Submitted:
03 December 2024
Posted:
04 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Agency for research on cancer. Global cancer observatory: cancer today. Available online: https://gco.iarc.fr/today/home (accessed on 8 November 2023).
- Boland, J.M. What's new in benign lung tumours? Histopathology 2024, 84, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Stapelfeld, C.; Dammann, C.; Maser, E. Sex-specificity in lung cancer risk. Int J Cancer 2020, 146, 2376–2382. [Google Scholar] [CrossRef] [PubMed]
- Collado-Borrell, R.; Escudero-Vilaplana, V.; Romero-Jiménez, R.; Iglesias-Peinado, I.; Herranz-Alonso, A.; Sanjurjo-Sáez, M. Oral antineoplastic agent interactions with medicinal plants and food: an issue to take into account. J Cancer Res Clin Oncol 2016, 142, 2319–2330. [Google Scholar] [CrossRef]
- Santana Martínez, S.; Marcos Rodríguez, J.A.; Romero Carreño, E. [Oral chemotherapy: food-drug interactions]. Farm Hosp 2015, 39, 203–209. [Google Scholar] [CrossRef]
- Cheng, Y.Y.; Hsieh, C.H.; Tsai, T.H. Concurrent administration of anticancer chemotherapy drug and herbal medicine on the perspective of pharmacokinetics. J Food Drug Anal 2018, 26, S88–S95. [Google Scholar] [CrossRef]
- Engdal, S.; Klepp, O.; Nilsen, O.G. Identification and exploration of herb-drug combinations used by cancer patients. Integr Cancer Ther 2009, 8, 29–36. [Google Scholar] [CrossRef]
- Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 1982, 5, 649–655. [Google Scholar] [CrossRef]
- Basch, E.; Reeve, B.B.; Mitchell, S.A.; Clauser, S.B.; Minasian, L.M.; Dueck, A.C.; Mendoza, T.R.; Hay, J.; Atkinson, T.M.; Abernethy, A.P.; et al. Development of the National Cancer Institute's patient-reported outcomes version of the common terminology criteria for adverse events (PRO-CTCAE). J Natl Cancer Inst 2014, 106. [Google Scholar] [CrossRef]
- Katsumata, R.; Shiotani, A.; Murao, T.; Ishii, M.; Fujita, M.; Matsumoto, H.; Haruma, K. Gender Differences in Serotonin Signaling in Patients with Diarrhea-predominant Irritable Bowel Syndrome. Intern Med 2017, 56, 993–999. [Google Scholar] [CrossRef]
- VanderPluym, J.H.; Charleston, L.; Stitzer, M.E.; Flippen, C.C.; Armand, C.E.; Kiarashi, J. A Review of Underserved and Vulnerable Populations in Headache Medicine in the United States: Challenges and Opportunities. Curr Pain Headache Rep 2022, 26, 415–422. [Google Scholar] [CrossRef]
- Ackley, E.; Halker Singh, R.B. Sex and gender: Opportunities to expand research and understanding within headache medicine. Headache 2022, 62, 771–773. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, M.C.; Saelzler, U.G.; Panizzon, M.S. Sex Differences in Migraine: A Twin Study. Front Pain Res (Lausanne) 2021, 2, 766718. [Google Scholar] [CrossRef] [PubMed]
- Delaruelle, Z.; Ivanova, T.A.; Khan, S.; Negro, A.; Ornello, R.; Raffaelli, B.; Terrin, A.; Mitsikostas, D.D.; Reuter, U.; (EHF-SAS), E.H.F.S.o.A.S. Male and female sex hormones in primary headaches. J Headache Pain 2018, 19, 117. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.; Desai, M.N.; Schoenbrunner, A.; Schneeberger, S.; Janis, J.E. The complex relationship between estrogen and migraines: a scoping review. Syst Rev 2021, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- StatPearls. 2023.
- Lichtman, J.H.; Leifheit, E.C.; Safdar, B.; Bao, H.; Krumholz, H.M.; Lorenze, N.P.; Daneshvar, M.; Spertus, J.A.; D'Onofrio, G. Sex Differences in the Presentation and Perception of Symptoms Among Young Patients With Myocardial Infarction: Evidence from the VIRGO Study (Variation in Recovery: Role of Gender on Outcomes of Young AMI Patients). Circulation 2018, 137, 781–790. [Google Scholar] [CrossRef]
- Choi, Y.J.; Park, Y.S.; Kim, N.; Kim, Y.S.; Lee, S.M.; Lee, D.H.; Jung, H.C. Gender differences in ghrelin, nociception genes, psychological factors and quality of life in functional dyspepsia. World J Gastroenterol 2017, 23, 8053–8061. [Google Scholar] [CrossRef]
- El Mihyaoui, A.; Esteves da Silva, J.C.G.; Charfi, S.; Candela Castillo, M.E.; Lamarti, A.; Arnao, M.B. 2022; 12. [CrossRef]
- Oveissi, V.; Ram, M.; Bahramsoltani, R.; Ebrahimi, F.; Rahimi, R.; Naseri, R.; Belwal, T.; Devkota, H.P.; Abbasabadi, Z.; Farzaei, M.H. Medicinal plants and their isolated phytochemicals for the management of chemotherapy-induced neuropathy: therapeutic targets and clinical perspective. Daru 2019, 27, 389–406. [Google Scholar] [CrossRef]
- Salehi, B.; Lopez-Jornet, P.; Pons-Fuster López, E.; Calina, D.; Sharifi-Rad, M.; Ramírez-Alarcón, K.; Forman, K.; Fernández, M.; Martorell, M.; Setzer, W.N.; et al. Plant-Derived Bioactives in Oral Mucosal Lesions: A Key Emphasis to Curcumin, Lycopene, Chamomile, Biomolecules 2019, 9. [Google Scholar] [CrossRef]
- de Lima Dantas, J.B.; Freire, T.F.C.; Sanches, A.C.B.; Julião, E.L.D.; Medrado, A.R.A.P.; Martins, G.B. Action of Matricaria recutita (chamomile) in the management of radiochemotherapy oral mucositis: A systematic review. Phytother Res 2022, 36, 1115–1125. [Google Scholar] [CrossRef]
- Sanaati, F.; Najafi, S.; Kashaninia, Z.; Sadeghi, M. Effect of Ginger and Chamomile on Nausea and Vomiting Caused by Chemotherapy in Iranian Women with Breast Cancer. Asian Pac J Cancer Prev 2016, 17, 4125–4129. [Google Scholar]
- Hayakawa, S.; Ohishi, T.; Miyoshi, N.; Oishi, Y.; Nakamura, Y.; Isemura, M. Anti-Cancer Effects of Green Tea Epigallocatchin-3-Gallate and Coffee Chlorogenic Acid. Molecules 2020, 25. [Google Scholar] [CrossRef] [PubMed]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int J Mol Sci 2020, 21. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Li, C.; Wang, S.; Song, X. 2022; 27. [CrossRef]
- Zhang, L.; Wen, J.X.; Hai, L.; Wang, Y.F.; Yan, L.; Gao, W.H.; Hu, Z.D.; Wang, Y.J. Preventive and therapeutic effects of green tea on lung cancer: a narrative review of evidence from clinical and basic research. J Thorac Dis 2022, 14, 5029–5038. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; González-Burgos, E.; Iglesias, I.; Gómez-Serranillos, M.P. Pharmacological Update Properties of. Molecules 2020, 25. [Google Scholar] [CrossRef]
- Manirakiza, A.; Irakoze, L.; Manirakiza, S. Aloe and its Effects on Cancer: A Narrative Literature Review. East Afr Health Res J 2021, 5, 1–16. [Google Scholar] [CrossRef]
- Şeker Karatoprak, G.; Küpeli Akkol, E.; Yücel, Ç.; Bahadır Acıkara, Ö.; Sobarzo-Sánchez, E. Advances in Understanding the Role of Aloe Emodin and Targeted Drug Delivery Systems in Cancer. Oxid Med Cell Longev 2022, 2022, 7928200. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, W.W.; Sun, X.; Qian, D.; Tang, D.D.; Zhang, L.L.; Li, M.Y.; Wang, L.Y.; Wu, C.J.; Peng, W. The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers. Int J Biol Sci 2022, 18, 3498–3527. [Google Scholar] [CrossRef]
- Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int J Mol Sci 2019, 20. [Google Scholar] [CrossRef]
- Giordano, A.; Tommonaro, G. Curcumin and Cancer. Nutrients 2019, 11. [Google Scholar] [CrossRef]
- Wan Mohd Tajuddin, W.N.B.; Lajis, N.H.; Abas, F.; Othman, I.; Naidu, R. Mechanistic Understanding of Curcumin's Therapeutic Effects in Lung Cancer. Nutrients 2019, 11. [Google Scholar] [CrossRef]
- Salehi, M.; Movahedpour, A.; Tayarani, A.; Shabaninejad, Z.; Pourhanifeh, M.H.; Mortezapour, E.; Nickdasti, A.; Mottaghi, R.; Davoodabadi, A.; Khan, H.; et al. Therapeutic potentials of curcumin in the treatment of non-small-cell lung carcinoma. Phytother Res 2020, 34, 2557–2576. [Google Scholar] [CrossRef] [PubMed]
- Mahomoodally, M.F.; Aumeeruddy, M.Z.; Rengasamy, K.R.R.; Roshan, S.; Hammad, S.; Pandohee, J.; Hu, X.; Zengin, G. Ginger and its active compounds in cancer therapy: From folk uses to nano-therapeutic applications. Semin Cancer Biol 2021, 69, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Lee, J.; Kim, K.; Choi, H.K.; Lee, S.A.; Lee, H.J. Effects of Ginger Intake on Chemotherapy-Induced Nausea and Vomiting: A Systematic Review of Randomized Clinical Trials. Nutrients 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.D.; Kwag, E.B.; Yang, M.X.; Yoo, H.S. Efficacy and Safety of Ginger on the Side Effects of Chemotherapy in Breast Cancer Patients: Systematic Review and Meta-Analysis. Int J Mol Sci 2022, 23. [Google Scholar] [CrossRef]
- de Lima, R.M.T.; Dos Reis, A.C.; de Menezes, A.P.M.; Santos, J.V.O.; Filho, J.W.G.O.; Ferreira, J.R.O.; de Alencar, M.V.O.B.; da Mata, A.M.O.F.; Khan, I.N.; Islam, A.; et al. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: A comprehensive review. Phytother Res 2018, 32, 1885–1907. [Google Scholar] [CrossRef]
- Li, X.; Qin, Y.; Liu, W.; Zhou, X.Y.; Li, Y.N.; Wang, L.Y. Efficacy of Ginger in Ameliorating Acute and Delayed Chemotherapy-Induced Nausea and Vomiting Among Patients With Lung Cancer Receiving Cisplatin-Based Regimens: A Randomized Controlled Trial. Integr Cancer Ther 2018, 17, 747–754. [Google Scholar] [CrossRef]
- da Silva, R.L.M.; da Silva, T.T.M.; Pessoa, R.L.; Sarmento, A.C.A.; Medeiros, K.S.; Dantas, D.V.; Dantas, R.A.N. Use of ginger to control nausea and vomiting caused by chemotherapy in patients with cervical cancer undergoing treatment: An experiment. Medicine (Baltimore) 2022, 101, e29403. [Google Scholar] [CrossRef]
- De Greef, D.; Barton, E.M.; Sandberg, E.N.; Croley, C.R.; Pumarol, J.; Wong, T.L.; Das, N.; Bishayee, A. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin Cancer Biol 2021, 73, 219–264. [Google Scholar] [CrossRef]
- Mondal, A.; Banerjee, S.; Bose, S.; Mazumder, S.; Haber, R.A.; Farzaei, M.H.; Bishayee, A. Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations. Pharmacol Res 2022, 175, 105837. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Ruan, J.; Zhuang, X.; Zhang, X.; Li, Z. Phytochemicals of garlic: Promising candidates for cancer therapy. Biomed Pharmacother 2020, 123, 109730. [Google Scholar] [CrossRef]
- Na, G.; He, C.; Zhang, S.; Tian, S.; Bao, Y.; Shan, Y. Dietary Isothiocyanates: Novel Insights into the Potential for Cancer Prevention and Therapy. Int J Mol Sci 2023, 24. [Google Scholar] [CrossRef] [PubMed]
- Elkashty, O.A.; Tran, S.D. Sulforaphane as a Promising Natural Molecule for Cancer Prevention and Treatment. Curr Med Sci 2021, 41, 250–269. [Google Scholar] [CrossRef] [PubMed]
- Iahtisham-Ul-Haq; Khan, S. ; Awan, K.A.; Iqbal, M.J. Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic review. J Food Biochem 2022, 46, e13886. [Google Scholar] [CrossRef]
- Wang, F.; Sun, Y.; Huang, X.; Qiao, C.; Zhang, W.; Liu, P.; Wang, M. Sulforaphane inhibits self-renewal of lung cancer stem cells through the modulation of sonic Hedgehog signaling pathway and polyhomeotic homolog 3. AMB Express 2021, 11, 121. [Google Scholar] [CrossRef]
- Uusitalo, L.; Salmenhaara, M.; Isoniemi, M.; Garcia-Alvarez, A.; Serra-Majem, L.; Ribas-Barba, L.; Finglas, P.; Plumb, J.; Tuominen, P.; Savela, K.; et al. Intake of selected bioactive compounds from plant food supplements containing fennel (Foeniculum vulgare) among Finnish consumers. Food Chem 2016, 194, 619–625. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, M.H.; Wang, F.; Chen, P.Y.; Ke, X.G.; Yu, B.; Yang, Y.F.; You, P.T.; Wu, H.Z. Network pharmacology and molecular docking reveal the mechanism of Scopoletin against non-small cell lung cancer. Life Sci 2021, 270, 119105. [Google Scholar] [CrossRef]
- Ke, W.; Zhao, X.; Lu, Z. Foeniculum vulgare seed extract induces apoptosis in lung cancer cells partly through the down-regulation of Bcl-2. Biomed Pharmacother 2021, 135, 111213. [Google Scholar] [CrossRef]
- Leischner, C.; Egert, S.; Burkard, M.; Venturelli, S. Potential Protective Protein Components of Cow's Milk against Certain Tumor Entities. Nutrients 2021, 13. [Google Scholar] [CrossRef]
- Thorning, T.K.; Raben, A.; Tholstrup, T.; Soedamah-Muthu, S.S.; Givens, I.; Astrup, A. Milk and dairy products: good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr Res 2016, 60, 32527. [Google Scholar] [CrossRef]
- Jiang, T.A. Health Benefits of Culinary Herbs and Spices. J AOAC Int 2019, 102, 395–411. [Google Scholar] [CrossRef]
- Villa-Rivera, M.G.; Ochoa-Alejo, N. Chili Pepper Carotenoids: Nutraceutical Properties and Mechanisms of Action. Molecules 2020, 25. [Google Scholar] [CrossRef]
- Merritt, J.C.; Richbart, S.D.; Moles, E.G.; Cox, A.J.; Brown, K.C.; Miles, S.L.; Finch, P.T.; Hess, J.A.; Tirona, M.T.; Valentovic, M.A.; et al. Anti-cancer activity of sustained release capsaicin formulations. Pharmacol Ther 2022, 238, 108177. [Google Scholar] [CrossRef] [PubMed]
- Chapa-Oliver, A.M.; Mejía-Teniente, L. Capsaicin: From Plants to a Cancer-Suppressing Agent. Molecules 2016, 21. [Google Scholar] [CrossRef] [PubMed]
- Varilla, C.; Marcone, M.; Paiva, L.; Baptista, J. 2021; 10. [CrossRef]
- Agrawal, P.; Nikhade, P.; Patel, A.; Mankar, N.; Sedani, S. Bromelain: A Potent Phytomedicine. Cureus 2022, 14, e27876. [Google Scholar] [CrossRef]
- Chakraborty, A.J.; Mitra, S.; Tallei, T.E.; Tareq, A.M.; Nainu, F.; Cicia, D.; Dhama, K.; Emran, T.B.; Simal-Gandara, J.; Capasso, R. Bromelain a Potential Bioactive Compound: A Comprehensive Overview from a Pharmacological Perspective. Life (Basel) 2021, 11. [Google Scholar] [CrossRef]
- Gremmler, L.; Kutschan, S.; Dörfler, J.; Büntzel, J.; Hübner, J. Proteolytic Enzyme Therapy in Complementary Oncology: A Systematic Review. Anticancer Res 2021, 41, 3213–3232. [Google Scholar] [CrossRef]
- Hikisz, P.; Bernasinska-Slomczewska, J. Beneficial Properties of Bromelain. Nutrients 2021, 13. [Google Scholar] [CrossRef]
| Patients (N) | 35 |
|---|---|
| Age (median (IQR)) | 67 (53.25-72.75) |
| Males (N (%)) Body Mass Index (median (IQR)) |
20 (57.14) 24.55 (22.77-26.59) |
| Accesses (N) | 66 |
| Males (N (%)) | 30 (45.45) |
| Drugs (N (%)) | |
| Hydrocortisone | 4 (6) |
| Dexamethasone | 9 (14) |
| Metoclopramide | 4 (6) |
| Ondansetron | 1 (2) |
| Paracetamol | 23 (35) |
| Codeine | 5 (8) |
| Fentanyl | 2 (3) |
| Tramadol | 2 (3) |
| Amlodipine | 3 (5) |
| Nebivolol | 1 (2) |
| Atorvastatin | 4 (6) |
| Simvastatin | 1 (2) |
| Other | 41 (62) |
| Phytotherapics (N (%)) | |
| Propolis | 8 (12) |
| Ginger | 20 (30) |
| Turmeric | 8 (12) |
| Eucalyptus | 4 (6) |
| Garlic | 17 (26) |
| Sage | 9 (14) |
| Valerian | 3 (5) |
| Licorice | 7 (11) |
| Astragalus | 1 (2) |
| Aloe | 11 (17) |
| Oats | 4 (6) |
| Green tea | 17 (26) |
| Chamomile | 19 (29) |
| Echinacea | 2 (3) |
| Soy | 12 (18) |
| Cannabis | 1 (2) |
| Mint | 12 (18) |
| Goji berries | 1 (2) |
| Charcoal | 1 (2) |
| Linseed oil | 1 (2) |
| Foods (N (%)) | |
| Broccoli | 46 (70) |
| Grapefruit | 5 (8) |
| Garlic | 41 (62) |
| Pomegranate | 6 (9) |
| Oats | 13 (20) |
| Pineapple | 20 (30) |
| Vinegar | 28 (42) |
| Milk | 33 (50) |
| Lemon | 34 (52) |
| Fennel | 35 (53) |
| Papaya | 8 (12) |
| Chilli pepper | 24 (36) |
| Cabbage | 35 (53) |
| Fig | 7 (11) |
| Adverse Events (N (%)) | |
| Nausea | 4 (6) |
| Vomit | 2 (3) |
| Mucositis | 2 (3) |
| Dysgeusia | 6 (9) |
| Constipation | 21 (32) |
| Diarrhea | 13 (20) |
| Headache | 8 (12) |
| Epigastric pain | 8 (12) |
| Asthenia | 42 (64) |
| Skin toxicity | 18 (27) |
| Hand-foot syndrome | 4 (6) |
| Alopecia | 9 (14) |
| Other | 2 (3) |
| Percentage of adverse events | |||||||
|---|---|---|---|---|---|---|---|
| Phytotherapic | Percentage of assumption | Alopecia | Epigastric pain | Mucositis | Hand-foot syndrome | Nausea | Vomit |
| Chamomile | 29 | 73.7 | / | 68.4 | 36.8 | / | / |
| Green tea | 26 | 70.6 | / | / | / | / | / |
| Aloe | 17 | 45.5 | 45.5 | / | / | 54.6 | 54.6 |
| Tumeric | 12 | / | 75 | / | / | / | / |
| Percentage of adverse events | ||||||||
|---|---|---|---|---|---|---|---|---|
| Food | Percentage of assumption | Epigastric pain | Alopecia | Dysgeusia | Nausea | Skin toxicity | Vomit | Headache |
| Fennel | 53 | 25.7 | 25.7 | 54.3 | 25.7 | 54.3 | 25.7 | / |
| Cabbage | 53 | 100 | 62.9 | 51.4 | / | / | / | / |
| Milk | 50 | / | / | 81.4 | / | / | / | / |
| Chilli pepper | 30 | / | / | / | / | / | / | 79.2 |
| Pineapple | 30 | / | / | / | 65 | / | / | / |
| Oats | 20 | 38.5 | 38.5 | / | / | 38.5 | / | / |
| Papaya | 12 | 50 | 100 | / | / | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
