Submitted:
20 November 2024
Posted:
22 November 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Advances in Neuroimaging and AI Integration
I. Diffusion MRI Techniques
II. Next-Generation Positron Emission Tomography (PET) Tracers
III. Multi-Modal Integration
IV. Translational Impact
V. Privacy and Data-Sharing
VI. Impact on Neurorehabilitation
| Technology | Details |
|---|---|
| Diffusion Tensor Imaging (DTI) | Provides insights into white matter integrity, useful for detecting disease progression in neurodegenerative diseases. However, limited in differentiating microstructural changes in tissue. |
| Neurite Orientation Dispersion and Density Imaging (NODDI) | Enhances the detection of early microstructural changes in diseases like Parkinson’s. Offers more nuanced views of white matter integrity. Requires specialized equipment and computational power. |
| Diffusion Kurtosis Imaging (DKI) | Detects non-Gaussian diffusion behavior and identifies early gray matter changes in diseases such as Alzheimer’s. Clinically relevant but requires sophisticated analysis tools. |
| AI Integration with NODDI and DKI | AI improves diagnostic accuracy by analyzing complex data, enabling early detection with higher precision (e.g., 94% accuracy for Alzheimer’s detection). Models require continuous validation. |
| Tau PET Tracers (e.g., 18F-PI-2620) | Enhances specificity and sensitivity for tau imaging, crucial for early Alzheimer’s diagnosis. Challenges include availability and cost. |
| Alpha-Synuclein PET Tracers (e.g., 11C-MODAG-001) | Key for diagnosing synucleinopathies like Parkinson’s at earlier stages. Still in clinical trials, but offers the potential to detect disease before symptoms appear. |
| AI-driven PET Imaging (CNNs, 3D CNN Architectures) | AI systems automate PET scan analysis, reducing manual interpretation time and improving diagnostic consistency. Requires transparency for trust and clinical integration. |
|
Transformer-based AI Models (e.g., Vision Transformer) |
AI models like ViT capture long-range dependencies in 3D data, improving diagnostic accuracy for conditions like Alzheimer’s. Need for large, high-quality datasets and computational resources. |
| Graph Neural Networks (GNNs) for Brain Connectivity | GNNs model brain connectivity disruptions, critical for early-stage Parkinson’s diagnosis. Requires high data consistency and overcoming complex integration barriers. |
| Adaptive Deep Brain Stimulation (DBS) | AI enhances DBS by adjusting stimulation in real time, improving therapeutic outcomes for Parkinson’s patients. Challenges include regulatory approval and monitoring for continuous adaptation. |
| AI-enhanced Retinal Imaging (Optical Coherence Tomography - OCT) | Provides a non-invasive, cost-effective method for detecting early-stage Alzheimer’s and Parkinson’s by identifying retinal changes linked to brain pathology. Still not universally adopted. |
| Neuroimaging Biomarkers + Liquid Biopsy | Combining neuroimaging with blood biomarkers offers a comprehensive, non-invasive approach for monitoring disease progression and enabling early interventions. Requires data integration strategies. |
Challenges in Integrating AI into Clinical Practice for Diagnosis and Treatment
I. Technical Challenges: Variability in Neuroimaging Data and Its Impact on AI Models
II. Regulatory and Legal Barriers: Ensuring Compliance and Addressing Liability
III. Future Directions: Addressing Variability Through AI Innovations
| Challenge | Details |
|---|---|
| Variability in Imaging Data | Variations in MRI scanners, protocols, patient positioning, and preprocessing pipelines create inconsistencies that impact the accuracy and generalizability of AI models. This affects their performance across diverse clinical settings. |
| Scanner and Protocol Differences | Even within the same manufacturer, MRI scanners may produce different image characteristics (e.g., field strength, coil design), leading to variability in diagnostic accuracy. Variability in imaging protocols across institutions further complicates AI’s ability to generalize and maintain consistent performance. |
| Patient Positioning and Motion | Variations in patient positioning and involuntary motion (e.g., respiratory, cardiac cycles) introduce distortions that can negatively affect AI-driven diagnoses. AI models must account for such variability in real-time to maintain diagnostic accuracy. |
| Image Preprocessing Variability | Differences in preprocessing steps (e.g., skull stripping, registration, normalization) can lead to inconsistencies in the final image data, potentially hindering AI performance if not standardized across clinical settings. |
| Longitudinal Variability | Changes in imaging technology, protocols, and patient-specific factors over time complicate longitudinal tracking of disease progression. AI models must adapt to these changes to remain effective in monitoring disease development. |
| Multi-Site Data Integration | Data from different clinical sites can vary due to differences in patient demographics, protocols, and quality control measures. AI models must be robust enough to handle these variations to ensure they work across a wide range of clinical environments. |
| Regulatory Compliance | The FDA requires rigorous validation of AI models to ensure they perform reliably across diverse clinical conditions. Models must be validated under appropriate regulatory pathways, such as 510(k) or PMA, while also adapting to evolving scanner technology and clinical protocols. |
| Legal Liability | AI-driven misdiagnosis due to image variability raises liability questions about who is responsible (AI developer, healthcare provider, or imaging facility). New legal frameworks may be needed to clarify liability for AI-assisted diagnoses. |
| Data Privacy and Security | Sharing medical imaging data across institutions is essential for developing robust AI models, but it raises concerns over patient privacy. Adhering to HIPAA, GDPR, and other data protection regulations creates tension between the need for diverse training data and safeguarding privacy. |
| Informed Consent | Patients must be informed about the role of AI in their diagnosis and the potential risks of errors due to data variability. Clearly communicating the benefits and limitations of AI-assisted diagnoses is a critical ethical and legal issue. |
| Regulatory Gaps for AI Adaptation | Current FDA regulatory pathways may not fully accommodate the continuous learning nature of AI systems, raising the need for new regulatory frameworks to address the evolving nature of AI models. |
| Post-Market Surveillance | AI systems that adapt over time require continuous monitoring to ensure they do not introduce new risks or errors. Traditional post-market surveillance methods may not be suitable for AI’s dynamic nature, necessitating the development of new approaches. |
| International Regulatory Alignment | Different regulations regarding medical AI and data privacy across countries complicate global adoption. Efforts toward international regulatory harmonization are necessary to facilitate widespread deployment and ensure patient safety. |
Discussion
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9(7):a028035. [CrossRef]
- Hou Y, Dan X, Babbar M, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15(10):565-581.
- Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2018;10(4):a033118. [CrossRef]
- Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280-292. [CrossRef]
- Postuma RB, Berg D. Prodromal Parkinson’s disease: the decade past, the decade to come. Mov Disord. 2019;34(5):665-675.
- London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9(1):44-53. [CrossRef]
- Albers MW, Gilmore GC, Kaye J, et al. At the interface of sensory and motor dysfunctions and Alzheimer’s disease. Alzheimers Dement. 2015;11(1):70-98. [CrossRef]
- Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577-1590.
- Malek N, Grosset DG. Improving the diagnosis of Parkinson’s disease. Practitioner. 2015;259(1787):15-19.
- Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367(9):795-804. [CrossRef]
- Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535-562. [CrossRef]
- Hampel H, O’Bryant SE, Molinuevo JL, et al. Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol. 2018;14(11):639-652. [CrossRef]
- Trattnig S, Bogner W, Gruber S, et al. Clinical applications at ultrahigh field (7 T). Where does it make the difference? NMR Biomed. 2016;29(9):1316-1334. [CrossRef]
- Duyn JH. The future of ultra-high field MRI and fMRI for study of the human brain. Neuroimage. 2012;62(2):1241-1248. [CrossRef]
- Wisse LEM, Biessels GJ, Geerlings MI. A critical appraisal of the hippocampal subfield segmentation package in FreeSurfer. Front Aging Neurosci. 2014;6:261. [CrossRef]
- Lehéricy S, Bardinet E, Poupon C, et al. 7 Tesla magnetic resonance imaging: a closer look at substantia nigra anatomy in Parkinson’s disease. Mov Disord. 2014;29(13):1574-1581. [CrossRef]
- Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316-329.
- Acosta-Cabronero J, Nestor PJ. Diffusion tensor imaging in Alzheimer’s disease: insights into the limbic-diencephalic network and methodological considerations. Front Aging Neurosci. 2014;6:266. [CrossRef]
- Rathore S, Habes M, Iftikhar MA, et al. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. Neuroimage. 2017;155:530-548. [CrossRef]
- Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221-248.
- Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88. [CrossRef]
- Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys. 2019;29(2):102-127.
- Akkus Z, Galimzianova A, Hoogi A, et al. Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging. 2017;30(4):449-459. [CrossRef]
- Varoquaux G, Schwartz Y, Poldrack RA, et al. Atlases of cognition with large-scale human brain mapping. PLoS Comput Biol. 2018;14(11):e1006565. [CrossRef]
- Zhang D, Wang Y, Zhou L, et al. Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage. 2011;55(3):856-867. [CrossRef]
- Rieke J, Eitel F, Weygandt M, et al. Visualizing convolutional networks for MRI-based diagnosis of Alzheimer’s disease. In: Understanding and Interpreting Machine Learning in Medical Image Computing Applications. Springer; 2018:24-31.
- Wen J, Thibeau-Sutre E, Diaz-Melo M, et al. Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Med Image Anal. 2020;63:101694. [CrossRef]
- Jo T, Nho K, Saykin AJ. Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data. Front Aging Neurosci. 2019;11:220. [CrossRef]
- Villemagne VL, Doré V, Burnham SC, et al. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. 2018;14(4):225-236. [CrossRef]
- Leuzy A, Chiotis K, Lemoine L, et al. Tau PET imaging in neurodegenerative tauopathies—still a challenge. Mol Psychiatry. 2019;24(8):1112-1134. [CrossRef]
- Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage. 2017;145(Pt B):137-165. [CrossRef]
- Woo CW, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci. 2017;20(3):365-377. [CrossRef]
- Klöppel S, Abdulkadir A, Jack CR Jr, et al. Diagnostic neuroimaging across diseases. Neuroimage. 2012;61(2):457-463. [CrossRef]
- Bzdok D, Altman N, Krzywinski M. Statistics versus machine learning. Nat Methods. 2018;15(4):233-234. [CrossRef]
- Char DS, Shah NH, Magnus D. Implementing machine learning in health care - addressing ethical challenges. N Engl J Med. 2018;378(11):981-983. [CrossRef]
- Trattnig S, Springer E, Bogner W, et al. Key clinical benefits of neuroimaging at 7T. Neuroimage. 2018;168:477-489. [CrossRef]
- Uğurbil K. Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage. 2018;168:7-32. [CrossRef]
- van der Zwaag W, Schäfer A, Marques JP, Turner R, Trampel R. Recent applications of UHF-MRI in the study of human brain function and structure: a review. NMR Biomed. 2016;29(9):1274-1288. [CrossRef]
- Düzel E, Acosta-Cabronero J, Berron D, et al. European Ultrahigh-Field Imaging Network for Neurodegenerative Diseases (EUFIND). Alzheimers Dement (Amst). 2019;11:538-549. [CrossRef]
- Marques JP, Norris DG. How to choose the right MR sequence for your research question at 7T and above? Neuroimage. 2018;168:119-140.
- Wisse LEM, Chételat G, Daugherty AM, et al. Hippocampal subfield volumetry from structural isotropic 1 mm3 MRI scans: A note of caution. Hum Brain Mapp. 2021;42(2):539-550. [CrossRef]
- Haast RAM, Ivanov D, Uludağ K. The impact of B1+ correction on MP2RAGE cortical T1 and apparent cortical thickness at 7T. Hum Brain Mapp. 2018;39(6):2412-2425.
- Cho ZH, Oh SH, Kim JM, et al. Direct visualization of Parkinson’s disease by in vivo human brain imaging using 7.0T magnetic resonance imaging. Mov Disord. 2011;26(4):713-718.
- Bourne RRA, Jonas JB, Bron AM, et al. Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe in 2015: magnitude, temporal trends and projections. Br J Ophthalmol. 2018;102(5):575-585. [CrossRef]
- den Haan J, Verbraak FD, Visser PJ, Bouwman FH. Retinal thickness in Alzheimer’s disease: A systematic review and meta-analysis. Alzheimers Dement (Amst). 2017;6:162-170. [CrossRef]
- Zeineh MM, Chen Y, Kitzler HH, Hammond R, Vogel H, Rutt BK. Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in Alzheimer disease. Neurobiol Aging. 2015;36(9):2483-2500. [CrossRef]
- Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167-175. [CrossRef]
- Cheung CY, Ikram MK, Chen C, Wong TY. Imaging retina to study dementia and stroke. Prog Retin Eye Res. 2017;57:89-107. [CrossRef]
- Kamnitsas K, Ledig C, Newcombe VFJ, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017;36:61-78.
- Wachinger C, Reuter M, Klein T. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy. Neuroimage. 2018;170:434-445. [CrossRef]
- Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66(1):259-267. [CrossRef]
- Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001;13(4):534-546. [CrossRef]
- Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci. 2008;34(1):51-61. [CrossRef]
- Jones DK, Knösche TR, Turner R. White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage. 2013;73:239-254.
- Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61(4):1000-1016. [CrossRef]
- Jelescu IO, Veraart J, Adisetiyo V, et al. One diffusion acquisition and different white matter models: how does microstructure predict fractional anisotropy? Neuroimage. 2015;107:242-252.
- Grussu F, Schneider T, Tur C, et al. Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology? Ann Clin Transl Neurol. 2017;4(9):663-679.
- Kamagata K, Hatano T, Okuzumi A, et al. Neurite orientation dispersion and density imaging in the substantia nigra in idiopathic Parkinson disease. Eur Radiol. 2016;26(8):2567-2577. [CrossRef]
- Andica C, Kamagata K, Hatano T, et al. Neurite orientation dispersion and density imaging of the nigrostriatal pathway in Parkinson’s disease: retrograde degeneration observed by tract-profile analysis. Parkinsonism Relat Disord. 2018;51:55-60. [CrossRef]
- Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005;53(6):1432-1440. [CrossRef]
- Fieremans E, Jensen JH, Helpern JA. White matter characterization with diffusional kurtosis imaging. Neuroimage. 2011;58(1):177-188. [CrossRef]
- Falangola MF, Jensen JH, Babb JS, et al. Age-related non-Gaussian diffusion patterns in the prefrontal brain. J Magn Reson Imaging. 2008;28(6):1345-1350.
- Wang JJ, Lin WY, Lu CS, et al. Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology. 2011;261(1):210-217. [CrossRef]
- Timmers I, Zhang H, Bastiani M, et al. White matter microstructure from nonparametric axon diameter distribution mapping. Neuroimage. 2015;111:530-541.
- Nir TM, Jahanshad N, Villalon-Reina JE, et al. Effectiveness of regional DTI measures in distinguishing Alzheimer’s disease, MCI, and normal aging. Neuroimage Clin. 2013;3:180-195.
- Dyrba M, Barkhof F, Fellgiebel A, et al. Predicting prodromal Alzheimer’s disease in subjects with mild cognitive impairment using machine learning classification of multimodal multicenter diffusion-tensor and magnetic resonance imaging data. J Neuroimaging. 2015;25(5):738-747. [CrossRef]
- Villemagne VL, Okamura N. In vivo tau imaging: obstacles and progress. Alzheimers Dement. 2014;10(3 Suppl):S254-S264. [CrossRef]
- Leuzy A, Chiotis K, Lemoine L, et al. Tau PET imaging in neurodegenerative tauopathies—still a challenge. Mol Psychiatry. 2019;24(8):1112-1134. [CrossRef]
- Okamura N, Harada R, Furumoto S, et al. PET imaging of tau pathology in mild cognitive impairment and Alzheimer’s disease with [18F]THK5351. J Nucl Med. 2016;57(2):221-226.
- Kroth H, Oden F, Molette J, et al. Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies. Eur J Nucl Med Mol Imaging. 2019;46(10):2178-2189.
- Betthauser TJ, Cody KA, Zammit MD, et al. In vivo characterization and quantification of neurofibrillary tau PET radioligand 18F-MK-6240 in humans from Alzheimer disease dementia to young controls. J Nucl Med. 2019;60(1):93-99. [CrossRef]
- Lohith TG, Bennacef I, Vandenberghe R, et al. Brain imaging of Alzheimer dementia patients and elderly controls with 18F-MK-6240, a PET tracer targeting neurofibrillary tangles. J Nucl Med. 2019;60(1):107-114.
- Ossenkoppele R, Rabinovici GD, Smith R, et al. Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2018;320(11):1151-1162. [CrossRef]
- Fleisher AS, Pontecorvo MJ, Devous MD Sr, et al. Positron emission tomography imaging with [18F]flortaucipir and postmortem assessment of Alzheimer disease neuropathologic changes. JAMA Neurol. 2020;77(7):829-839. [CrossRef]
- Leuzy A, Smith R, Ossenkoppele R, et al. Diagnostic performance of RO948 F 18 tau positron emission tomography in the differentiation of Alzheimer disease from other neurodegenerative disorders. JAMA Neurol. 2020;77(8):955-965. [CrossRef]
- Jack CR Jr, Wiste HJ, Schwarz CG, et al. Longitudinal tau PET in ageing and Alzheimer’s disease. Brain. 2018;141(5):1517-1528. [CrossRef]
- Ossenkoppele R, Schonhaut DR, Schöll M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain. 2016;139(Pt 5):1551-1567. [CrossRef]
- Pontecorvo MJ, Devous MD Sr, Kennedy I, et al. A multicentre longitudinal study of flortaucipir (18F) in normal ageing, mild cognitive impairment and Alzheimer’s disease dementia. Brain. 2019;142(6):1723-1735. [CrossRef]
- Koga S, Ono M, Sahara N, et al. Fluorescence and autoradiographic evaluation of tau PET ligand PBB3 to α-synuclein pathology. Mov Disord. 2017;32(6):884-892. [CrossRef]
- Kuebler L, Buss S, Leonov A, et al. [11C]MODAG-001—towards a PET tracer targeting α-synuclein aggregates. Eur J Nucl Med Mol Imaging. 2020;47(13):3116-3128.
- Marek K, Jennings D, Lasch S, et al. The Parkinson Progression Marker Initiative (PPMI). Prog Neurobiol. 2011;95(4):629-635. [CrossRef]
- Hooshyar Yousefi B, Shi K, Arzberger T, et al. Translational study of a novel alpha-synuclein PET tracer designed for first-in-human investigating. Nucl Med Biol. 2021;92:158-170.
- Verdurand M, Levigoureux E, Zeinyeh W, et al. In silico, in vitro, and in vivo evaluation of new candidates for α-synuclein PET imaging. Mol Pharm. 2018;15(8):3153-3166.
- Mach RH. Focused review: recent developments in the search for alpha-synuclein PET radiotracers. J Nucl Med. 2021;62(9):1207-1214.
- Chu W, Zhou D, Gaba V, et al. Design, synthesis, and characterization of 3-(benzylidene)indolin-2-one derivatives as ligands for α-synuclein fibrils. J Med Chem. 2015;58(15):6002-6017.
- Kotzbauer PT, Tu Z, Mach RH. Current status of the development of PET radiotracers for imaging alpha synuclein aggregates in Lewy bodies and Lewy neurites. Clin Transl Imaging. 2017;5(1):3-14. [CrossRef]
- Ding Y, Sohn JH, Kawczynski MG, et al. A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain. Radiology. 2019;290(2):456-464. [CrossRef]
- Liu M, Cheng D, Wang K, Wang Y; Alzheimer’s Disease Neuroimaging Initiative. Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis. Neuroinformatics. 2018;16(3-4):295-308. [CrossRef]
- Kang SK, Seo S, Shin SA, et al. Adaptive template generation for amyloid PET using a deep learning approach. Hum Brain Mapp. 2018;39(9):3769-3778. [CrossRef]
- Cattell L, Platsch G, Pfeiffer R, et al. Classification of amyloid status using machine learning with histograms of oriented 3D gradients. Neuroimage Clin. 2016;12:990-1003. [CrossRef]
- Lu D, Popuri K, Ding GW, Balachandar R, Beg MF; Alzheimer’s Disease Neuroimaging Initiative. Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. Sci Rep. 2018;8(1):5697. [CrossRef]
- Choi H, Jin KH; Alzheimer’s Disease Neuroimaging Initiative. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res. 2018;344:103-109. [CrossRef]
- Marinescu RV, Oxtoby NP, Young AL, et al. TADPOLE Challenge: Prediction of longitudinal evolution in Alzheimer’s disease. arXiv preprint arXiv:1805.03909. 2018.
- Bhagwat N, Viviano JD, Voineskos AN, Chakravarty MM; Alzheimer’s Disease Neuroimaging Initiative. Modeling and prediction of clinical symptom trajectories in Alzheimer’s disease using longitudinal data. PLoS Comput Biol. 2018;14(9):e1006376. [CrossRef]
- Spasov S, Passamonti L, Duggento A, Liò P, Toschi N; Alzheimer’s Disease Neuroimaging Initiative. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease. Neuroimage. 2019;189:276-287. [CrossRef]
- Jo T, Nho K, Saykin AJ. Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data. Front Aging Neurosci. 2019;11:220. [CrossRef]
- Suk HI, Lee SW, Shen D; Alzheimer’s Disease Neuroimaging Initiative. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage. 2014;101:569-582. [CrossRef]
- Sui J, Jiang R, Bustillo J, Calhoun V. Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health: Methods and promises. Biol Psychiatry. 2020;88(11):818-828. [CrossRef]
- Plis SM, Sarwate AD, Wood D, et al. COINSTAC: A privacy enabled model and prototype for leveraging and processing decentralized brain imaging data. Front Neurosci. 2016;10:365. [CrossRef]
- Rathore S, Habes M, Iftikhar MA, Shacklett A, Davatzikos C. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. Neuroimage. 2017;155:530-548. [CrossRef]
- Vieira S, Pinaya WH, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci Biobehav Rev. 2017;74(Pt A):58-75. [CrossRef]
- Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. 2020.
- Khan S, Naseer M, Hayat M, Zamir SW, Khan FS, Shah M. Transformers in vision: A survey. ACM Comput Surv. 2022;54(10):1-41. [CrossRef]
- Matsoukas C, Haslum JF, Söderberg M, Øvrelid L. Is it possible to perform “free-viewing” eye-tracking experiments on a smartphone? PeerJ Comput Sci. 2021;7:e628.
- Nanni L, Ghidoni S, Brahnam S. Handcrafted vs. non-handcrafted features for computer vision classification. Pattern Recognit. 2017;71:158-172. [CrossRef]
- Zhang D, Wang Y, Zhou L, Yuan H, Shen D. Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage. 2011;55(3):856-867. [CrossRef]
- Spasov S, Passamonti L, Duggento A, Liò P, Toschi N. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease. Neuroimage. 2019;189:276-287. [CrossRef]
- Lu D, Popuri K, Ding GW, Balachandar R, Beg MF. Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. Sci Rep. 2018;8(1):5697. [CrossRef]
- Marinescu RV, Oxtoby NP, Young AL, et al. TADPOLE Challenge: Prediction of longitudinal evolution in Alzheimer’s disease. arXiv preprint arXiv:1805.03909. 2018.
- Bhagwat N, Viviano JD, Voineskos AN, Chakravarty MM. Modeling and prediction of clinical symptom trajectories in Alzheimer’s disease using longitudinal data. PLoS Comput Biol. 2018;14(9):e1006376. [CrossRef]
- Parisot S, Ktena SI, Ferrante E, et al. Disease prediction using graph convolutional networks: Application to Autism Spectrum Disorder and Alzheimer’s disease. Med Image Anal. 2018;48:117-130. [CrossRef]
- Li X, Zhou Y, Dvornek NC, et al. BrainGNN: Interpretable brain graph neural network for fMRI analysis. Med Image Anal. 2021;74:102233. [CrossRef]
- Ktena SI, Parisot S, Ferrante E, et al. Metric learning with spectral graph convolutions on brain connectivity networks. Neuroimage. 2018;169:431-442. [CrossRef]
- Arya D, Olij R, Gupta DK, et al. Fusing structural and functional MRIs using graph convolutional networks for autism classification. Med Image Anal. 2022;75:102308.
- Zhao Y, Dong Q, Zhang S, Zhang W, Chen H, Jiang X, Guo L, Hu X, Han J, Liu T. Automatic recognition of fMRI-derived functional networks using 3D convolutional neural networks. IEEE Trans Biomed Eng. 2018;65(9):1975-1984.
- Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage. 2017;145(Pt B):137-165. [CrossRef]
- Woo CW, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci. 2017;20(3):365-377. [CrossRef]
- Klöppel S, Abdulkadir A, Jack CR Jr, et al. Diagnostic neuroimaging across diseases. Neuroimage. 2012;61(2):457-463. [CrossRef]
- Bzdok D, Altman N, Krzywinski M. Statistics versus machine learning. Nat Methods. 2018;15(4):233-234. [CrossRef]
- Little S, Brown P. What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? Ann N Y Acad Sci. 2012;1265:9-24.
- Meidahl AC, Tinkhauser G, Herz DM, Cagnan H, Debarros J, Brown P. Adaptive deep brain stimulation for movement disorders: the long road to clinical therapy. Mov Disord. 2017;32(6):810-819. [CrossRef]
- Parastarfeizabadi M, Kouzani AZ. Advances in closed-loop deep brain stimulation devices. J Neuroeng Rehabil. 2017;14(1):79. [CrossRef]
- Swann NC, de Hemptinne C, Thompson MC, et al. Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing. J Neural Eng. 2018;15(4):046006. [CrossRef]
- Arlotti M, Marceglia S, Foffani G, et al. Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology. 2018;90(11):e971-e976. [CrossRef]
- Tinkhauser G, Pogosyan A, Little S, et al. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease. Brain. 2017;140(4):1053-1067. [CrossRef]
- Velisar A, Syrkin-Nikolau J, Blumenfeld Z, et al. Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimul. 2019;12(4):868-876. [CrossRef]
- Petrucci MN, Neuville RS, Afzal MF, et al. Neural closed-loop deep brain stimulation for freezing of gait. Brain Stimul. 2020;13(6):1320-1322. [CrossRef]
- Cheung CY, Ikram MK, Chen C, Wong TY. Imaging retina to study dementia and stroke. Prog Retin Eye Res. 2017;57:89-107. [CrossRef]
- den Haan J, Verbraak FD, Visser PJ, Bouwman FH. Retinal thickness in Alzheimer’s disease: A systematic review and meta-analysis. Alzheimers Dement (Amst). 2017;6:162-170. [CrossRef]
- Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167-175. [CrossRef]
- Sharafi SM, Sylvestre JP, Chevrefils C, Soucy JP, Beaulieu S, Pascoal TA, Rosa-Neto P, Arbour JD, Rheaume MA, Robillard A, Chayer C. Vascular retinal biomarkers improves the detection of the likely cerebral amyloid status from hyperspectral retinal images. Alzheimers Dement (N Y). 2019;5:610-617. [CrossRef]
- Wisely CE, Wang D, Henao R, et al. Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging. Br J Ophthalmol. 2021;105(7):990-995. [CrossRef]
- Koronyo Y, Biggs D, Barron E, et al. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight. 2017;2(16):e93621. [CrossRef]
- Shi Z, Zhu Y, Dong M, et al. The utility of retinal imaging in Alzheimer’s disease. Front Neurosci. 2021;15:642208.
- Mahajan D, Votruba M. Can the retina be used to diagnose and plot the progression of Alzheimer’s disease? Acta Ophthalmol. 2017;95(8):768-777.
- Rieke N, Hancox J, Li W, et al. The future of digital health with federated learning. NPJ Digit Med. 2020;3:119. [CrossRef]
- Kaissis GA, Makowski MR, Rückert D, Braren RF. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell. 2020;2(6):305-311. [CrossRef]
- Li T, Sahu AK, Talwalkar A, Smith V. Federated learning: Challenges, methods, and future directions. IEEE Signal Process Mag. 2020;37(3):50-60. [CrossRef]
- Sheller MJ, Edwards B, Reina GA, et al. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep. 2020;10(1):12598. [CrossRef]
- Xu J, Wang F. Federated learning for healthcare informatics. J Healthc Inform Res. 2021;5(1):1-19. [CrossRef]
- Dayan I, Roth HR, Zhong A, et al. Federated learning for predicting clinical outcomes in patients with COVID-19. Nat Med. 2021;27(10):1735-1743. [CrossRef]
- Sarma KV, Harmon S, Sanford T, et al. Federated learning improves site performance in multicenter deep learning without data sharing. J Am Med Inform Assoc. 2021;28(6):1259-1264. [CrossRef]
- Nakamura A, Kaneko N, Villemagne VL, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature. 2018;554(7691):249-254.
- Janelidze S, Mattsson N, Palmqvist S, et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med. 2020;26(3):379-386.
- Palmqvist S, Janelidze S, Stomrud E, et al. Performance of Fully Automated Plasma Assays as Screening Tests for Alzheimer Disease-Related β-Amyloid Status. JAMA Neurol. 2019;76(9):1060-1069. [CrossRef]
- Thijssen EH, La Joie R, Wolf A, et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med. 2020;26(3):387-397. [CrossRef]
- Schindler SE, Bollinger JG, Ovod V, et al. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology. 2019;93(17):e1647-e1659.
- Karikari TK, Pascoal TA, Ashton NJ, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020;19(5):422-433. [CrossRef]
- Preische O, Schultz SA, Apel A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat Med. 2019;25(2):277-283. [CrossRef]
- Mattsson N, Cullen NC, Andreasson U, Zetterberg H, Blennow K. Association Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol. 2019;76(7):791-799. [CrossRef]
- Uhlhaas PJ, Singer W. Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron. 2012;75(6):963-980. [CrossRef]
- Sitaram R, Ros T, Stoeckel L, et al. Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci. 2017;18(2):86-100. [CrossRef]
- Babiloni C, Del Percio C, Lizio R, et al. Abnormalities of cortical neural synchronization mechanisms in patients with dementia due to Alzheimer’s and Lewy body diseases: an EEG study. Neurobiol Aging. 2017;55:143-158. [CrossRef]
- Mandal PK, Banerjee A, Tripathi M, Sharma A. A Comprehensive Review of Magnetoencephalography (MEG) Studies for Brain Functionality in Healthy Aging and Alzheimer’s Disease (AD). Front Comput Neurosci. 2018;12:60. [CrossRef]
- Kocagoncu E, Quinn A, Firouzian A, et al. Tau pathology in early Alzheimer’s disease is linked to selective disruptions in neurophysiological network dynamics. Neurobiol Aging. 2020;92:141-152. [CrossRef]
- Canuet L, Pusil S, López ME, et al. Network Disruption and Cerebrospinal Fluid Amyloid-Beta and Phospho-Tau Levels in Mild Cognitive Impairment. J Neurosci. 2015;35(28):10325-10330. [CrossRef]
- Ward NS. Restoring brain function after stroke - bridging the gap between animals and humans. Nat Rev Neurol. 2017;13(4):244-255. [CrossRef]
- Cramer SC, Sur M, Dobkin BH, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134(Pt 6):1591-1609. [CrossRef]
- Johansen-Berg H, Dawes H, Guy C, Smith SM, Wade DT, Matthews PM. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain. 2002;125(Pt 12):2731-2742. [CrossRef]
- Sitaram R, Veit R, Stevens B, et al. Acquired control of ventral premotor cortex activity by feedback training: an exploratory real-time FMRI and TMS study. Neurorehabil Neural Repair. 2012;26(3):256-265.
- Ramos-Murguialday A, Broetz D, Rea M, et al. Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013;74(1):100-108. [CrossRef]
- Kuceyeski A, Navi BB, Kamel H, et al. Exploring the brain’s structural connectome: A quantitative stroke lesion-dysfunction mapping study. Hum Brain Mapp. 2015;36(6):2147-2160. [CrossRef]
- Pustina D, Coslett HB, Turkeltaub PE, et al. Automated segmentation of chronic stroke lesions using LINDA: Lesion identification with neighborhood data analysis. Hum Brain Mapp. 2016;37(4):1405-1421. [CrossRef]
- Lefaucheur JP, Aleman A, Baeken C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol. 2020;131(2):474-528. [CrossRef]
- Lefaucheur JP, Antal A, Ayache SS, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128(1):56-92. [CrossRef]
- Huang YZ, Lu MK, Antal A, et al. Plasticity induced by non-invasive transcranial brain stimulation: A position paper. Clin Neurophysiol. 2017;128(11):2318-2329. [CrossRef]
- Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner HR. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. Neuroimage. 2016;140:4-19. [CrossRef]
- Thut G, Bergmann TO, Fröhlich F, et al. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper. Clin Neurophysiol. 2017;128(5):843-857. [CrossRef]
- He J, Baxter SL, Xu J, et al. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25(1):30-36. [CrossRef]
- Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. [CrossRef]
- Char DS, Shah NH, Magnus D. Implementing machine learning in health care - addressing ethical challenges. N Engl J Med. 2018;378(11):981-983. [CrossRef]
- Vayena E, Blasimme A, Cohen IG. Machine learning in medicine: Addressing ethical challenges. PLoS Med. 2018;15(11):e1002689. [CrossRef]
- Guo Y, Liu Y, Oerlemans A, et al. Deep learning for visual understanding: A review. Neurocomputing. 2016;187:27-48. [CrossRef]
- Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88. [CrossRef]
- Zech JR, Badgeley MA, Liu M, et al. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. PLoS Med. 2018;15(11):e1002683.
- U.S. Food and Drug Administration. Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan. Published January 2021.
- Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med. 2020;3:118. [CrossRef]
- Challen R, Denny J, Pitt M, et al. Artificial intelligence, bias and clinical safety. BMJ Qual Saf. 2019;28(3):231-237. [CrossRef]
- U.S. Food and Drug Administration. Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD). Published April 2019.
- Finlayson SG, Bowers JD, Ito J, et al. Adversarial attacks on medical machine learning. Science. 2019;363(6433):1287-1289. [CrossRef]
- Glocker B, Robinson R, Castro DC, et al. Machine Learning with Multi-Site Imaging Data: An Empirical Study on the Impact of Scanner Effects. arXiv preprint arXiv:1910.04597. 2019.
- Wachinger C, Reuter M. Domain adaptation for Alzheimer’s disease diagnostics. Neuroimage. 2016;139:470-479. [CrossRef]
- U.S. Food and Drug Administration. Software as a Medical Device (SaMD). Published December 2017.
- U.S. Food and Drug Administration. Artificial Intelligence and Machine Learning in Software as a Medical Device. Published January 2021.
- Babic B, Gerke S, Evgeniou T, Cohen IG. Algorithms on regulatory lockdown in medicine. Science. 2019;366(6470):1202-1204. [CrossRef]
- Sherman RE, Anderson SA, Dal Pan GJ, et al. Real-World Evidence - What Is It and What Can It Tell Us? N Engl J Med. 2016;375(23):2293-2297.
- Price WN 2nd. Artificial Intelligence in Health Care: Applications and Legal Implications. SciTech Lawyer. 2017;14(1):10-13.
- Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcare. Artificial Intelligence in Healthcare. 2020:295-336.
- Cohen IG, Evgeniou T, Gerke S, Minssen T. The European artificial intelligence strategy: implications and challenges for digital health. Lancet Digit Health. 2020;2(7):e376-e379. [CrossRef]
- Price WN 2nd, Cohen IG. Privacy in the age of medical big data. Nat Med. 2019;25(1):37-43.
- Rieke N, Hancox J, Li W, et al. The future of digital health with federated learning. NPJ Digit Med. 2020;3:119. [CrossRef]
- Kaissis GA, Makowski MR, Rückert D, Braren RF. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell. 2020;2(6):305-311. [CrossRef]
- He J, Baxter SL, Xu J, et al. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25(1):30-36. [CrossRef]
- Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. [CrossRef]
- Price WN 2nd. Artificial Intelligence in Health Care: Applications and Legal Implications. SciTech Lawyer. 2017;14(1):10-13.
- Lehne M, Sass J, Essenwanger A, et al. Why digital medicine depends on interoperability. NPJ Digit Med. 2019;2:79. [CrossRef]
- Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. [CrossRef]
- Price WN 2nd, Gerke S, Cohen IG. Potential Liability for Physicians Using Artificial Intelligence. JAMA. 2019;322(18):1765-1766.
- Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcare. Artificial Intelligence in Healthcare. 2020:295-336.
- Cohen IG, Evgeniou T, Gerke S, Minssen T. The European artificial intelligence strategy: implications and challenges for digital health. Lancet Digit Health. 2020;2(7):e376-e379. [CrossRef]
- U.S. Food and Drug Administration. Postmarket Management of Cybersecurity in Medical Devices. Published December 2016.
- Challen R, Denny J, Pitt M, et al. Artificial intelligence, bias and clinical safety. BMJ Qual Saf. 2019;28(3):231-237. [CrossRef]
- U.S. Food and Drug Administration. Medical Device Reporting (MDR). Published September 2020.
- Char DS, Shah NH, Magnus D. Implementing machine learning in health care - addressing ethical challenges. N Engl J Med. 2018;378(11):981-983. [CrossRef]
- Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcare. Artificial Intelligence in Healthcare. 2020:295-336.
- Cohen IG, Evgeniou T, Gerke S, Minssen T. The European artificial intelligence strategy: implications and challenges for digital health. Lancet Digit Health. 2020;2(7):e376-e379. [CrossRef]
- Jovicich J, Czanner S, Greve D, et al. Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage. 2006;30(2):436-443. [CrossRef]
- Keshavan A, Datta E, McDonough IM, et al. Mindcontrol: A web application for brain segmentation quality control. Neuroimage. 2018;170:365-372. [CrossRef]
- Reuter M, Rosas HD, Fischl B. Highly accurate inverse consistent registration: a robust approach. Neuroimage. 2010;53(4):1181-1196. [CrossRef]
- Esteban O, Birman D, Schaer M, et al. MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS One. 2017;12(9):e0184661. [CrossRef]
- Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59(3):2142-2154. [CrossRef]
- Tisdall MD, Reuter M, Qureshi A, et al. Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion. Neuroimage. 2016;127:11-22. [CrossRef]
- Esteban O, Markiewicz CJ, Blair RW, et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods. 2019;16(1):111-116. [CrossRef]
- Gorgolewski KJ, Auer T, Calhoun VD, et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data. 2016;3:160044. [CrossRef]
- Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage. 2012;61(4):1402-1418. [CrossRef]
- Fortin JP, Cullen N, Sheline YI, et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage. 2018;167:104-120. [CrossRef]
- Yu M, Linn KA, Cook PA, et al. Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Hum Brain Mapp. 2018;39(11):4213-4227. [CrossRef]
- Kamnitsas K, Ledig C, Newcombe VFJ, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017;36:61-78.
- Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203-211.
- Shen L, Zhao W, Xing L. Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nat Biomed Eng. 2019;3(11):880-888. [CrossRef]
- Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D. A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction. IEEE Trans Med Imaging. 2018;37(2):491-503. [CrossRef]
- Chen KT, Schürer M, Ouyang J, et al. Generalization of deep learning models for ultra-low-count amyloid PET/MRI using transfer learning. Eur J Nucl Med Mol Imaging. 2020;47(12):2998-3007. [CrossRef]
- Zech JR, Badgeley MA, Liu M, et al. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. PLoS Med. 2018;15(11):e1002683.
- Price WN 2nd, Gerke S, Cohen IG. Potential Liability for Physicians Using Artificial Intelligence. JAMA. 2019;322(18):1765-1766.
- Kaissis GA, Makowski MR, Rückert D, Braren RF. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell. 2020;2(6):305-311. [CrossRef]
- Char DS, Shah NH, Magnus D. Implementing Machine Learning in Health Care - Addressing Ethical Challenges. N Engl J Med. 2018;378(11):981-983. [CrossRef]
- U.S. Food and Drug Administration. Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD). Published April 2019.
- Challen R, Denny J, Pitt M, et al. Artificial intelligence, bias and clinical safety. BMJ Qual Saf. 2019;28(3):231-237. [CrossRef]
- Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcare. Artificial Intelligence in Healthcare. 2020:295-336.
- Rieke N, Hancox J, Li W, et al. The future of digital health with federated learning. NPJ Digit Med. 2020;3:119. [CrossRef]
- Lundberg SM, Lee SI. A Unified Approach to Interpreting Model Predictions. Adv Neural Inf Process Syst. 2017;30:4765-4774.
- Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. [CrossRef]
- Shin HC, Tenenholtz NA, Rogers JK, et al. Medical Image Synthesis for Data Augmentation and Anonymization Using Generative Adversarial Networks. In: Simulation and Synthesis in Medical Imaging. SASHIMI 2018. Lecture Notes in Computer Science, vol 11037. Springer, Cham; 2018:1-11.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
