Submitted:
27 November 2024
Posted:
29 November 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Glucocorticoid-Induced Osteoporosis (GIO)
Pathogenesis
Animal Models
Experimental Protocols: Drugs, Doses, Administration Routes
GIO Evaluation Criteria
Glucocorticoid-Induced Myopathy and Skin Atrophy
Pathogenesis
Animal Models and Protocols
Steroid-Induced Diabetes
Pathogenesis
Animal Models and Corresponding Protocols
Glucocorticoid-Induced Fat Metabolism Disorder
Pathogenesis
Animal Models
Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts on Interests
List of Abbreviations
| µCT | micro-computed tomography |
| ALT | alanine transaminase |
| ALP | alkaline phosphatase |
| AST | aspartate transaminase |
| BMC | bone mineral content |
| BMD | bone mineral density |
| cAMP | cyclic adenosine monophosphate |
| CDK | cyclin-dependent kinase |
| CTX | carboxy-terminal telopeptide |
| Dex | dexamethasone |
| DXA | dual-energy X-ray absorptiometry |
| ERK | extracellular signal-regulated kinase |
| FFA | free fatty acids |
| GCs | glucocorticoids |
| GIO | glucocorticoid-induced osteoporosis |
| GR | glucocorticoid receptor |
| IR | insulin resistance |
| MAPK | mitogen-activated protein kinase |
| M-CSF | macrophage colony-stimulating factor |
| MPr | methylprednisolone |
| MSTN | myostatin |
| NF-κB | nuclear factor kappa B |
| OPG | osteoprotegerin |
| Pr | prednisolone |
| RANKL | receptor activator of nuclear factor-kappa B (NF-κB) ligand |
| REDD1 | regulated in development and DNA damage response 1 |
| TA | transactivation |
| TRAP | tartrate-resistant acid phosphatase |
References
- Barnes, P.J. Glucocorticosteroids. Handb. Exp. Pharmacol. 2017, 237, 93–115. [Google Scholar] [CrossRef] [PubMed]
- Vandewalle, J.; Luypaert, A.; De Bosscher, K.; Libert, C. Therapeutic Mechanisms of Glucocorticoids. Trends Endocrinol. Metab. TEM 2018, 29, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Strehl, C.; Buttgereit, F. Optimized glucocorticoid therapy: teaching old drugs new tricks. Mol. Cell. Endocrinol. 2013, 380, 32–40. [Google Scholar] [CrossRef] [PubMed]
- J M Schaaf, M.; Meijer, O.C. Immune Modulations by Glucocorticoids: From Molecular Biology to Clinical Research. Cells 2022, 11, 4032. [Google Scholar] [CrossRef] [PubMed]
- Rasch, L.A.; Bultink, I.E.M.; van Tuyl, L.H.D.; Lems, W.F. Glucocorticoid safety for treating rheumatoid arthritis. Expert Opin. Drug Saf. 2015, 14, 839–844. [Google Scholar] [CrossRef]
- Triadafilopoulos, G. Glucocorticoid therapy for gastrointestinal diseases. Expert Opin. Drug Saf. 2014, 13, 563–572. [Google Scholar] [CrossRef]
- Hartog, M.; van Keeken, K.A.L.; van den Ende, C.H.M.; Popa, C.D. Intramuscular methylprednisolone administration in hand osteoarthritis patients: a feasibility study to inform a randomized controlled trial. Ther. Adv. Musculoskelet. Dis. 2024, 16, 1759720X241253974. [Google Scholar] [CrossRef]
- Lesovaya, E.A.; Chudakova, D.; Baida, G.; Zhidkova, E.M.; Kirsanov, K.I.; Yakubovskaya, M.G.; Budunova, I.V. The long winding road to the safer glucocorticoid receptor (GR) targeting therapies. Oncotarget 2022, 13, 408–424. [Google Scholar] [CrossRef]
- Oray, M.; Abu Samra, K.; Ebrahimiadib, N.; Meese, H.; Foster, C.S. Long-term side effects of glucocorticoids. Expert Opin. Drug Saf. 2016, 15, 457–465. [Google Scholar] [CrossRef]
- Coutinho, A.E.; Chapman, K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 2011, 335, 2–13. [Google Scholar] [CrossRef]
- Moghadam-Kia, S.; Werth, V.P. Prevention and treatment of systemic glucocorticoid side effects. Int. J. Dermatol. 2010, 49, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Van Staa, T.P.; Leufkens, H.G.; Abenhaim, L.; Zhang, B.; Cooper, C. Use of oral corticosteroids and risk of fractures. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2000, 15, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Sala, A.; Mattano, L.A.; Barr, R.D. Osteonecrosis in children and adolescents with cancer - an adverse effect of systemic therapy. Eur. J. Cancer Oxf. Engl. 1990 2007, 43, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Gazitt, T.; Feld, J.; Zisman, D. Implementation of Calcium and Vitamin D Supplementation in Glucocorticosteroid-Induced Osteoporosis Prevention Guidelines-Insights from Rheumatologists. Rambam Maimonides Med. J. 2023, 14, e0010. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Adachi, J.D. Glucocorticoid induced osteoporosis. Expert Rev. Endocrinol. Metab. 2019, 14, 259–266. [Google Scholar] [CrossRef]
- Compston, J. Glucocorticoid-induced osteoporosis: an update. Endocrine 2018, 61, 7–16. [Google Scholar] [CrossRef]
- Zalavras, C.; Shah, S.; Birnbaum, M.J.; Frenkel, B. Role of apoptosis in glucocorticoid-induced osteoporosis and osteonecrosis. Crit. Rev. Eukaryot. Gene Expr. 2003, 13, 221–235. [Google Scholar] [CrossRef]
- Ottewell, P.D. The role of osteoblasts in bone metastasis. J. Bone Oncol. 2016, 5, 124–127. [Google Scholar] [CrossRef]
- Chen, M.; Fu, W.; Xu, H.; Liu, C.-J. Pathogenic mechanisms of glucocorticoid-induced osteoporosis. Cytokine Growth Factor Rev. 2023, 70, 54–66. [Google Scholar] [CrossRef]
- Chang, J.-K.; Li, C.-J.; Liao, H.-J.; Wang, C.-K.; Wang, G.-J.; Ho, M.-L. Anti-inflammatory drugs suppress proliferation and induce apoptosis through altering expressions of cell cycle regulators and pro-apoptotic factors in cultured human osteoblasts. Toxicology 2009, 258, 148–156. [Google Scholar] [CrossRef]
- Gabet, Y.; Noh, T.; Lee, C.; Frenkel, B. Developmentally regulated inhibition of cell cycle progression by glucocorticoids through repression of cyclin A transcription in primary osteoblast cultures. J. Cell. Physiol. 2011, 226, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Redman, R.A.; Logg, C.R.; Coetzee, G.A.; Kasahara, N.; Frenkel, B. Glucocorticoids inhibit developmental stage-specific osteoblast cell cycle. Dissociation of cyclin A-cyclin-dependent kinase 2 from E2F4-p130 complexes. J. Biol. Chem. 2000, 275, 19992–20001. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qian, W.; Weng, X.; Wu, Z.; Li, H.; Zhuang, Q.; Feng, B.; Bian, Y. Glucocorticoid receptor and sequential P53 activation by dexamethasone mediates apoptosis and cell cycle arrest of osteoblastic MC3T3-E1 cells. PloS One 2012, 7, e37030. [Google Scholar] [CrossRef] [PubMed]
- Gado, M.; Baschant, U.; Hofbauer, L.C.; Henneicke, H. Bad to the Bone: The Effects of Therapeutic Glucocorticoids on Osteoblasts and Osteocytes. Front. Endocrinol. 2022, 13, 835720. [Google Scholar] [CrossRef]
- Engelbrecht, Y.; de Wet, H.; Horsch, K.; Langeveldt, C.R.; Hough, F.S.; Hulley, P.A. Glucocorticoids induce rapid up-regulation of mitogen-activated protein kinase phosphatase-1 and dephosphorylation of extracellular signal-regulated kinase and impair proliferation in human and mouse osteoblast cell lines. Endocrinology 2003, 144, 412–422. [Google Scholar] [CrossRef]
- Baron, R.; Kneissel, M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 2013, 19, 179–192. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Galfo, F.; Oteri, G.; Atteritano, M.; Pallio, G.; Mannino, F.; D’Amore, A.; Pellegrino, E.; Aliquò, F.; et al. Adenosine Receptor Stimulation Improves Glucocorticoid-Induced Osteoporosis in a Rat Model. Front. Pharmacol. 2017, 8, 558. [Google Scholar] [CrossRef]
- Swanson, C.; Lorentzon, M.; Conaway, H.H.; Lerner, U.H. Glucocorticoid regulation of osteoclast differentiation and expression of receptor activator of nuclear factor-kappaB (NF-kappaB) ligand, osteoprotegerin, and receptor activator of NF-kappaB in mouse calvarial bones. Endocrinology 2006, 147, 3613–3622. [Google Scholar] [CrossRef]
- Chen, K.; Liu, Y.; He, J.; Pavlos, N.; Wang, C.; Kenny, J.; Yuan, J.; Zhang, Q.; Xu, J.; He, W. Steroid-induced osteonecrosis of the femoral head reveals enhanced reactive oxygen species and hyperactive osteoclasts. Int. J. Biol. Sci. 2020, 16, 1888–1900. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, T.; Wang, Y.; Guo, L. The Role and Mechanism of SIRT1 in Resveratrol-regulated Osteoblast Autophagy in Osteoporosis Rats. Sci. Rep. 2019, 9, 18424. [Google Scholar] [CrossRef]
- Dovio, A.; Perazzolo, L.; Osella, G.; Ventura, M.; Termine, A.; Milano, E.; Bertolotto, A.; Angeli, A. Immediate fall of bone formation and transient increase of bone resorption in the course of high-dose, short-term glucocorticoid therapy in young patients with multiple sclerosis. J. Clin. Endocrinol. Metab. 2004, 89, 4923–4928. [Google Scholar] [CrossRef] [PubMed]
- Rong, X.; Kou, Y.; Zhang, Y.; Yang, P.; Tang, R.; Liu, H.; Li, M. ED-71 Prevents Glucocorticoid-Induced Osteoporosis by Regulating Osteoblast Differentiation via Notch and Wnt/β-Catenin Pathways. Drug Des. Devel. Ther. 2022, 16, 3929–3946. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, J.; Chen, J.; Dong, C.; Yan, X.; Zhu, Z.; Lu, P.; Song, Z.; Liu, H.; Chen, S. Daphnetin ameliorates glucocorticoid-induced osteoporosis via activation of Wnt/GSK-3β/β-catenin signaling. Toxicol. Appl. Pharmacol. 2020, 409, 115333. [Google Scholar] [CrossRef] [PubMed]
- Chandler, H.; Brooks, D.J.; Hattersley, G.; Bouxsein, M.L.; Lanske, B. Abaloparatide increases bone mineral density and bone strength in ovariectomized rabbits with glucocorticoid-induced osteopenia. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2019, 30, 1607–1616. [Google Scholar] [CrossRef]
- Yang, H.-Z.; Dong, R.; Jia, Y.; Li, Y.; Luo, G.; Li, T.; Long, Y.; Liang, S.; Li, S.; Jin, X.; et al. Morroniside ameliorates glucocorticoid-induced osteoporosis and promotes osteoblastogenesis by interacting with sodium-glucose cotransporter 2. Pharm. Biol. 2023, 61, 416–426. [Google Scholar] [CrossRef]
- Park, S.; Oh, J.; Son, K.-Y.; Cho, K.-O.; Choi, J. Quantitative computed tomographic assessment of bone mineral density changes associated with administration of prednisolone or prednisolone and alendronate sodium in dogs. Am. J. Vet. Res. 2015, 76, 28–34. [Google Scholar] [CrossRef]
- Xiao, L.; Zhong, M.; Huang, Y.; Zhu, J.; Tang, W.; Li, D.; Shi, J.; Lu, A.; Yang, H.; Geng, D.; et al. Puerarin alleviates osteoporosis in the ovariectomy-induced mice by suppressing osteoclastogenesis via inhibition of TRAF6/ROS-dependent MAPK/NF-κB signaling pathways. Aging 2020, 12, 21706–21729. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, J.; Zhuge, A.; Li, L.; Ni, S. Gut microbiota modulates osteoclast glutathione synthesis and mitochondrial biogenesis in mice subjected to ovariectomy. Cell Prolif. 2022, 55, e13194. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, C.-W.; Shi, C.; Peng, L.; Cheng, Y.-T.; Hong, W.; Liao, J. Quercetin suppresses ovariectomy-induced osteoporosis in rat mandibles by regulating autophagy and the NLRP3 pathway. Exp. Biol. Med. Maywood NJ 2023, 248, 2363–2380. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, H.; Shen, G.; Qiu, T.; Liang, D.; Yang, Z.; Yao, Z.; Tang, J.; Jiang, X.; Wei, Q. Animal models for glucocorticoid-induced postmenopausal osteoporosis: An updated review. Biomed. Pharmacother. Biomedecine Pharmacother. 2016, 84, 438–446. [Google Scholar] [CrossRef]
- Chaichit, S.; Sato, T.; Yu, H.; Tanaka, Y.-K.; Ogra, Y.; Mizoguchi, T.; Itoh, M. Evaluation of Dexamethasone-Induced Osteoporosis In Vivo Using Zebrafish Scales. Pharm. Basel Switz. 2021, 14, 536. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, Y.; Zhang, H.; Shi, D.; Li, Q.; Meng, Y.; Zuo, L. Preventative effects of metformin on glucocorticoid-induced osteoporosis in rats. J. Bone Miner. Metab. 2019, 37, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Dai, W.; Jiang, L.; Lay, E.Y.-A.; Zhong, Z.; Ritchie, R.O.; Li, X.; Ke, H.; Lane, N.E. Sclerostin-antibody treatment of glucocorticoid-induced osteoporosis maintained bone mass and strength. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2016, 27, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Cheng, Z.; Koester, K.J.; Ager, J.W.; Balooch, M.; Pham, A.; Chefo, S.; Busse, C.; Ritchie, R.O.; Lane, N.E. The degree of bone mineralization is maintained with single intravenous bisphosphonates in aged estrogen-deficient rats and is a strong predictor of bone strength. Bone 2007, 41, 804–812. [Google Scholar] [CrossRef]
- Lane, N.E.; Yao, W.; Balooch, M.; Nalla, R.K.; Balooch, G.; Habelitz, S.; Kinney, J.H.; Bonewald, L.F. Glucocorticoid-treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2006, 21, 466–476. [Google Scholar] [CrossRef]
- Lochmüller, E.M.; Jung, V.; Weusten, A.; Wehr, U.; Wolf, E.; Eckstein, F. Precision of high-resolution dual energy X-ray absorptiometry of bone mineral status and body composition in small animal models. Eur. Cell. Mater. 2001, 1, 43–51. [Google Scholar] [CrossRef]
- Bouxsein, M.L.; Boyd, S.K.; Christiansen, B.A.; Guldberg, R.E.; Jepsen, K.J.; Müller, R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2010, 25, 1468–1486. [Google Scholar] [CrossRef]
- Grier, S.J.; Turner, A.S.; Alvis, M.R. The use of dual-energy x-ray absorptiometry in animals. Invest. Radiol. 1996, 31, 50–62. [Google Scholar] [CrossRef]
- Kim, H.S.; Jeong, E.S.; Yang, M.H.; Yang, S.-O. Bone mineral density assessment for research purpose using dual energy X-ray absorptiometry. Osteoporos. Sarcopenia 2018, 4, 79–85. [Google Scholar] [CrossRef]
- Sato, A.Y.; Richardson, D.; Cregor, M.; Davis, H.M.; Au, E.D.; McAndrews, K.; Zimmers, T.A.; Organ, J.M.; Peacock, M.; Plotkin, L.I.; et al. Glucocorticoids Induce Bone and Muscle Atrophy by Tissue-Specific Mechanisms Upstream of E3 Ubiquitin Ligases. Endocrinology 2017, 158, 664–677. [Google Scholar] [CrossRef]
- Sato, A.Y.; Peacock, M.; Bellido, T. GLUCOCORTICOID EXCESS IN BONE AND MUSCLE. Clin. Rev. Bone Miner. Metab. 2018, 16, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Radkowski, M.J.; Sławiński, P.; Targowski, T. Osteosarcopenia in rheumatoid arthritis treated with glucocorticosteroids - essence, significance, consequences. Reumatologia 2020, 58, 101–106. [Google Scholar] [CrossRef]
- Wu, M.; Liu, C.; Sun, D. Glucocorticoid-Induced Myopathy: Typology, Pathogenesis, Diagnosis, and Treatment. Horm. Metab. Res. Horm. Stoffwechselforschung Horm. Metab. 2024, 56, 341–349. [Google Scholar] [CrossRef]
- Shah, O.J.; Kimball, S.R.; Jefferson, L.S. Among translational effectors, p70S6k is uniquely sensitive to inhibition by glucocorticoids. Biochem. J. 2000, 347, 389–397. [Google Scholar] [CrossRef]
- Schakman, O.; Gilson, H.; de Coninck, V.; Lause, P.; Verniers, J.; Havaux, X.; Ketelslegers, J.M.; Thissen, J.P. Insulin-like growth factor-I gene transfer by electroporation prevents skeletal muscle atrophy in glucocorticoid-treated rats. Endocrinology 2005, 146, 1789–1797. [Google Scholar] [CrossRef]
- Stitt, T.N.; Drujan, D.; Clarke, B.A.; Panaro, F.; Timofeyva, Y.; Kline, W.O.; Gonzalez, M.; Yancopoulos, G.D.; Glass, D.J. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol. Cell 2004, 14, 395–403. [Google Scholar] [CrossRef]
- Amirouche, A.; Durieux, A.-C.; Banzet, S.; Koulmann, N.; Bonnefoy, R.; Mouret, C.; Bigard, X.; Peinnequin, A.; Freyssenet, D. Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 2009, 150, 286–294. [Google Scholar] [CrossRef]
- Hasselgren, P.O.; Fischer, J.E. Muscle cachexia: current concepts of intracellular mechanisms and molecular regulation. Ann. Surg. 2001, 233, 9–17. [Google Scholar] [CrossRef]
- Bodine, S.C.; Latres, E.; Baumhueter, S.; Lai, V.K.; Nunez, L.; Clarke, B.A.; Poueymirou, W.T.; Panaro, F.J.; Na, E.; Dharmarajan, K.; et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001, 294, 1704–1708. [Google Scholar] [CrossRef]
- Niculet, E.; Bobeica, C.; Tatu, A.L. Glucocorticoid-Induced Skin Atrophy: The Old and the New. Clin. Cosmet. Investig. Dermatol. 2020, 13, 1041–1050. [Google Scholar] [CrossRef]
- Lesovaya, E.A.; Savinkova, A.V.; Morozova, O.V.; Lylova, E.S.; Zhidkova, E.M.; Kulikov, E.P.; Kirsanov, K.I.; Klopot, A.; Baida, G.; Yakubovskaya, M.G.; et al. A Novel Approach to Safer Glucocorticoid Receptor-Targeted Anti-lymphoma Therapy via REDD1 (Regulated in Development and DNA Damage 1) Inhibition. Mol. Cancer Ther. 2020, 19, 1898–1908. [Google Scholar] [CrossRef] [PubMed]
- Britto, F.A.; Begue, G.; Rossano, B.; Docquier, A.; Vernus, B.; Sar, C.; Ferry, A.; Bonnieu, A.; Ollendorff, V.; Favier, F.B. REDD1 deletion prevents dexamethasone-induced skeletal muscle atrophy. Am. J. Physiol. Endocrinol. Metab. 2014, 307, E983–993. [Google Scholar] [CrossRef] [PubMed]
- Baida, G.; Bhalla, P.; Kirsanov, K.; Lesovaya, E.; Yakubovskaya, M.; Yuen, K.; Guo, S.; Lavker, R.M.; Readhead, B.; Dudley, J.T.; et al. REDD1 functions at the crossroads between the therapeutic and adverse effects of topical glucocorticoids. EMBO Mol. Med. 2015, 7, 42–58. [Google Scholar] [CrossRef]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 169, 361–371. [Google Scholar] [CrossRef]
- Karagianni, F.; Pavlidis, A.; Malakou, L.S.; Piperi, C.; Papadavid, E. Predominant Role of mTOR Signaling in Skin Diseases with Therapeutic Potential. Int. J. Mol. Sci. 2022, 23, 1693. [Google Scholar] [CrossRef]
- Mishra, S.; Cosentino, C.; Tamta, A.K.; Khan, D.; Srinivasan, S.; Ravi, V.; Abbotto, E.; Arathi, B.P.; Kumar, S.; Jain, A.; et al. Sirtuin 6 inhibition protects against glucocorticoid-induced skeletal muscle atrophy by regulating IGF/PI3K/AKT signaling. Nat. Commun. 2022, 13, 5415. [Google Scholar] [CrossRef]
- Cid-Díaz, T.; Leal-López, S.; Fernández-Barreiro, F.; González-Sánchez, J.; Santos-Zas, I.; Andrade-Bulos, L.J.; Rodríguez-Fuentes, M.E.; Mosteiro, C.S.; Mouly, V.; Casabiell, X.; et al. Obestatin signalling counteracts glucocorticoid-induced skeletal muscle atrophy via NEDD4/KLF15 axis. J. Cachexia Sarcopenia Muscle 2021, 12, 493–505. [Google Scholar] [CrossRef]
- Yoo, A.; Kim, J.-I.; Lee, H.; Nirmala, F.S.; Hahm, J.-H.; Seo, H.D.; Jung, C.H.; Ha, T.Y.; Ahn, J. Gromwell ameliorates glucocorticoid-induced muscle atrophy through the regulation of Akt/mTOR pathway. Chin. Med. 2024, 19, 20. [Google Scholar] [CrossRef]
- Yoshida, K.; Matsuoka, T.; Kobatake, Y.; Takashima, S.; Nishii, N. Quantitative assessment of muscle mass and gene expression analysis in dogs with glucocorticoid-induced muscle atrophy. J. Vet. Med. Sci. 2022, 84, 275–281. [Google Scholar] [CrossRef]
- Agarwal, S.; Mirzoeva, S.; Readhead, B.; Dudley, J.T.; Budunova, I. PI3K inhibitors protect against glucocorticoid-induced skin atrophy. EBioMedicine 2019, 41, 526–537. [Google Scholar] [CrossRef]
- Klopot, A.; Baida, G.; Bhalla, P.; Haegeman, G.; Budunova, I. Selective Activator of the Glucocorticoid Receptor Compound A Dissociates Therapeutic and Atrophogenic Effects of Glucocorticoid Receptor Signaling in Skin. J. Cancer Prev. 2015, 20, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.L.; Weiss, R.E. Steroid-induced diabetes: a clinical and molecular approach to understanding and treatment. Diabetes Metab. Res. Rev. 2014, 30, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; Hobbi, A.M.; Haghighat, S.; Fariba Karimi, null; Ramzi, M. ; Vojdani, R.; Karimi, M. Glucocorticoid induced diabetes and lipid profiles disorders amongst lymphoid malignancy survivors. Diabetes Metab. Syndr. 2020, 14, 1645–1649. [Google Scholar] [CrossRef]
- Beaupere, C.; Liboz, A.; Fève, B.; Blondeau, B.; Guillemain, G. Molecular Mechanisms of Glucocorticoid-Induced Insulin Resistance. Int. J. Mol. Sci. 2021, 22, 623. [Google Scholar] [CrossRef]
- Drucis, M.; Irga-Jaworska, N.; Myśliwiec, M. Steroid-induced diabetes in the paediatric population. Pediatr. Endocrinol. Diabetes Metab. 2018, 2018, 136–139. [Google Scholar] [CrossRef]
- Akalestou, E.; Genser, L.; Rutter, G.A. Glucocorticoid Metabolism in Obesity and Following Weight Loss. Front. Endocrinol. 2020, 11, 59. [Google Scholar] [CrossRef]
- Pivonello, R.; De Leo, M.; Vitale, P.; Cozzolino, A.; Simeoli, C.; De Martino, M.C.; Lombardi, G.; Colao, A. Pathophysiology of diabetes mellitus in Cushing’s syndrome. Neuroendocrinology 2010, 92 Suppl 1, 77–81. [Google Scholar] [CrossRef]
- Mazziotti, G.; Gazzaruso, C.; Giustina, A. Diabetes in Cushing syndrome: basic and clinical aspects. Trends Endocrinol. Metab. TEM 2011, 22, 499–506. [Google Scholar] [CrossRef]
- Cui, A.; Fan, H.; Zhang, Y.; Zhang, Y.; Niu, D.; Liu, S.; Liu, Q.; Ma, W.; Shen, Z.; Shen, L.; et al. Dexamethasone-induced Krüppel-like factor 9 expression promotes hepatic gluconeogenesis and hyperglycemia. J. Clin. Invest. 2019, 129, 2266–2278. [Google Scholar] [CrossRef]
- Lee, R.A.; Chang, M.; Yiv, N.; Tsay, A.; Tian, S.; Li, D.; Poulard, C.; Stallcup, M.R.; Pufall, M.A.; Wang, J.-C. Transcriptional coactivation by EHMT2 restricts glucocorticoid-induced insulin resistance in a study with male mice. Nat. Commun. 2023, 14, 3143. [Google Scholar] [CrossRef]
- Gupta, M.; Rumman, M.; Singh, B.; Mahdi, A.A.; Pandey, S. Berberine ameliorates glucocorticoid-induced hyperglycemia: an in vitro and in vivo study. Naunyn. Schmiedebergs Arch. Pharmacol. 2024, 397, 1647–1658. [Google Scholar] [CrossRef] [PubMed]
- Erfidan, S.; Dede, S.; Usta, A.; Yüksek, V.; Çetin, S. The effect of quinoa (Chenopodium quinoa) on apoptotic, autophagic, antioxidant and inflammation markers in glucocorticoid-induced insulin resistance in rats. Mol. Biol. Rep. 2022, 49, 6509–6516. [Google Scholar] [CrossRef] [PubMed]
- Martínez, B.B.; Pereira, A.C.C.; Muzetti, J.H.; Telles, F. de P.; Mundim, F.G.L.; Teixeira, M.A. Experimental model of glucocorticoid-induced insulin resistance. Acta Cir. Bras. 2016, 31, 645–649. [Google Scholar] [CrossRef]
- Dallman, M.F.; Akana, S.F.; Pecoraro, N.C.; Warne, J.P.; la Fleur, S.E.; Foster, M.T. Glucocorticoids, the etiology of obesity and the metabolic syndrome. Curr. Alzheimer Res. 2007, 4, 199–204. [Google Scholar] [CrossRef]
- Pivonello, R.; Isidori, A.M.; De Martino, M.C.; Newell-Price, J.; Biller, B.M.K.; Colao, A. Complications of Cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol. 2016, 4, 611–629. [Google Scholar] [CrossRef]
- Anagnostis, P.; Athyros, V.G.; Tziomalos, K.; Karagiannis, A.; Mikhailidis, D.P. Clinical review: The pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J. Clin. Endocrinol. Metab. 2009, 94, 2692–2701. [Google Scholar] [CrossRef]
- Van Dongen-Melman, J.E.; Hokken-Koelega, A.C.; Hählen, K.; De Groot, A.; Tromp, C.G.; Egeler, R.M. Obesity after successful treatment of acute lymphoblastic leukemia in childhood. Pediatr. Res. 1995, 38, 86–90. [Google Scholar] [CrossRef]
- Tataranni, P.A.; Larson, D.E.; Snitker, S.; Young, J.B.; Flatt, J.P.; Ravussin, E. Effects of glucocorticoids on energy metabolism and food intake in humans. Am. J. Physiol. 1996, 271, E317–325. [Google Scholar] [CrossRef]
- Berthon, B.S.; MacDonald-Wicks, L.K.; Wood, L.G. A systematic review of the effect of oral glucocorticoids on energy intake, appetite, and body weight in humans. Nutr. Res. N. Y. N 2014, 34, 179–190. [Google Scholar] [CrossRef]
- Kwon, S.; Hermayer, K.L.; Hermayer, K. Glucocorticoid-induced hyperglycemia. Am. J. Med. Sci. 2013, 345, 274–277. [Google Scholar] [CrossRef]
- Descours, M.; Rigalleau, V. Glucocorticoid-induced hyperglycemia and diabetes: Practical points. Ann. Endocrinol. 2023, 84, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.; Jansen-Chaparro, S.; Saigi, I.; Bernal-Lopez, M.R.; Miñambres, I.; Gomez-Huelgas, R. Glucocorticoid-induced hyperglycemia. J. Diabetes 2014, 6, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Gathercole, L.L.; Morgan, S.A.; Bujalska, I.J.; Hauton, D.; Stewart, P.M.; Tomlinson, J.W. Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue. PloS One 2011, 6, e26223. [Google Scholar] [CrossRef]
- Dolinsky, V.W.; Douglas, D.N.; Lehner, R.; Vance, D.E. Regulation of the enzymes of hepatic microsomal triacylglycerol lipolysis and re-esterification by the glucocorticoid dexamethasone. Biochem. J. 2004, 378, 967–974. [Google Scholar] [CrossRef]
- Smith, G.I.; Shankaran, M.; Yoshino, M.; Schweitzer, G.G.; Chondronikola, M.; Beals, J.W.; Okunade, A.L.; Patterson, B.W.; Nyangau, E.; Field, T.; et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J. Clin. Invest. 2020, 130, 1453–1460. [Google Scholar] [CrossRef]
- Kott, J.M.; Mooney-Leber, S.M.; Shoubah, F.A.; Brummelte, S. Effectiveness of different corticosterone administration methods to elevate corticosterone serum levels, induce depressive-like behavior, and affect neurogenesis levels in female rats. Neuroscience 2016, 312, 201–214. [Google Scholar] [CrossRef]
- Pung, T.; Zimmerman, K.; Klein, B.; Ehrich, M. Corticosterone in drinking water: altered kinetics of a single oral dose of corticosterone and concentrations of plasma sodium, albumin, globulin, and total protein. Toxicol. Ind. Health 2003, 19, 171–182. [Google Scholar] [CrossRef]
- Huang, M.; Wang, Y.; Peng, R. Icariin Alleviates Glucocorticoid-Induced Osteoporosis through EphB4/Ephrin-B2 Axis. Evid.-Based Complement. Altern. Med. ECAM 2020, 2020, 2982480. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Liu, Z.; Fu, Q. Arbutin ameliorates glucocorticoid-induced osteoporosis through activating autophagy in osteoblasts. Exp. Biol. Med. Maywood NJ 2021, 246, 1650–1659. [Google Scholar] [CrossRef]
- Zeng, C.; Wang, S.; Gu, H.; Chen, F.; Wang, Z.; Li, J.; Xie, Z.; Feng, P.; Shen, H.; Wu, Y. Galangin mitigates glucocorticoid-induced osteoporosis by activating autophagy of BMSCs via triggering the PKA/CREB signaling pathway. Acta Biochim. Biophys. Sin. 2023, 55, 1275–1287. [Google Scholar] [CrossRef]
- Chargo, N.J.; Neugebauer, K.; Guzior, D.V.; Quinn, R.A.; Parameswaran, N.; McCabe, L.R. Glucocorticoid-induced osteoporosis is prevented by dietary prune in female mice. Front. Cell Dev. Biol. 2023, 11, 1324649. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Cui, G.; Zhao, S.; Li, Y.; Liu, Q.; Liu, X.; Zhao, C.; Feng, R.; Kuang, M.; Han, S. Therapeutic Effects of Mechanical Stress-Induced C2C12-Derived Exosomes on Glucocorticoid-Induced Osteoporosis Through miR-92a-3p/PTEN/AKT Signaling Pathway. Int. J. Nanomedicine 2023, 18, 7583–7603. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.-N.; Zheng, H.-L.; Yang, R.-Z.; Jiang, L.-S.; Jiang, S.-D. HIF-1α Regulates Glucocorticoid-Induced Osteoporosis Through PDK1/AKT/mTOR Signaling Pathway. Front. Endocrinol. 2019, 10, 922. [Google Scholar] [CrossRef]
- Song, L.; Cao, L.; Liu, R.; Ma, H.; Li, Y.; Shang, Q.; Zheng, Z.; Zhang, L.; Zhang, W.; Han, Y.; et al. The critical role of T cells in glucocorticoid-induced osteoporosis. Cell Death Dis. 2020, 12, 45. [Google Scholar] [CrossRef]
- Li, S.; Cui, Y.; Li, M.; Zhang, W.; Sun, X.; Xin, Z.; Li, J. Acteoside Derived from Cistanche Improves Glucocorticoid-Induced Osteoporosis by Activating PI3K/AKT/mTOR Pathway. J. Investig. Surg. Off. J. Acad. Surg. Res. 2023, 36, 2154578. [Google Scholar] [CrossRef]
- Eskandarynasab, M.; Doustimotlagh, A.H.; Takzaree, N.; Etemad-Moghadam, S.; Alaeddini, M.; Dehpour, A.R.; Goudarzi, R.; Partoazar, A. Phosphatidylserine nanoliposomes inhibit glucocorticoid-induced osteoporosis: A potential combination therapy with alendronate. Life Sci. 2020, 257, 118033. [Google Scholar] [CrossRef]
- Sato, D.; Takahata, M.; Ota, M.; Fukuda, C.; Hasegawa, T.; Yamamoto, T.; Amizuka, N.; Tsuda, E.; Okada, A.; Hiruma, Y.; et al. Siglec-15-targeting therapy protects against glucocorticoid-induced osteoporosis of growing skeleton in juvenile rats. Bone 2020, 135, 115331. [Google Scholar] [CrossRef]
- Luo, Y.; Xiang, Y.; Lu, B.; Tan, X.; Li, Y.; Mao, H.; Huang, Q. Association between dietary selenium intake and the prevalence of osteoporosis and its role in the treatment of glucocorticoid-induced osteoporosis. J. Orthop. Surg. 2023, 18, 867. [Google Scholar] [CrossRef]
- Oki, Y.; Doi, K.; Kobatake, R.; Makihara, Y.; Morita, K.; Kubo, T.; Tsuga, K. Histological and histomorphometric aspects of continual intermittent parathyroid hormone administration on osseointegration in osteoporosis rabbit model. PloS One 2022, 17, e0269040. [Google Scholar] [CrossRef]
- Chimin, P.; Farias, T. da S.M.; Torres-Leal, F.L.; Bolsoni-Lopes, A.; Campaña, A.B.; Andreotti, S.; Lima, F.B. Chronic glucocorticoid treatment enhances lipogenic activity in visceral adipocytes of male Wistar rats. Acta Physiol. Oxf. Engl. 2014, 211, 409–420. [Google Scholar] [CrossRef]
- Nunes, P.P.; Andreotti, S.; de Fátima Silva, F.; Sertié, R.A.L.; Caminhotto, R. de O.; Komino, A.C.M.; Reis, G.B.; Lima, F.B. Chronic low-dose glucocorticoid treatment increases subcutaneous abdominal fat, but not visceral fat, of male Wistar rats. Life Sci. 2017, 190, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, S.J.; Weber, M.-C.; Henneicke, H.; Kim, S.; Zhou, H.; Seibel, M.J. Continuous corticosterone delivery via the drinking water or pellet implantation: A comparative study in mice. Steroids 2016, 116, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, A.; Guan, H.; Sellan, M.; van Uum, S.; Yang, K. Insulin and dexamethasone dynamically regulate adipocyte 11beta-hydroxysteroid dehydrogenase type 1. Endocrinology 2008, 149, 4069–4079. [Google Scholar] [CrossRef]
- Cai, Y.; Song, Z.; Wang, X.; Jiao, H.; Lin, H. Dexamethasone-induced hepatic lipogenesis is insulin dependent in chickens (Gallus gallus domesticus). Stress Amst. Neth. 2011, 14, 273–281. [Google Scholar] [CrossRef] [PubMed]
| GC | Dose | Route of administration | Duration of administration | Animal species | Age, sex | Reference |
| MPr | 10 mg/kg | i.p. | 1 per day/4 weeks | C57BL/6 mice | 8 weeks, males | [32] |
| Dex | 1 mg/kg | 1 per day/8 weeks | ||||
| Pr | 5 mg/kg | s.c. | 1 per day/60 days | C57BL/6 mice | 8 weeks, males | [98] |
| Dex | 50 mg/kg | i.p. | 1 per day/5 weeks | C57BL/6 mice | 6 weeks, males | [99] |
| Dex | 2 mg/kg | i.m. | 3 per day/8 weeks | C57BL/6 mice | 3 months, males | [100] |
| Pr | 5 mg/kg | s.c.(pellet implanted) | 60-day slow-release | C57BL/6 mice | 15 weeks, females | [101] |
| Dex | 100 mg/kg | i.m. | 1 per day/4 weeks | C57BL/6J mice | 8 weeks, males | [102] |
| Dex | 10 mg/kg | i.p. | 3 weeks | C57BL/6J mice | 8 weeks, males | [103] |
| Dex | 25 mg/kg | s.c. | 1 per day/4 weeks | Balb/c mice | 9–10 weeks, females | [104] |
| Dex | 1 mg/kg | i.m. | 1 per day/8 weeks | Sprague Dawley rats | 12 weeks, males | [33] |
| Dex | 5 mg/kg | i.m. | twice a week/6 weeks | Sprague Dawley rats | 8 weeks, males | [105] |
| MPr | 10 mg/kg | per os | 1 per day/3 weeks | Wistar rats | 3 months, males | [106] |
| Pr | 0.42 mg/day | s.c. (pellets containing 25 mg) | 60-day slow-release | LEW CrlCrlj rats | 6 weeks, females | [107] |
| Dex | 1 mg/kg | i.m. | 1 per day/60 days | Sprague Dawley rats | 8 weeks, males | [108] |
| MPr | 0.5 mg/kg | i.m. | 1 per day/4 weeks | New Zealand White rabbits | 12 weeks, females | [109] |
| MPr | 1 mg/kg | s.c. | 1 per day/6 weeks | New Zealand White rabbits | 5–7 months, females | [34] |
| Pr | 2 mg/kg | per os | 1 per day/2 weeks | Beagle dogs | 2-3 years, males | [36] |
| 1 mg/kg | 1 per day/4 weeks | |||||
| 0.5 mg/kg | 1 per day/3 weeks |
| Head | Measurement by site: no reposition |
| Spine | Keep your tail and head as close as possible to a straight line. |
| Fore legs | Head direction/not overlap or rotate |
| Back legs | Head direction/not overlap or rotate |
| Tail | Included in the scan range/not overlap |
| DXA | µCT | Histomorphometry | Biochemistry analysis in serum |
| Bone mineral content(BMC) | Bone volume/tissue volume)(BV/TV) | Percent labeled perimeter (%L.Pm) | Alkaline phosphatase (ALP) |
| Bone mineral density (BMD) | Bone surface/bone volume(BS/BV) | Mineralization apposition rate (MAR) | Tartrate-resistant acid phosphatase (TRAP) |
| Trabecular number(Tb.N) | Bone formation rate/bone surface referent (BFR/BS) | Osteocalcin (OCN) | |
| Trabecular thickness(Tb.Th) | Bone formation rate/bone volume referent (BFR/BV) | C-terminal telopeptide of type 1 collagen (CTX-I) | |
| Trabecular separation(Tb.Sp) | Bone formation rate/tissue volume referent (BFR/TV) | Bone-specific alkaline phosphatase | |
| Structure-model index(SMI) | Total tissue area (T.Ar) | ||
| Degree of anisotropy (DA) | Cortical area (Ct.Ar), Marrow area (Ma.Ar) | ||
| Connectivity density (Conn.D) | Cortical width (Ct.Wi) | ||
| Total cross-sectional area (Tt.Ar) | Percent periosteal-labeled perimeter (%P-L.Pm) | ||
| Cortical bone area (Ct.Ar) | Periosteal-MAR (P-MAR) | ||
| Cortical thickness (Ct.Th) | Osteoclast number/bone surface (Oc.N/BS) | ||
| Cortical bone fraction (Ct.Ar/Tt.Ar) | Percent endocortical-labeled perimeter (%E-L.Pm) |
| Animal species, sex | Model | Design | References |
| Male Wistar rats | Dex 0.25 mg/kg/day during 4 weeks | Subcutaneous, retroperitoneal and mesenteric) fat pads were excised, weighed and processed for adipocyte isolation, morphometric cell analysis and incorporation of glucose into lipids | [110] |
| Male Wistar rats | 6 weeks of continuous infusion of 0.6mg/kg/day of hydrocortisone | Subcutaneous and visceral (retroperitoneal and mesenteric) fat pads were analyzed for: lipogenic enzymes activity; molecular changes of 11-hydroxysteroid dehydrogenase type 1 (11βHSD1) enzyme; enzymes involved in lipid uptake, incorporation, and metabolism and in fatty acids esterification. | [111] |
| Male CD1 Swiss white mice | 4 weeks either via the drinking water (25-100μg/mL) or through weekly surgical implantation of slow release pellets containing 1.5mg corticosterone | Insulin tolerance tests, Measurements of bone mineral content, bone area, lean mass and fat mass | [112] |
| Male Wistar rats | Dex 120 μg/kg s.c. for 7 days | The level of 11β-HSD1 dehydrogenase activity in adipose tissue homogenates was determined by measurement of the rate of corticosterone to 11-dehydrocorticosterone conversion | [113] |
| Male broiler chickens (Gallus Gallus Domesticus) | Dex 2 mg/kg/day for 3 days | The concentrations of glucose, urate, non-esterified fatty acids, triglyceride, and LPL were measured. The activities of fatty acid synthesis and malic enzyme in liver and adipose tissues were measured. | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
