioners? JAMIA Open. 2023, 6, ooad079. [Google Scholar] [CrossRef] [PubMed]
- Hazarika, I. Artificial intelligence: opportunities and implications for the health workforce. Int Health. 2020, 12, 241–245. [Google Scholar] [CrossRef] [PubMed]
- How AI is helping doctors communicate with patients. Retrieved from https://www.aamc.org/news/how-ai-helping-doctors-communicate-patients.
- Babel, A.; Taneja, R.; Mondello Malvestiti, F.; Monaco, A.; Donde, S. Artificial Intelligence Solutions to Increase Medication Adherence in Patients With Non-communicable Diseases. Front Digit Health. 2021, 3:669869.
- Armoundas, A.A.; Narayan, S.M.; Arnett, D. K.et al. Use of Artificial Intelligence in Improving Outcomes in Heart Disease: A Scientific Statement From the American Heart Association. Circulation. 2024, 149, e1028–e1050. [Google Scholar] [CrossRef] [PubMed]
- Curtis, R.G.; Bartel, B.; Ferguson, T. , et al. Improving user experience of virtual health assistants: scoping review. Journal of medical Internet research. 2021, 23, e31737. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Gupta, A. Dealing with Noise Problem in Machine Learning Data-sets: A Systematic Review. Procedia Computer Science. 2019, 161, 466. [Google Scholar] [CrossRef]
- Liang, W.; Tadesse, G.A.; Ho, D. , et al. Advances, challenges and opportunities in creating data for trustworthy AI. Nature Machine Intelligence. 2022, 4, 669–677. [Google Scholar] [CrossRef]
- Torkzadehmahani, R.; Nasirigerdeh, R.; Blumenthal, D.B., et al. Privacy-Preserving Artificial Intelligence Techniques in Biomedicine. Methods Inf Med. 2022, 61(S 01):e12-e27.
- Murdoch, B. Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Med Ethics. 2021, 22, 122. [Google Scholar] [CrossRef]
- Goetz, L.; Seedat, N.; Vandersluis, R.; van der Schaar, M. Generalization—a key challenge for responsible AI in patient-facing clinical applications. npj Digital Medicine. 2024, 7, 126. [Google Scholar] [CrossRef]
- Tat, E.; Bhatt, D.L.; Rabbat, M.G. Addressing bias: artificial intelligence in cardiovascular medicine. The Lancet Digital Health. 2020, 2, e635–e636. [Google Scholar] [CrossRef]
- Dinov, I.D. Model Performance Assessment, Validation, and Improvement. In: Data Science and Predictive Analytics: Biomedical and Health Applications using R. Cham: Springer International Publishing; 2023, 477-531.
- Riley, R.D.; Archer, L.; Snell, K.I.E. , et al. Evaluation of clinical prediction models (part 2): how to undertake an external validation study. BMJ. 2024, 384, e074820. [Google Scholar] [CrossRef]
- Edafetanure-Ibeh, F. ADVANCING PREDICTIVE INSIGHTS IN CARDIOLOGY: A COMPARATIVE ANALYSIS OF MACHINE LEARNING MODELS FOR EARLY DETECTION AND CLINICAL IMPLICATIONS OF HEART DISEASE. 2024.
- Mooghali, M.; Stroud, A.M.; Yoo, D.W., et al. Barriers and Facilitators to Trustworthy and Ethical AI-enabled Medical Care From Patient’s and Healthcare Provider’s Perspectives: A Literature Review. medRxiv. 2023, 2023.2010.2002.23296447.
- Panjiyar, B.K.; Davydov, G.; Nashat, H. , et al. A Systematic Review: Do the Use of Machine Learning, Deep Learning, and Artificial Intelligence Improve Patient Outcomes in Acute Myocardial Ischemia Compared to Clinician-Only Approaches? Cureus. 2023, 15, e43003. [Google Scholar] [PubMed]
- Petrick, N.; Chen, W.; Delfino, J.G. , et al. Regulatory considerations for medical imaging AI/ML devices in the United States: concepts and challenges. J Med Imaging (Bellingham). 2023, 10, 051804. [Google Scholar] [PubMed]
- Shipley, E.; Joddrell, M.; Lip, G.; Zheng, Y. Bridging the Gap Between Artificial Intelligence Research and Clinical Practice in Cardiovascular Science: What the Clinician Needs to Know. Arrhythmia & Electrophysiology Review. 2022, 11.
- Drabiak, K. Leveraging law and ethics to promote safe and reliable AI/ML in healthcare. Front Nucl Med. 2022, 2:983340.
- Arbelaez Ossa, L.; Milford, S.R.; Rost, M.; Leist, A.K.; Shaw, D.M.; Elger, B.S. AI Through Ethical Lenses: A Discourse Analysis of Guidelines for AI in Healthcare. Sci Eng Ethics. 2024, 30, 24. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, T.; Christou, I.T.; Ipektsidis, C.; Soldatos, J.; Amicone, A. Explainable and transparent artificial intelligence for public policymaking. Data & Policy. 2024, 6:e10.
- Osasona, F.; Amoo, O.; Atadoga, A., Abrahams T, Farayola O, Ayinla B. REVIEWING THE ETHICAL IMPLICATIONS OF AI IN DECISION MAKING PROCESSES. International Journal of Management & Entrepreneurship Research. 2024, 6:322-335.
- Thoenes, M.; Agarwal, A.; Grundmann, D. , et al. Narrative review of the role of artificial intelligence to improve aortic valve disease management. J Thorac Dis. 2021, 13, 396–404. [Google Scholar] [CrossRef]
- Shiferaw, K.B.; Wali, P.; Waltemath, D.; Zeleke, A.A. Navigating the AI frontiers in cardiovascular research: a bibliometric exploration and topic modeling. Front Cardiovasc Med. 2023, 10, 1308668. [Google Scholar] [CrossRef]
- Stamate, E.; Piraianu, A.I.; Ciobotaru, O.R., et al. Revolutionizing Cardiology through Artificial Intelligence-Big Data from Proactive Prevention to Precise Diagnostics and Cutting-Edge Treatment-A Comprehensive Review of the Past 5 Years. Diagnostics (Basel). 2024, 14(11).
- Doolub, G.; Mamalakis, M.; Alabed, S., et al. Artificial Intelligence as a Diagnostic Tool in Non-Invasive Imaging in the Assessment of Coronary Artery Disease. Med Sci (Basel). 2023, 11(1).
- Dritsas, E.; Trigka, M. Efficient Data-Driven Machine Learning Models for Cardiovascular Diseases Risk Prediction. Sensors (Basel). 2023, 23(3).
- Bhatt, C.; Patel, P.; Ghetia, T.; Mazzeo, P.L. Effective Heart Disease Prediction Using Machine Learning Techniques. Algorithms. 2023, 16, 88. [Google Scholar] [CrossRef]
- Nadakinamani, R.G.; Reyana, A.; Kautish, S. , et al. Clinical Data Analysis for Prediction of Cardiovascular Disease Using Machine Learning Techniques. Comput Intell Neurosci. 2022, 2022, 2973324. [Google Scholar] [CrossRef]
- Baashar, Y.; Alkawsi, G.; Alhussian, H. , et al. Effectiveness of Artificial Intelligence Models for Cardiovascular Disease Prediction: Network Meta-Analysis. Comput Intell Neurosci. 2022, 2022, 5849995. [Google Scholar] [CrossRef]
- Lee, S.; Chu, Y.; Ryu, J.; Park, Y.J.; Yang, S.; Koh, S.B. Artificial Intelligence for Detection of Cardiovascular-Related Diseases from Wearable Devices: A Systematic Review and Meta-Analysis. Yonsei Med J. 2022, 63(Suppl):S93-s107.
- Mohan, S.; Thirumalai, C.; Srivastava, G. Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques. IEEE Access. 2019, 7:81542-81554.
- Abdar, M.; Książek, W.; Acharya, U.R.; Tan, R.S.; Makarenkov, V.; Pławiak, P. A new machine learning technique for an accurate diagnosis of coronary artery disease. Comput Methods Programs Biomed. 2019, 179, 104992. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
