Submitted:
02 December 2024
Posted:
03 December 2024
You are already at the latest version
Abstract
Obesity often coexists with thyroid diseases, and the prevalence of these disorders has been on the rise for years. While hypothyroidism can contribute to excess fat tissue, the relationship between Body Mass Index (BMI) and thyroid function hormones is bidirectional. Research confirms that fat tissue reduction can positively impact thyroid function. Thus, delaying the initiation of therapies beyond substitution treatment to achieve optimal weight reduction in individuals with thyroid dysfunction seems unwarranted. The authors summarize current knowledge on this topic in the article.
Keywords:
1. Introduction
2. Relevant Section and Discussion
2.1. Secondary Hormonal Changes in Obesity
2.2. Behavioral Therapies in Obesity and Hypothyroidism
2.3. Incretin Therapies and Bariatric Surgery in the Treatment of Obesity and Hypothyroidism
3. Conclusions
Future Directions
Author Contributions
Founding
Conflicts of Interest
References
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 30 October 2024).
- Obesity. Available online: https://www.who.int/health-topics/obesity (accessed on 30 October 2024).
- Chatterjee, A.; Gerdes, M.W.; Martinez, S.G. Identification of Risk Factors Associated with Obesity and Overweight-A Machine Learning Overview. Sensors (Basel) 2020, 20, 2734. [Google Scholar] [CrossRef]
- Safaei, M.; Sundararajan, E.A.; Driss, M.; Boulila, W.; Shapi’i, A. A Systematic Literature Review on Obesity: Understanding the Causes & Consequences of Obesity and Reviewing Various Machine Learning Approaches Used to Predict Obesity. Comput Biol Med 2021, 136, 104754. [Google Scholar]
- Hall, K.D.; Guo, J. Obesity Energetics: Body Weight Regulation and the Effects of Diet Composition. Gastroenterology 2017, 152, 1718–1727.e3. [Google Scholar] [CrossRef] [PubMed]
- Chooi, Y.C.; Ding, C.; Magkos, F. The Epidemiology of Obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.P.; Mesidor, M.; Winters, K.; Dubbert, P.M.; Wyatt, S.B. Overweight and Obesity: Prevalence, Consequences, and Causes of a Growing Public Health Problem. Curr Obes Rep 2015, 4, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Camacho, S.; Ruppel, A. Is the Calorie Concept a Real Solution to the Obesity Epidemic? Glob Health Action 2017, 10, 1289650. [Google Scholar] [CrossRef]
- Safaei, M.; Sundararajan, E.A.; Driss, M.; Boulila, W.; Shapi’i, A. A Systematic Literature Review on Obesity: Understanding the Causes & Consequences of Obesity and Reviewing Various Machine Learning Approaches Used to Predict Obesity. Comput Biol Med 2021, 136, 104754. [Google Scholar]
- Ayogu, R.N.B.; Oshomegie, H.; Udenta, E.A. Energy Intake, Expenditure and Balance, and Factors Associated with Energy Balance of Young Adults (20-39 Years): A Retrospective Cross-Sectional Community-Based Cohort Study. BMC Nutr 2022, 8, 142. [Google Scholar] [CrossRef] [PubMed]
- Gratas-Delamarche, A.; Derbré, F.; Vincent, S.; Cillard, J. Physical Inactivity, Insulin Resistance, and the Oxidative-Inflammatory Loop. Free Radic Res 2014, 48, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose Tissue and Insulin Resistance in Obese. Biomed Pharmacother 2021, 137, 111315. [Google Scholar] [CrossRef]
- Choi, C.S.; Fillmore, J.J.; Kim, J.K.; Liu, Z.-X.; Kim, S.; Collier, E.F.; Kulkarni, A.; Distefano, A.; Hwang, Y.-J.; Kahn, M.; et al. Overexpression of Uncoupling Protein 3 in Skeletal Muscle Protects against Fat-Induced Insulin Resistance. J Clin Invest 2007, 117, 1995–2003. [Google Scholar] [CrossRef]
- 2024 ADA Diabetes Standards of Medical Care Clinical Guideline Summary - American Diabetes Association Guidelines. Available online: https://www.guidelinecentral.com/guideline/14119 (accessed on 19 November 2024).
- Module 1: Insulin Resistance, the Metabolic Syndrome and Type 2 Diabetes – EASD e-Learning. Available online: https://easd-elearning.eu/lessons/module-1-insulin-resistance-the-metabolic-syndrome-and-type-2-diabetes/ (accessed on 19 November 2024).
- Bauer, B.S.; Azcoaga-Lorenzo, A.; Agrawal, U.; Fagbamigbe, A.F.; McCowan, C. The Impact of the Management Strategies for Patients with Subclinical Hypothyroidism on Long-Term Clinical Outcomes: An Umbrella Review. PLoS One 2022, 17, e0268070. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, R.; Casanueva, F.; Haluzik, M.; van Hulsteijn, L.; Ledoux, S.; Monteiro, M.P.; Salvador, J.; Santini, F.; Toplak, H.; Dekkers, O.M. European Society of Endocrinology Clinical Practice Guideline: Endocrine Work-up in Obesity. Eur J Endocrinol 2020, 182, G1–G32. [Google Scholar] [CrossRef]
- Brenta, G. Why Can Insulin Resistance Be a Natural Consequence of Thyroid Dysfunction? J Thyroid Res 2011, 2011, 152850. [Google Scholar] [CrossRef]
- Ma, S.; Jing, F.; Xu, C.; Zhou, L.; Song, Y.; Yu, C.; Jiang, D.; Gao, L.; Li, Y.; Guan, Q.; et al. Thyrotropin and Obesity: Increased Adipose Triglyceride Content through Glycerol-3-Phosphate Acyltransferase 3. Sci Rep 2015, 5, 7633. [Google Scholar] [CrossRef] [PubMed]
- Mullur, R.; Liu, Y.-Y.; Brent, G.A. Thyroid Hormone Regulation of Metabolism. Physiol Rev 2014, 94, 355–382. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Yao, X.; Ying, H. Thyroid Hormone Action in Metabolic Regulation. Protein Cell 2011, 2, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Peng, H.; Chen, X.; Wu, X.; Wang, B. Hyperlipidemia and Hypothyroidism. Clin Chim Acta 2022, 527, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Medici, B.R.; Nygaard, B.; la Cour, J.L.; Krakauer, M.; Brønden, A.; Sonne, M.P.; Holst, J.J.; Rehfeld, J.F.; Vilsbøll, T.; Faber, J.; et al. Effects of Levothyroxine Substitution Therapy on Hunger and Food Intake in Individuals with Hypothyroidism. Endocr Connect 2023, 12, e230314. [Google Scholar] [CrossRef] [PubMed]
- Posadzki, P.; Pieper, D.; Bajpai, R.; Makaruk, H.; Könsgen, N.; Neuhaus, A.L.; Semwal, M. Exercise/Physical Activity and Health Outcomes: An Overview of Cochrane Systematic Reviews. BMC Public Health 2020, 20, 1724. [Google Scholar] [CrossRef]
- Ren, R.; Jiang, X.; Zhang, X.; Guan, Q.; Yu, C.; Li, Y.; Gao, L.; Zhang, H.; Zhao, J. Association between Thyroid Hormones and Body Fat in Euthyroid Subjects. Clin Endocrinol (Oxf) 2014, 80, 585–590. [Google Scholar] [CrossRef]
- Chatzitomaris, A.; Hoermann, R.; Midgley, J.E.; Hering, S.; Urban, A.; Dietrich, B.; Abood, A.; Klein, H.H.; Dietrich, J.W. Thyroid Allostasis-Adaptive Responses of Thyrotropic Feedback Control to Conditions of Strain, Stress, and Developmental Programming. Front Endocrinol (Lausanne) 2017, 8, 163. [Google Scholar] [CrossRef]
- Kwon, H.; Cho, J.-H.; Lee, D.Y.; Park, S.E.; Park, C.-Y.; Lee, W.-Y.; Oh, K.-W.; Park, S.-W.; Rhee, E.-J. Association between Thyroid Hormone Levels, Body Composition and Insulin Resistance in Euthyroid Subjects with Normal Thyroid Ultrasound: The Kangbuk Samsung Health Study. Clin Endocrinol (Oxf) 2018, 89, 649–655. [Google Scholar] [CrossRef]
- Calcaterra, V.; Vinci, F.; Casari, G.; Pelizzo, G.; de Silvestri, A.; De Amici, M.; Albertini, R.; Regalbuto, C.; Montalbano, C.; Larizza, D.; et al. Evaluation of Allostatic Load as a Marker of Chronic Stress in Children and the Importance of Excess Weight. Front Pediatr 2019, 7, 335. [Google Scholar] [CrossRef] [PubMed]
- Adamska, A.; Raczkowski, A.; Stachurska, Z.; Kondraciuk, M.; Krętowski, A.J.; Adamski, M.; Kowalska, I.; Kamiński, K.A. Body Composition and Serum Concentration of Thyroid Hormones in Euthyroid Men and Women from General Population. J Clin Med 2022, 11, 2118. [Google Scholar] [CrossRef] [PubMed]
- Di Bonito, P.; Corica, D.; Licenziati, M.R.; Di Sessa, A.; Miraglia Del Giudice, E.; Faienza, M.F.; Calcaterra, V.; Franco, F.; Maltoni, G.; Valerio, G.; et al. Central Sensitivity to Thyroid Hormones Is Reduced in Youths with Overweight or Obesity and Impaired Glucose Tolerance. Front Endocrinol (Lausanne) 2023, 14, 1159407. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Chen, R.; Zhou, J.; Xu, W.; Zhou, J.; Chen, X.; Gong, X.; Chen, Z. Impaired Sensitivity to Thyroid Hormones Is Associated with Central Obesity in Euthyroid Type 2 Diabetes Mellitus Patients with Overweight and Obesity. Diabetes Metab Syndr Obes 2024, 17, 3379–3396. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Liu, Q.; Luo, Y.; Chen, J.; Zheng, Q.; Xie, Y.; Cao, Y. Causal Association between Obesity and Hypothyroidism: A Two-Sample Bidirectional Mendelian Randomization Study. Front Endocrinol (Lausanne) 2024, 14, 1287463. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.; Chen, Y.; Yang, J.; Yang, W.; Wang, C. Effect of Bariatric Surgery on Thyroid Function in Obese Patients: A Systematic Review and Meta-Analysis. Obes Surg 2017, 27, 3292–3305. [Google Scholar] [CrossRef]
- Juiz-Valiña, P.; Outeiriño-Blanco, E.; Pértega, S.; Varela-Rodriguez, B.M.; García-Brao, M.J.; Mena, E.; Pena-Bello, L.; Cordido, M.; Sangiao-Alvarellos, S.; Cordido, F. Effect of Weight Loss after Bariatric Surgery on Thyroid-Stimulating Hormone Levels in Euthyroid Patients with Morbid Obesity. Nutrients 2019, 11, 1121. [Google Scholar] [CrossRef]
- Cordido, M.; Juiz-Valiña, P.; Urones, P.; Sangiao-Alvarellos, S.; Cordido, F. Thyroid Function Alteration in Obesity and the Effect of Bariatric Surgery. J Clin Med 2022, 11, 1340. [Google Scholar] [CrossRef]
- Laclaustra, M.; Moreno-Franco, B.; Lou-Bonafonte, J.M.; Mateo-Gallego, R.; Casasnovas, J.A.; Guallar-Castillon, P.; Cenarro, A.; Civeira, F. Impaired Sensitivity to Thyroid Hormones Is Associated With Diabetes and Metabolic Syndrome. Diabetes Care 2019, 42, 303–310. [Google Scholar] [CrossRef]
- Mehran, L.; Delbari, N.; Amouzegar, A.; Hasheminia, M.; Tohidi, M.; Azizi, F. Reduced Sensitivity to Thyroid Hormone Is Associated with Diabetes and Hypertension. J Clin Endocrinol Metab 2022, 107, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Ma, X.; Xu, Y.; Shen, Y.; Wang, Y.; Bao, Y. Increased Serum Adipocyte Fatty Acid-Binding Protein Levels Are Associated with Decreased Sensitivity to Thyroid Hormones in the Euthyroid Population. Thyroid 2020, 30, 1718–1723. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Sorice, G.P.; Mezza, T.; Prioletta, A.; Lassandro, A.P.; Pirronti, T.; Della Casa, S.; Pontecorvi, A.; Giaccari, A. High-Normal TSH Values in Obesity: Is It Insulin Resistance or Adipose Tissue’s Guilt? Obesity (Silver Spring) 2013, 21, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Bandurska-Stankiewicz, E. Thyroid Hormones – Obesity and Metabolic Syndrome. Thyroid Research 2013, 6, A5. [Google Scholar] [CrossRef]
- Ortega, F.J.; Jílková, Z.M.; Moreno-Navarrete, J.M.; Pavelka, S.; Rodriguez-Hermosa, J.I.; Kopeck Ygrave, J.; Fernández-Real, J.M. Type I Iodothyronine 5’-Deiodinase mRNA and Activity Is Increased in Adipose Tissue of Obese Subjects. Int J Obes (Lond) 2012, 36, 320–324. [Google Scholar] [CrossRef]
- Lair, B.; Laurens, C.; Van Den Bosch, B.; Moro, C. Novel Insights and Mechanisms of Lipotoxicity-Driven Insulin Resistance. Int J Mol Sci 2020, 21, 6358. [Google Scholar] [CrossRef]
- Eom, Y.S.; Wilson, J.R.; Bernet, V.J. Links between Thyroid Disorders and Glucose Homeostasis. Diabetes Metab J 2022, 46, 239–256. [Google Scholar] [CrossRef]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front Endocrinol (Lausanne) 2021, 12, 585887. [Google Scholar] [CrossRef] [PubMed]
- Versini, M.; Jeandel, P.-Y.; Rosenthal, E.; Shoenfeld, Y. Obesity in Autoimmune Diseases: Not a Passive Bystander. Autoimmun Rev 2014, 13, 981–1000. [Google Scholar] [CrossRef] [PubMed]
- Marzullo, P.; Minocci, A.; Tagliaferri, M.A.; Guzzaloni, G.; Di Blasio, A.; De Medici, C.; Aimaretti, G.; Liuzzi, A. Investigations of Thyroid Hormones and Antibodies in Obesity: Leptin Levels Are Associated with Thyroid Autoimmunity Independent of Bioanthropometric, Hormonal, and Weight-Related Determinants. J Clin Endocrinol Metab 2010, 95, 3965–3972. [Google Scholar] [CrossRef] [PubMed]
- de Gortari, P.; Alcántara-Alonso, V.; Matamoros-Trejo, G.; Amaya, M.I.; Alvarez-Salas, E. Differential Effects of Leptin Administration on Feeding and HPT Axis Function in Early-Life Overfed Adult Rats. Peptides 2020, 127, 170285. [Google Scholar] [CrossRef] [PubMed]
- Walczak, K.; Sieminska, L. Obesity and Thyroid Axis. Int J Environ Res Public Health 2021, 18, 9434. [Google Scholar] [CrossRef] [PubMed]
- Swarnalatha, N.B.; Roy, N.; Gouda, M.M.; Moger, R.; Abraham, A. High-Fat, Simple-Carbohydrate Diet Intake Induces Hypothalamic-Pituitary-Thyroid Axis Dysregulation in C57BL/6J Male Mice. Appl Physiol Nutr Metab 2018, 43, 371–380. [Google Scholar] [CrossRef]
- Oppert, J.-M.; Bellicha, A.; van Baak, M.A.; Battista, F.; Beaulieu, K.; Blundell, J.E.; Carraça, E.V.; Encantado, J.; Ermolao, A.; Pramono, A.; et al. Exercise Training in the Management of Overweight and Obesity in Adults: Synthesis of the Evidence and Recommendations from the European Association for the Study of Obesity Physical Activity Working Group. Obes Rev 2021, 22 Suppl 4, e13273. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Blair, S.N.; Jakicic, J.M.; Manore, M.M.; Rankin, J.W.; Smith, B.K.; Medicine American College of Sports Medicine Position Stand. Appropriate Physical Activity Intervention Strategies for Weight Loss and Prevention of Weight Regain for Adults. Med Sci Sports Exerc 2009, 41, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Pontzer, H. 50. Constrained Total Energy Expenditure and the Evolutionary Biology of Energy Balance. Exerc Sport Sci Rev 2015, 43, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Bellicha, A.; van Baak, M.A.; Battista, F.; Beaulieu, K.; Blundell, J.E.; Busetto, L.; Carraça, E.V.; Dicker, D.; Encantado, J.; Ermolao, A.; et al. Effect of Exercise Training on Weight Loss, Body Composition Changes, and Weight Maintenance in Adults with Overweight or Obesity: An Overview of 12 Systematic Reviews and 149 Studies. Obes Rev 2021, 22 Suppl 4, e13256. [Google Scholar] [CrossRef]
- Morze, J.; Rücker, G.; Danielewicz, A.; Przybyłowicz, K.; Neuenschwander, M.; Schlesinger, S.; Schwingshackl, L. Impact of Different Training Modalities on Anthropometric Outcomes in Patients with Obesity: A Systematic Review and Network Meta-Analysis. Obes Rev 2021, 22, e13218. [Google Scholar] [CrossRef]
- Sun, Y.; Teng, D.; Zhao, L.; Shi, X.; Li, Y.; Shan, Z.; Teng, W. Impaired Sensitivity to Thyroid Hormones Is Associated with Hyperuricemia, Obesity, and Cardiovascular Disease Risk in Subjects with Subclinical Hypothyroidism. Thyroid 2022, 32, 376–384. [Google Scholar] [CrossRef]
- Alonso-Ventura, V.; Civeira, F.; Alvarado-Rosas, A.; Lou-Bonafonte, J.M.; Calmarza, P.; Moreno-Franco, B.; Andres-Otero, M.J.; Calvo-Gracia, F.; de Diego-Garcia, P.; Laclaustra, M. A Cross-Sectional Study Examining the Parametric Thyroid Feedback Quantile Index and Its Relationship with Metabolic and Cardiovascular Diseases. Thyroid 2022, 32, 1488–1499. [Google Scholar] [CrossRef] [PubMed]
- Duñabeitia, I.; González-Devesa, D.; Varela-Martínez, S.; Diz-Gómez, J.C.; Ayán-Pérez, C. Effect of Physical Exercise in People with Hypothyroidism: Systematic Review and Meta-Analysis. Scand J Clin Lab Invest 2023, 83, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Roa Dueñas, O.H.; Koolhaas, C.; Voortman, T.; Franco, O.H.; Ikram, M.A.; Peeters, R.P.; Chaker, L. Thyroid Function and Physical Activity: A Population-Based Cohort Study. Thyroid 2021, 31, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Dorling, J.; Broom, D.R.; Burns, S.F.; Clayton, D.J.; Deighton, K.; James, L.J.; King, J.A.; Miyashita, M.; Thackray, A.E.; Batterham, R.L.; et al. Acute and Chronic Effects of Exercise on Appetite, Energy Intake, and Appetite-Related Hormones: The Modulating Effect of Adiposity, Sex, and Habitual Physical Activity. Nutrients 2018, 10, 1140. [Google Scholar] [CrossRef]
- Deru, L.S.; Chamberlain, C.J.; Lance, G.R.; Gipson, E.Z.; Bikman, B.T.; Davidson, L.E.; Tucker, L.A.; Coleman, J.L.; Bailey, B.W. The Effects of Exercise on Appetite-Regulating Hormone Concentrations over a 36-h Fast in Healthy Young Adults: A Randomized Crossover Study. Nutrients 2023, 15, 1911. [Google Scholar] [CrossRef] [PubMed]
- Golovaty, I.; Hagan, S. Lifestyle Intervention Requirements for Novel Antiobesity Medications-Necessary Adjunct or Harmful Gatekeeper? JAMA Intern Med 2024. [CrossRef]
- Camps, S.G.J.A.; Verhoef, S.P.M.; Westerterp, K.R. Weight Loss, Weight Maintenance, and Adaptive Thermogenesis. Am J Clin Nutr 2013, 97, 990–994. [Google Scholar] [CrossRef] [PubMed]
- Fothergill, E.; Guo, J.; Howard, L.; Kerns, J.C.; Knuth, N.D.; Brychta, R.; Chen, K.Y.; Skarulis, M.C.; Walter, M.; Walter, P.J.; et al. Persistent Metabolic Adaptation 6 Years after “The Biggest Loser” Competition. Obesity (Silver Spring) 2016, 24, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, M.; Hirsch, J.; Gallagher, D.A.; Leibel, R.L. Long-Term Persistence of Adaptive Thermogenesis in Subjects Who Have Maintained a Reduced Body Weight. Am J Clin Nutr 2008, 88, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Kadouh, H.C.; Acosta, A. Current Paradigms in the Etiology of Obesity. Techniques in Gastrointestinal Endoscopy 2017, 19, 2–11. [Google Scholar] [CrossRef]
- Karmisholt, J.; Andersen, S.; Laurberg, P. Weight Loss after Therapy of Hypothyroidism Is Mainly Caused by Excretion of Excess Body Water Associated with Myxoedema. J Clin Endocrinol Metab 2011, 96, E99–103. [Google Scholar] [CrossRef] [PubMed]
- Jureško, I.; Pleić, N.; Gunjača, I.; Torlak, V.; Brdar, D.; Punda, A.; Polašek, O.; Hayward, C.; Zemunik, T.; Babić Leko, M. The Effect of Mediterranean Diet on Thyroid Gland Activity. Int J Mol Sci 2024, 25, 5874. [Google Scholar] [CrossRef]
- Rosenstock, J.; Wysham, C.; Frías, J.P.; Kaneko, S.; Lee, C.J.; Fernández Landó, L.; Mao, H.; Cui, X.; Karanikas, C.A.; Thieu, V.T. Efficacy and Safety of a Novel Dual GIP and GLP-1 Receptor Agonist Tirzepatide in Patients with Type 2 Diabetes (SURPASS-1): A Double-Blind, Randomised, Phase 3 Trial. Lancet 2021, 398, 143–155. [Google Scholar] [CrossRef]
- Aroda, V.R.; Rosenstock, J.; Terauchi, Y.; Altuntas, Y.; Lalic, N.M.; Morales Villegas, E.C.; Jeppesen, O.K.; Christiansen, E.; Hertz, C.L.; Haluzík, M.; et al. PIONEER 1: Randomized Clinical Trial of the Efficacy and Safety of Oral Semaglutide Monotherapy in Comparison With Placebo in Patients With Type 2 Diabetes. Diabetes Care 2019, 42, 1724–1732. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Nong, K.; Vandvik, P.O.; Guyatt, G.H.; Schnell, O.; Rydén, L.; Marx, N.; Brosius, F.C.; Mustafa, R.A.; Agarwal, A.; et al. Benefits and Harms of Drug Treatment for Type 2 Diabetes: Systematic Review and Network Meta-Analysis of Randomised Controlled Trials. BMJ 2023, 381, e074068. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ruan, B.; Jiang, H.; Le, S.; Liu, Y.; Ao, X.; Huang, Y.; Shi, X.; Xue, R.; Fu, X.; et al. The Weight-Loss Effect of GLP-1RAs Glucagon-Like Peptide-1 Receptor Agonists in Non-Diabetic Individuals with Overweight or Obesity: A Systematic Review with Meta-Analysis and Trial Sequential Analysis of Randomized Controlled Trials. Am J Clin Nutr 2023, 118, 614–626. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N Engl J Med 2022, 387, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, B.; Wintzell, V.; Hviid, A.; Eliasson, B.; Gudbjörnsdottir, S.; Jonasson, C.; Hveem, K.; Svanström, H.; Melbye, M.; Ueda, P. Glucagon-like Peptide 1 Receptor Agonist Use and Risk of Thyroid Cancer: Scandinavian Cohort Study. BMJ 2024, 385, e078225. [Google Scholar] [CrossRef] [PubMed]
- Vuong, H.G.; Odate, T.; Ngo, H.T.T.; Pham, T.Q.; Tran, T.T.K.; Mochizuki, K.; Nakazawa, T.; Katoh, R.; Kondo, T. Clinical Significance of RET and RAS Mutations in Sporadic Medullary Thyroid Carcinoma: A Meta-Analysis. Endocr Relat Cancer 2018, 25, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.L.; Pavkov, M.E.; Magliano, D.J.; Shaw, J.E.; Gregg, E.W. Global Trends in Diabetes Complications: A Review of Current Evidence. Diabetologia 2019, 62, 3–16. [Google Scholar] [CrossRef]
- Gómez-Zamudio, J.H.; Mendoza-Zubieta, V.; Ferreira-Hermosillo, A.; Molina-Ayala, M.A.; Valladares-Sálgado, A.; Suárez-Sánchez, F.; de Jesús Peralta-Romero, J.; Cruz, M. High Thyroid-Stimulating Hormone Levels Increase Proinflammatory and Cardiovascular Markers in Patients with Extreme Obesity. Arch Med Res 2016, 47, 476–482. [Google Scholar] [CrossRef]
- Lean, M.E.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Kelly, T.; Irvine, K.; Peters, C.; Zhyzhneuskaya, S.; et al. 5-Year Follow-up of the Randomised Diabetes Remission Clinical Trial (DiRECT) of Continued Support for Weight Loss Maintenance in the UK: An Extension Study. Lancet Diabetes Endocrinol 2024, 12, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Buchwald, H. The Evolution of Metabolic/Bariatric Surgery. Obes Surg 2014, 24, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Verras, G.-I.; Mulita, F.; Pouwels, S.; Parmar, C.; Drakos, N.; Bouchagier, K.; Kaplanis, C.; Skroubis, G. Outcomes at 10-Year Follow-Up after Roux-En-Y Gastric Bypass, Biliopancreatic Diversion, and Sleeve Gastrectomy. J Clin Med 2023, 12, 4973. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, G.; Salman, A. Bariatric Surgery in Adults with Obesity: The Impact on Performance, Metabolism, and Health Indices. Obes Surg 2021, 31, 1767–1789. [Google Scholar] [CrossRef]
- Bian, N.; Sun, X.; Zhou, B.; Zhang, L.; Wang, Q.; An, Y.; Li, X.; Li, Y.; Liu, J.; Meng, H.; et al. Obese Patients with Higher TSH Levels Had an Obvious Metabolic Improvement after Bariatric Surgery. Endocr Connect 2021, 10, 1326–1336. [Google Scholar] [CrossRef]
- Azran, C.; Hanhan-Shamshoum, N.; Irshied, T.; Ben-Shushan, T.; Dicker, D.; Dahan, A.; Matok, I. Hypothyroidism and Levothyroxine Therapy Following Bariatric Surgery: A Systematic Review, Meta-Analysis, Network Meta-Analysis, and Meta-Regression. Surg Obes Relat Dis 2021, 17, 1206–1217. [Google Scholar] [CrossRef] [PubMed]
| Disorders associated with obesity | Impact of thyroid hormone replacement therapy | Impact of physical activity | Impact of diet | Impact of incretin hormone analogues | Impact of bariatric surgery |
|
↑ apetite |
↔ or ↗ at the begining of the treatment |
↙ or ↔ or ↗ ↙ aerobic ↗ resistance ↗ intensive resistance ↙ intensive endurance |
↑carbohydrates ↔ fats ↔ proteins ↑caloric restriction |
↓ |
↓ |
|
↓ satiety |
↔ or ↗ |
↑ mainly aerobic exercises |
↓carbohyrtates ↔ or ↗ fats ↑ proteins ↑ fiber |
↑ |
↑ |
|
↓ energy expenditure |
↑ |
↑ |
↔ fats, carbohydrates ↗ proteins, fibres ↓ caloric restriction |
↗ |
↓ |
| ↑ ectopic fat accumulation |
↔ or ↙ |
↓ |
↓ caloric restriction |
↓ |
↓ |
|
↑ inflamation |
↙ Related to hypothyroidism and body mass correction |
↓ |
↓ |
↓ |
↓ |
| ↓ pancreatic function |
↔ or ↗ |
↑ |
↑ |
↑ |
↑ |
| ↑ blood pressure |
↓ |
↓ |
↓ or ↔ |
↓ |
↓ |
| ↑ blood lipids |
↓ | ↓ | ↓ | ↓ | ↓ |
| ↑ Thyroid Stimulating Hormone |
↓ |
↔ |
↓ or ↔ caloric restricion |
↓ or ↔ or ↗ ? |
↙ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).