Submitted:
25 November 2024
Posted:
27 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Modalities in Hand Recognition
2.1. Hand Geometry Recognition
2.2. Palmprint Recognition
2.3. Vein Pattern Recognition
2.4. Gesture Recognition
3. Techniques in Hand Recognition
3.1. Machine Learning Approaches
3.2. Deep Learning Approaches
3.3. Multimodal Approaches
4. Applications of Hand Recognition
4.1. Security and Access Control
4.2. Healthcare
4.3. Human-Computer Interaction (HCI)
4.4. Financial Services
4.5. Forensics and Law Enforcement
4.6. Personalized Services and Retail
5. Challenges and Limitations
5.1. Environmental Factors
5.2. Variability in Hand Appearance
5.3. High Computational Requirements
5.4. Privacy and Ethical Concerns
5.5. Cost and Complexity of Multimodal Systems
5.6. Limitations in Data Availability
5.7. Adapting to Emerging Threats
6. Future Directions
6.1. Artificial Intelligence and Deep Learning Enhancements
6.2. Multimodal Biometric Systems
6.3. Privacy-Preserving Techniques
6.4. Blockchain for Secure Data Management
6.5. Advancements in Hardware and Sensors
6.6. Edge Computing for Real-Time Processing
6.7. Robustness Against Emerging Security Threats
6.8. Expanding Use in Emerging Applications
7. Conclusions
References
- J. Chen, D. Zhang, H. Wang, A survey on palmprint recognition, Pattern Recognition 44 (5) (2011) 1006–1016.
- Z. Geng, Z. Wang, D. Zhang, A survey on deep learning for palmprint recognition, Expert Systems with Applications 94 (2018) 145–158.
- Y. Lee, D. Kim, S. Lee, Palmprint recognition based on fusion of texture and shape features, Pattern Recognition 58 (2016) 1–9.
- W. Wang, D. Zhang, Y. He, Z. Liu, Surveillance palmprint recognition based on multi-scale feature extraction, in: 2013 International Conference on Machine Learning and Cybernetics, 2013, pp. 1023–1028.
- J. Li, D. Zhang, Z. Wang, Personalized deep learning for palmprint recognition, Information Sciences 516 (2020) 243–255.
- Y. Zhang, X. Xu, R. Xu, Luxury consumer behavior based on palmprint recognition, Journal of Business Research 129 (2021) 151–160.
- A. Ross, A. K. Jain, Hand biometric systems, in: Biometrics: Personal Identification in Networked Society, 2007, pp. 85–101.
- A. Ahmad, A. Javed, F. Rahman, A. Qureshi, Challenges in biometric recognition: A survey, Artificial Intelligence Review 52 (4) (2019) 2151–2173.
- E. Martinez, J. Paredes, M. Mendez, Adaptive multimodal biometric recognition for mobile devices, Journal of Ambient Intelligence and Humanized Computing 10 (10) (2019) 3837–3849.
- L. Sandberg, U. Usmani, Tinyml: Machine learning on the edge, arXiv preprint arXiv:1904.01796 (2019).
- X. Han, H. Yang, Y. Wang, Deep learning for biometric recognition: A review, Pattern Recognition 48 (10) (2015) 3101–3113.
- J. Albrecht, H. Baird, T. Watson, Privacy-preserving biometric authentication: A survey, IEEE Transactions on Information Forensics and Security 12 (1) (2017) 98–113.
- T. Ralph, M. Ali, N. Ayub, Secure biometric authentication for cloud computing, Journal of Cloud Computing: Advances, Systems and Applications 7 (1) (2018) 1–10.
- P. Voigt, A. Von dem Bussche, The eu general data protection regulation: A commentary, Springer (2017).
- C. Garvie, B. Bedoya, J. Frankle, Racial bias in biometric identification, The Georgetown Law Technology Review 4 (2) (2020) 102–116.
- F. Alotaibi, M. Ali, F. Alenezi, Spoofing detection in biometric systems: A survey, Journal of King Saud University-Computer and Information Sciences (2020).
- I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial examples, arXiv preprint arXiv:1412.6572 (2014).
- X. Li, C. Yu, J. Liu, Spoofing detection in biometric systems: A survey of recent advances, IEEE Transactions on Information Forensics and Security 11 (3) (2016) 487–503.
- A. Vaswani, N. Shankar, N. Parmar, Uszkoreit, Attention is all you need, Advances in Neural Information Processing Systems 30 (2017).
- D. Gunning, Explainable artificial intelligence (xai), AI Magazine 38 (1) (2017) 1–12.
- B. McMahan, E. Moore, D. Ramage, B. A. y Arcas, Communication-efficient learning of deep networks from decentralized data, in: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), Vol. 54, 2017, pp. 1273–1282.
- A. Acar, T. Malkin, R. Shokri, A survey on secure multi-party computation and its applications, ACM Computing Surveys 51 (4) (2018) 1–35.
- D. Yaga, P. Mell, N. Roby, K. Scarfone, Blockchain technology overview, NIST Special Publication (800) (2019).
- J. Wang, L. Zhang, W. Liu, Blockchain technology in the energy sector: A review of its applications and potential impacts, Renewable and Sustainable Energy Reviews 81 (2018) 2022–2031.
- Z. Zhao, Q. Liu, L. Liu, S. Wang, Hand geometry recognition using a 3d laser scanner, Journal of Information Science and Engineering 29 (2) (2013) 511–524.
- W. Shi, K. Zheng, Y. Yang, W. Wu, Edge computing: A new computing paradigm for the internet of things, in: 2016 IEEE International Conference on Internet of Things (iThings), 2016, pp. 1–6.
- X. Ran, S. Lu, G. Ding, Y. Yang, Edge computing for the internet of things: A review, IEEE Internet of Things Journal 6 (2) (2019) 1478–1497.
- Z. Peng, Y. Chen, X. Liu, J. Zhao, A survey on blockchain technology and its applications, IEEE Transactions on Industrial Informatics 16 (1) (2020) 1–18.
- L. Atzori, A. Iera, G. Morabito, The internet of things: A survey, Computer Networks 54 (15) (2010) 2787–2805.
- P. N. Belhumeur, J. P. Hespanha, D. J. Kriegman, Eigenfaces vs. fisherfaces: Recognition using class specific linear projection, IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (7) (1997) 711–720.
- Y. Xu, X. Li, W. Zuo, Palmprint authentication based on local invariant features, IEEE Transactions on Image Processing 18 (3) (2009) 833–844.
- V. N. Vapnik, Statistical learning theory, Wiley, 1998.
- I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer classification using support vector machines, Machine Learning 46 (1) (2002) 389–422.
- L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32.
- Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86 (11) (1998) 2278–2324.
- K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556 (2014).
- N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, R. R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, in: Journal of Machine Learning Research, Vol. 15, 2014, pp. 1929–1958.
- K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
- S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Computation 9 (8) (1997) 1735–1780.
- Z. Du, J. Guo, L. Wu, Z. Yan, S. Yang, Gesture recognition with depth data using convolutional neural networks, Neurocomputing 202 (2016) 11–18.
- D. Zhang, W. Kong, Z. You, J. Yang, Palmprint recognition based on line and texture features, Pattern Recognition 43 (2) (2010) 564–576.
- W. Samek, T. Wiegand, K.-R. Müller, Explainable artificial intelligence (xai): A brief overview, arXiv preprint arXiv:1708.08296 (2017).
- A. Ross, A. K. Jain, Multimodal biometrics: An overview, in: Handbook of Biometrics, 2004, pp. 91–108.
- A. K. Jain, A. Ross, S. Prabhakar, Score normalization in multimodal biometric systems, Pattern Recognition 38 (12) (2005) 2448–2460.
- J. Kittler, M. Hatef, R. Duin, J. Matas, Combining classifiers, Artificial Intelligence 97 (1-2) (1998) 41–68.
- A. Ross, A. K. Jain, Hand geometry biometrics, in: Biometrics: Personal Identification in Networked Society, 2006, pp. 70–78.
- Y. Peng, J. Wu, Z. Wang, D. Zhang, Multispectral palmprint recognition using discriminative features, Optics Communications 313 (2014) 111–118.
- A. K. Jain, A. Ross, S. Prabhakar, Hand geometry recognition using a statistical approach, Proceedings of the IEEE 92 (6) (2004) 1150–1160.
- D. Zhang, H. Wang, S. Zhang, W. Kong, Online hand geometry recognition using a 3d laser scanner, in: 2003 IEEE International Conference on Multimedia and Expo (ICME), Vol. 1, 2003, pp. 97–100.
- Y. Matsuda, T. Yamada, K. Yamamoto, Finger vein recognition using a new vascular pattern extraction method, IEEE Transactions on Information Forensics and Security 1 (4) (2005) 552–558.
- J. Yoon, J. Kim, K. Kim, J. Yoon, Biometric recognition based on hand shape features, Expert Systems with Applications 42 (3) (2015) 1384–1395.
- W. Wang, S. Wang, J. Li, Z. Xu, Y. He, Hand geometry recognition with a self-learning kernel-based method, Pattern Recognition Letters 28 (8) (2007) 990–995.
- J.-I. Kim, J.-H. Kim, J. Yoon, A survey of palmprint recognition, Journal of Visual Communication and Image Representation 23 (3) (2012) 389–395.
- V.-T. Pham, T.-H. Tran, H. Vu, Detection and tracking hand from fpv: benchmarks and challenges on rehabilitation exercises dataset, in: 2021 RIVF International Conference on Computing and Communication Technologies (RIVF), IEEE, 2021, pp. 1–6.
- Z. Su, Z. Chen, J. Wu, Biometric identification based on hand shape, in: 2014 IEEE International Conference on Image Processing (ICIP), 2014, pp. 1424–1428.
- S. Mitra, T. Acharya, Gesture recognition using a multi-modal sensor framework, in: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2007, pp. IV–1.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
