Submitted:
25 November 2024
Posted:
28 November 2024
You are already at the latest version
Abstract
Keywords:
MSC: 17B68; 17B80; 35Q53; 35G25; 35N10; 37K35; 58J70; 58J72; 34A34; 37K05; 37K10
1. Introduction
2. Quasi-Classical Integrability and a Simple Superization Scheme
3. Superintegrability Analysis
4. The Lax Type Representation Scheme
5. Spectral Operator Problem and Related Superization Scheme
6. Conclusion
Acknowledgments
References
- Bellucci, S.; Ivanov, E.; Krivonos, S. On N=3 super Korteweg – de Vries Equation. J. Math. Phys. 1993, 34, 3087–3097. [Google Scholar] [CrossRef]
- Berezin, F.A. The method of second quantization, Pure and Applied Physics 24, Academic Press, New York-London, 1966.
- Blackmore D.; Prykarpatsky A.K. and Samoylenko V.H.; Nonlinear dynamical systems of mathematical physics, World Scientific Publisher, NJ, USA, 2011.
- Blaszak, M. Multi-Hamiltonian Theory of Dynamical Systems; Springer: New York, NY, USA, 1998. [Google Scholar]
- Bogolubov N.N.; Bogolubov N.N. (Jr.), Introduction to Quantum Statistical Mechanics. Gordon and Breach, New York, London, 1994.
- Bogolubov, N.N.; Shirkov, D.V. Introduction to the theory of quantized fields. John Wiley and Sons, Canada; 3rd Edition, 1980.
- Bogoliubov N.N. (Jr.), Prykarpatsky A.K.; Blackmore D.; On Benney-type hydrodynamical systerms and their Boltzmann-Vlasov type equations kinetic models. ICTP Preprint IC/2006/006 , Trieste, Italy; Available at: http://www.ictp.it/~pub-off IC/2006/006.
- Brunelli, J.C.; Das, A. Supersymmetric two boson equation, its reductions and the nonstandard supersymmetric KP hierarchy. Int. J. Modern Phys. A. 1995, 10, 4563–4599. [Google Scholar] [CrossRef]
- Calogero, F.; Degasperis, A. Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations, v. 1, North-Holland, 1982.
- Camassa, R.; Holm, D.D. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 1993, 71, 1661. [Google Scholar] [CrossRef] [PubMed]
- Davydov, A.S. Theoretical investigation of high tempereature superconductovity. 1990. [Google Scholar]
- Delduc, F.; Ivanov, E.; Krivonos, S. N=4 super KdV hierarchy in N=4 and N=2 superspaces. J. Math. Phys. 1996, 37, 1356–1381. [Google Scholar] [CrossRef]
- Dirac, P.A.M.; The Principles of Quantum Mechanics, 2nd ed.; Clarendon Press: Oxford, UK, 1935.
- Takhtajan L.A. and Faddeev L.D.; Hamiltonian Approach in Soliton Theory, Springer, Berlin-Heidelberg, 1987.
- Gawędzki, K. Supersymmetric extension of the Korteweg-de Vries equation. Ann. Inst. H. Poincare. A 1997, 27, 335–366. [Google Scholar]
- Geng, X.; Wu, L. A new super-extension of the KdV hierarchy. Applied Math. Letters 2010, 23, 716–721. [Google Scholar] [CrossRef]
- Hentosh, O.; Prykarapatsky, A.K. Integrable three-dimensional coupled nonlinear dynamical systems related with centrally extended operator Lie algebras. Opuscula Mathematica 2007, 27, 231–244. [Google Scholar]
- Golenia, J.; Hentosh, O.; Prykarpatsky, A. Integrable three-dimensional coupled nonlinear dynamical systems related to centrally extended operator Lie algebras and their Lax type three-linearization. Central European Journal of Mathematics 2007, 5, 84–104. [Google Scholar] [CrossRef]
- Green, M.; John H. Schwarz, and E. Witten.; Superstring Theory. Vol. 1, Introduction. Cambridge Monographs on Mathematical Physics. Cambridge, UK: Cambridge University Press, 1988. ISBN 978-0-521-35752-4.
- Grozman P.; Leites D.; Shchepochkina I.; Lie superalgebras of string theories, arxiv: hep-th 9702120.
- Gurses, M.; Oguz, O. A super AKNS scheme. Phys Lett. A 1985, 108, 437–440. [Google Scholar] [CrossRef]
- Gurses, M.; Oguz, O. A supersoliton connection. Lett. Math. Phys. 1986, 11, 235–246. [Google Scholar] [CrossRef]
- Helminck, G.; van de Leur, J. Constrained and rational reductions of the KP hierarchy. Supersymmetry and Integrable Models Lect. Notes. Phys. 1998, 502, 167–181. [Google Scholar] [CrossRef]
- Hentosh, O. Compatibly bi-Hamiltonian superconformal analogs of the Lax-integrable nonlinear dynamical systems. Ukrainian Mathematical Journal 2006, 58, 1001–1015. [Google Scholar] [CrossRef]
- Hentosh, O. Lax Integrable Supersymmetric Hierarchies on Extended Phase Spaces of Two Anticommuting Variables. Operator Theory Advances and Applications 2009, 191, 365–379. [Google Scholar] [CrossRef]
- Hentosh, O.; Prykarpatsky, Ya. The Lax-Sato integrable heavenly equations on functional supermanifolds and their Lie-algebraic structure. European J. of Mathematics 2020, 6, 232–247. [Google Scholar] [CrossRef]
- Hentosh O.; Prytula M.; Prykarpatsky A.; Differential-geometric and Li-algebraic foundations of investigating integrable nonlinear dynamical systems on functional manifolds. - Lviv. University, 2006. - 408 p.
- Kulish, P.P. Analog of the Korteweg–de Vries equation for the superconformal algebra. J. Soviet Math. 1988, 41, 970–975. [Google Scholar] [CrossRef]
- Kupershmidt, B.A. Integrable systems. Proc. Nat. Acad. Sci. USA 1984, 81, 6562–6563. [Google Scholar] [CrossRef] [PubMed]
- Labelle, M.; Mathieu, P. A new N=2 supersymmetric Kortteweg-de Vries equation. Journ. Math. Physics 1991, 32, 923–927. [Google Scholar] [CrossRef]
- Laberge, C.-A.; Mathieu, P. N=2 superconformal algebra and integrable O(2) fermionic extensions of the Korteweg – de Vries equation. Phys. Lett. B. 1988, 215, 718–722. [Google Scholar] [CrossRef]
- Leites, D. Introduction to supermanifolds. Russian Math. Surveys 1980, 35, 1–64. [Google Scholar] [CrossRef]
- Leites, D. Lie superalgebras. Journal of Soviet Mathematics 1985, 30, 2481–2512. [Google Scholar] [CrossRef]
- Leites D.; Xuan P. Supersymmetry of the Schrodinger and Korteweg-de Vries operators; arXiv:hep-th/9710045.
- Lenells, J.; Lechtenfeld, O. On the N = 2 supersymmetric Camassa–Holm and Hunter–Saxton equations. Journal of Mathematical Physics 2009, 50, 012704. [Google Scholar] [CrossRef]
- Lie, A.; Shemyakova, E.; Voronov, T. Differential operators on the superline, Berezinians, and Darboux transformations. Lett. Math. Phys. 2017, 107, 1689–1714. [Google Scholar] [CrossRef]
- Magri, F. A simple model of the integrable Hamiltonian equation. J. Math. Phys. 1978, 19, 1156–1162. [Google Scholar] [CrossRef]
- Manin Yu., I.; Radul A., O. A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy. Comm. Math. Phys. 1985, 98, 65–77. [Google Scholar] [CrossRef]
- Marcel, P.; Ovsienko, V.; Roger, C. Extension of the Virasoro and Neveu-Schwarz algebras and generalized Sturm-Liouville operators. Lett. Math. Phys. 1997, 40, 31–39. [Google Scholar] [CrossRef]
- Mathieu, P. Supersymmetric extension of the Korteweg-de Vries equation. J. Math. Phys. 1988, 29, 2499–2506. [Google Scholar] [CrossRef]
- Mathieu, P. Hamiltonian Structure of Graded and Super Evolution Equations. Letters in Mathematical Physics 1988, 16, 199–206. [Google Scholar] [CrossRef]
- Mitropolski Yu.A.; Bogoliubov N.N. (Jr.), Prykarpatsky A.K.; Samoilenko V.Hr.; Integrable Dynamical Systems. "Naukova dumka’ Publ.; Kiev, 1987.
- Morosi, C.; Pizzocchero, L. The osp(3;2) and gl(3;3) supersymmetric KdV hierarchies. Phys. Lett. A. 1994, 185, 241–252. [Google Scholar] [CrossRef]
- Newell A.C.; Solitons in Mathematics and Physics. In Proceedings of the CBMS-NSF, Regional Conference Series in Applied Mathematics, SIAM, 1985.
- Nissimov, E.; Pacheva, S. Properties of supersymmetric integrable systems of KP type. Eur. Phys. J. B 2002, 29, 197–201. [Google Scholar] [CrossRef]
- Novikov, S.P. The periodic problem for the Korteweg—de vries equation. Funct Anal Its Appl 1974, 8, 236–246. [Google Scholar] [CrossRef]
- Oevel, W.; Popowicz, Z. The bi-Hamiltonian structure of fully supersymmetric Korteweg-de Vries systems. Comm. Math. Phys. 1991, 139, 441–460. [Google Scholar] [CrossRef]
- Popowicz, Z.; Toppan, F. The N=2 supersymmetric heavenly equation and super-hydrodynamical reduction. J. Phys. A Math. Gen. 2003, 36, 9701–9709. [Google Scholar] [CrossRef]
- Popowicz, Z. The fully supersymmetric AKNS equations. Phys. Lett. A Math. Gen. 1990, 23, 1127–1136. [Google Scholar] [CrossRef]
- Popowicz, Z. N=2 Super-complexification of the Korteweg-de Vries, Sawada-Kotera and Kaup-Kupershmidt Equations. Journal of Nonlinear Mathematical Physics 2019, 26, 294–312. [Google Scholar] [CrossRef]
- Prykarpatsky, Ya.A. Structure of integrable Lax flows on nonlocal manifolds: dynamical systems with sources. Math. Methods and Phys.-Mech. Fields 1997, 40, 106–115. [Google Scholar] [CrossRef]
- Prykarpatsky, A.K.; Blackmore, D.; Bogolubov, N.N., Jr. Hamiltonian structure of benney type and Boltzmann-Vlasov kinetic equations on axis and some applications to manufacturing science. Open Systems and Information Dynamics 1999, 6, 335–373. [Google Scholar] [CrossRef]
- Prykarpats’ky, A.K.; Fil’, B.M. Category of topological jet-manifolds and certain applications in the theory of nonlinear infinite dimensional dynamical systems. Ukr. Math. Journal 1993, 44, 1136–1148. [Google Scholar] [CrossRef]
- Prykarpatsky A.; Mykytyuk I.; Algebraic integrability of nonlinear dynamical systems on manifolds. Kluwer Acad. Publishers, the Netherlands, 1998.
- Scott, A. Davydov’s solitons. Physics Reports (Review Section of Physics Letters) 1992, 217, 1–67. [Google Scholar] [CrossRef]
- Stanciu, S. Additional Symmetries of Supersymmetric KP Hierarchies. Commun. Math. Phys. 1994, 165, 261–279. [Google Scholar] [CrossRef]
- Yajima, N.; Oikawa, M. Formation and interaction of sonic-Langmuir solitons: Inverse scattering method. Prog. Theor. Phys. 1976, 56, 1719–1739. [Google Scholar] [CrossRef]
- Yamanaka, I.; Sasaki, R. Super Virasoro Algebra and Solvable Supersymmetric Quantum Field Theories. Progress of Theoretical Physics 1988, 79, 1167–1184. [Google Scholar] [CrossRef]
- Zhou, H.; Tian, K.; Li, N. Four super integrable equations: nonlocal symmetries and applications. Journal of Physics A Math. Theor. 2022, 55, 225207. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
