Submitted:
14 November 2024
Posted:
15 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Glucagon like Peptide 1
3. Glucagon Like Peptide Receptor Agonists
4. Mechanism of Renoprotective Action (Table 1)
5. Preclinical Studies (Table 2)
5.1. Liraglutide
| Drug | Animal | Effects of GLP-1 receptor agonists | Ref. |
|---|---|---|---|
|
Liraglutide Exantide Semaglutide Lixisenatide |
- Spontaneously diabetic Torii fatty rats. - Sprague-Dawley rats fed a high-sugar and high-fat diet and received streptozotocin. - Streptozotocin induced diabetes in Sprague Dawley rats. - High fat-high sugar fed Sprague Dawley rats that were treated with streptozotocin. - Zucker diabetic fatty (ZDF) rats - Streptozotocin induced diabetic in Sprague Dawley rats - Sprague Dawley rats fed with high sugar and high fat diet and injected with low dose streptozotocin - Wistar rats with streptozotocin induced diabetes mellitus. - Streptozotocin induced diabetic Wister rats. - Diabetic Ins2Akita mice (C57BL/6-Ins2Akita/J). - C57BL/6J mice fed on high fat diet and treated with streptozotocin. - C57BLKS/J db/db diabetic mice. - Diabetic nephropathy prone KK/Ta-Akita mice. - Wistar rats fed high-fat diet and followed by injection of streptozotocin. - Sprague Dawley rats injected with streptozotocin. - Streptozotocin induced diabetes in Sprague Dawley rats. - C57BL/6J mice fed high fat diet and were injected with streptozotocin. - Diabetic apoE−/− mice (ApoE−/− DM) fed high fat diet and injected with streptozotocin. - Streptozotocin-induced diabetes in BALB/c mice. - db/db UNx-ReninAAV mice. - Lepr db/db (db/db) mice, a diabetic nephropathy model, - Wister rats fed a high fat diet and injected with streptozotocin. |
- Reduced renal pathologic findings and urinary albumin in in early-phase diabetic kidney disease by preventing glomerular endothelial abnormality and preservation of autophagy. - Delayed the progress of diabetic nephropathy by reducing endoplasmic reticulum stress. - Prevented the progression of diabetic nephropathy by modulating the crosstalk between TRPC6 and NADPH oxidases. - Reduced albuminuria, renoprotective effect in DN through its effect on miR-34a/ SIRT1 pathway. - Decreased urinary albumin and attenuated renal pathological changes. Renoprotective effect due to activation of autophagy by regulating AMP-activated protein kinase-mammalian target of rapamycin pathway. -Improved renal function and ameliorated glomerular histopathological changes. Liraglutide reduced the production of glomerular extracellular matrix proteins by enhancing Wnt/ β-catenin signaling. - Had a renoprotective effect by the activation of forkhead box protein O1 (FoxO1). - Had a direct beneficial effect on diabetic nephropathy by improving eNOS activity via downregulating NF-κB. - Reduced albuminuria, glomerulosclerosis and glomerular basement membranous thickness Kidney protective effect due to dampening the receptor for advanced glycation end products–induced inflammation. - Reduced urinary protein, attenuated podocyte damage and glomerular injury via reducing NLRP3-mediated inflammation. - Induced browning of white adipose tissue which protects podocytes by decreasing TNF-α secretion and activation of PI3K)/AKT pathway. - Reduced albuminuria and mesangial expansion. - Reduced oxidative stress, expression of NAD(P)H oxidase components, TGF-β, fibronectin in renal tissues and urinary albumin excretion. - Improved renal function through correction of glycolipid intolerance as well as reducing oxidative stress - Ameliorated renal injury through decrease oxidative stress and inflammatory response in renal tissue. - Reduced albuminuria, glomerular hyperfiltration, glomerular hypertrophy and mesangial matrix expansion. - Reduced urinary albumin and attenuated the progress of diabetic nephropathy via activation of renal AMP-activated protein kinase. - Increased ABCA1 expression in glomerular endothelial cells and attenuated renal lipid accumulation, inflammation, and proteinuria. - Decreased renal tubular injury of diabetic nephropathy by decreasing oxidative stress and inflammation. - Reduced albuminuria and glomerulosclerosis severity and hypertension. - Decreased collagen deposition, attenuated kidney fibrosis and kidney injury. - Has a nephroprotective effect, as shown by improved kidney function and renal histopathology. |
[22] [23] [24] [25] [26] [27] [28] [29] [30] [3] [31] [32] [33] [34] [35] [11] [36] [37] [38] [39] [40] [41] |
5.2. Exenatide
5.3. Semaglutide
5.4. Lixisenatide
6. Clinical Studies
6.1. Renal Outcome
6.2. Individual Drug
6.2.1. Semaglutide
6.2.2. Liraglutide
6.2.3. Dulaglutide
6.2.4. Efpeglenatide
6.3. Safety
7. Future Directions
8. Conclusions
References
- Hoogeveen EK. The Epidemiology of Diabetic Kidney Disease. Kidney and Dialysis. 2022; 2(3):433-442. [CrossRef]
- Davies MJ, D'Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, Rossing P, Tsapas A, Wexler DJ, Buse JB. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018 Dec;41(12):2669-2701. [CrossRef] [PubMed]
- Sourris KC, Ding Y, Maxwell SS, Al-Sharea A, Kantharidis P, Mohan M, Rosado CJ, Penfold SA, Haase C, Xu Y, Forbes JM, Crawford S, Ramm G, Harcourt BE, Jandeleit-Dahm K, Advani A, Murphy AJ, Timmermann DB, Karihaloo A, Knudsen LB, El-Osta A, Drucker DJ, Cooper ME, Coughlan MT. Glucagon-like peptide-1 receptor signaling modifies the extent of diabetic kidney disease through dampening the receptor for advanced glycation end products-induced inflammation. Kidney Int. 2024 Jan;105(1):132-149. [CrossRef] [PubMed]
- Holt MK, Richards JE, Cook DR, Brierley DI, Williams DL, Reimann F, Gribble FM, Trapp S. Preproglucagon Neurons in the Nucleus of the Solitary Tract Are the Main Source of Brain GLP-1, Mediate Stress-Induced Hypophagia, and Limit Unusually Large Intakes of Food. Diabetes. 2019 Jan;68(1):21-33. [CrossRef] [PubMed]
- Drucker, DJ. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018 Apr 3;27(4):740-756. [CrossRef] [PubMed]
- Deacon, CF. What do we know about the secretion and degradation of incretin hormones? Regul Pept. 2005 Jun 15;128(2):117-24. [CrossRef] [PubMed]
- Wewer Albrechtsen NJ, Pedersen J, Galsgaard KD, Winther-Sørensen M, Suppli MP, Janah L, Gromada J, Vilstrup H, Knop FK, Holst JJ. The Liver-α-Cell Axis and Type 2 Diabetes. Endocr Rev. 2019 Oct 1;40(5):1353-1366. [CrossRef] [PubMed]
- Holst JJ, Albrechtsen NJW, Rosenkilde MM, Deacon CF. Physiology of the Incretin Hormones, GIP and GLP-1-Regulation of Release and Posttranslational Modifications. Compr Physiol. 2019 Sep 19;9(4):1339-1381. [CrossRef] [PubMed]
- Lee B, Holstein-Rathlou NH, Sosnovtseva O, Sørensen CM. Renoprotective effects of GLP-1 receptor agonists and SGLT-2 inhibitors-is hemodynamics the key point? Am J Physiol Cell Physiol. 2023 Jul 1;325(1):C243-C256. [CrossRef] [PubMed]
- Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest. 1998 Feb 1;101(3):515-20. [CrossRef] [PubMed]
- Kodera R, Shikata K, Kataoka HU, Takatsuka T, Miyamoto S, Sasaki M, Kajitani N, Nishishita S, Sarai K, Hirota D, Sato C, Ogawa D, Makino H. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia. 2011 Apr;54(4):965-78. [CrossRef] [PubMed]
- Moellmann J, Klinkhammer BM, Onstein J, Stöhr R, Jankowski V, Jankowski J, Lebherz C, Tacke F, Marx N, Boor P, Lehrke M. Glucagon-Like Peptide 1 and Its Cleavage Products Are Renoprotective in Murine Diabetic Nephropathy. Diabetes. 2018 Nov;67(11):2410-2419. [CrossRef] [PubMed]
- Hviid AVR, Sørensen CM. Glucagon-like peptide-1 receptors in the kidney: impact on renal autoregulation. Am J Physiol Renal Physiol. 2020 Feb 1;318(2):F443-F454. [CrossRef] [PubMed]
- Krisanapan P, Sanpawithayakul K, Pattharanitima P, Thongprayoon C, Miao J, Mao MA, Suppadungsuk S, Tangpanithandee S, Craici IM, Cheungpasitporn W. Safety and efficacy of GLP-1 receptor agonists in type 2 diabetes mellitus with advanced and end-stage kidney disease: A systematic review and meta-analysis. Diseases. 2024 Jan 2;12(1):14. [CrossRef] [PubMed]
- Thorens, B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8641-5. [CrossRef] [PubMed]
- Davies, M.J., Drexel, H., Jornayvaz, F.R. et al. Cardiovascular outcomes trials: a paradigm shift in the current management of type 2 diabetes. Cardiovasc Diabetol 21, 144 (2022). [CrossRef]
- Muskiet MHA, van Baar MJB, Scholtes RA, van Raalte DH. Renal outcomes in CVOTs: keep calm and carry on. Lancet Diabetes Endocrinol. 2018 Sep;6(9):674-676. [CrossRef] [PubMed]
- Yu JH, Park SY, Lee DY, Kim NH, Seo JA. GLP-1 receptor agonists in diabetic kidney disease: current evidence and future directions. Kidney Res Clin Pract. 2022 Mar;41(2):136-149. [CrossRef] [PubMed]
- Veneti S, Tziomalos K. Is there a role for glucagon-like peptide-1 receptor agonists in the management of diabetic nephropathy? World J Diabetes. 2020 Sep 15;11(9):370-373. [CrossRef] [PubMed]
- Tonneijck L, Smits MM, Muskiet MHA, Hoekstra T, Kramer MHH, Danser AHJ, Diamant M, Joles JA, van Raalte DH. Acute renal effects of the GLP-1 receptor agonist exenatide in overweight type 2 diabetes patients: a randomised, double-blind, placebo-controlled trial. Diabetologia. 2016 Jul;59(7):1412-1421. [CrossRef] [PubMed]
- Tonneijck L, Muskiet MHA, Smits MM, Hoekstra T, Kramer MHH, Danser AHJ, Diamant M, Joles JA, van Raalte DH. Postprandial renal haemodynamic effect of lixisenatide vs once-daily insulin-glulisine in patients with type 2 diabetes on insulin-glargine: An 8-week, randomised, open-label trial. Diabetes Obes Metab. 2017 Dec;19(12):1669-1680. [CrossRef] [PubMed]
- Yamada S, Tanabe J, Ogura Y, Nagai Y, Sugaya T, Ohata K, Natsuki Y, Ichikawa D, Watanabe S, Inoue K, Hoshino S, Kimura K, Shibagaki Y, Kamijo-Ikemori A. Renoprotective effect of GLP-1 receptor agonist, liraglutide, in early-phase diabetic kidney disease in spontaneously diabetic Torii fatty rats. Clin Exp Nephrol. 2021 Apr;25(4):365-375. [CrossRef] [PubMed]
- Zhao XY, Yu TT, Liu S, Liu YJ, Liu JJ, Qin J. Effect of liraglutide on endoplasmic reticulum stress in the renal tissue of type 2 diabetic rats. World J Diabetes. 2020 Dec 15;11(12):611-621. [CrossRef] [PubMed]
- Youssef N, Noureldein M, Njeim R, Ghadieh HE, Harb F, Azar ST, Fares N, Eid AA. Reno-Protective Effect of GLP-1 Receptor Agonists in Type1 Diabetes: Dual Action on TRPC6 and NADPH Oxidases. Biomedicines. 2021 Sep 30;9(10):1360. [CrossRef] [PubMed]
- Xiao S, Yang Y, Liu YT, Zhu J. Liraglutide Regulates the Kidney and Liver in Diabetic Nephropathy Rats through the miR-34a/SIRT1 Pathway. J Diabetes Res. 2021 Apr 5;2021:8873956. [CrossRef] [PubMed]
- Yang S, Lin C, Zhuo X, Wang J, Rao S, Xu W, Cheng Y, Yang L. Glucagon-like peptide-1 alleviates diabetic kidney disease through activation of autophagy by regulating AMP-activated protein kinase-mammalian target of rapamycin pathway. Am J Physiol Endocrinol Metab. 2020 Dec 1;319(6):E1019-E1030. [CrossRef] [PubMed]
- Huang L, Lin T, Shi M, Chen X, Wu P. Liraglutide suppresses production of extracellular matrix proteins and ameliorates renal injury of diabetic nephropathy by enhancing Wnt/β-catenin signaling. Am J Physiol Renal Physiol. 2020 Sep 1;319(3):F458-F468. [CrossRef] [PubMed]
- Chen P, Shi X, Xu X, Lin Y, Shao Z, Wu R, Huang L. Liraglutide ameliorates early renal injury by the activation of renal FoxO1 in a type 2 diabetic kidney disease rat model. Diabetes Res Clin Pract. 2018 Mar;137:173-182. [CrossRef] [PubMed]
- Zhou SJ, Bai L, Lv L, Chen R, Li CJ, Liu XY, Yu DM, Yu P. Liraglutide ameliorates renal injury in streptozotocin-induced diabetic rats by activating endothelial nitric oxide synthase activity via the downregulation of the nuclear factor-κB pathway. Mol Med Rep. 2014 Nov;10(5):2587-94. [CrossRef] [PubMed]
- Hendarto H, Inoguchi T, Maeda Y, Ikeda N, Zheng J, Takei R, Yokomizo H, Hirata E, Sonoda N, Takayanagi R. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Metabolism. 2012 Oct;61(10):1422-34. [CrossRef] [PubMed]
- Shi S, Chen X, Yu W, Ke X, Ma T. Protective effect of GLP-1 analog liraglutide on podocytes in mice with diabetic nephropathy. Endocr Connect. 2023 Aug 28;12(10):e230284. [CrossRef] [PubMed]
- Wang J, Zhou Y, Long D, Wu Y, Liu F. GLP-1 receptor agonist, liraglutide, protects podocytes from apoptosis in diabetic nephropathy by promoting white fat browning. Biochem Biophys Res Commun. 2023 Jul 5;664:142-151. [CrossRef] [PubMed]
- Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, Tsukiyama K, Narita T, Takahashi T, Drucker DJ, Seino Y, Yamada Y. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int. 2014 Mar;85(3):579-89. [CrossRef] [PubMed]
- Habib HA, Heeba GH, Khalifa MMA. Comparative effects of incretin-based therapy on early-onset diabetic nephropathy in rats: Role of TNF-α, TGF-β and c-caspase-3. Life Sci. 2021 Aug 1;278:119624. [CrossRef] [PubMed]
- Wang X, Li Z, Huang X, Li F, Liu J, Li Z, Bai D. An experimental study of exenatide effects on renal injury in diabetic rats1. Acta Cir Bras. 2019 Feb 14;34(1):e20190010000001. [CrossRef] [PubMed]
- Fang S, Cai Y, Lyu F, Zhang H, Wu C, Zeng Y, Fan C, Zou S, Zhang Y, Li P, Wang L, YaomingXue, Guan M. Exendin-4 Improves Diabetic Kidney Disease in C57BL/6 Mice Independent of Brown Adipose Tissue Activation. J Diabetes Res. 2020 Feb 3;2020:9084567. [CrossRef] [PubMed]
- Yin QH, Zhang R, Li L, Wang YT, Liu JP, Zhang J, Bai L, Cheng JQ, Fu P, Liu F. Exendin-4 Ameliorates Lipotoxicity-induced Glomerular Endothelial Cell Injury by Improving ABC Transporter A1-mediated Cholesterol Efflux in Diabetic apoE Knockout Mice. J Biol Chem. 2016 Dec 16;291(51):26487-26501. [CrossRef] [PubMed]
- Sancar-Bas S, Gezginci-Oktayoglu S, Bolkent S. Exendin-4 attenuates renal tubular injury by decreasing oxidative stress and inflammation in streptozotocin-induced diabetic mice. Growth Factors. 2015;33(5-6):419-29. [CrossRef] [PubMed]
- Dalbøge LS, Christensen M, Madsen MR, Secher T, Endlich N, Drenic' V, Manresa-Arraut A, Hansen HH, Rune I, Fink LN, Østergaard MV. Nephroprotective Effects of Semaglutide as Mono- and Combination Treatment with Lisinopril in a Mouse Model of Hypertension-Accelerated Diabetic Kidney Disease. Biomedicines. 2022 Jul 11;10(7):1661. [CrossRef] [PubMed]
- Zhao Q, Dong J, Liu H, Chen H, Yu H, Ye S, Yu S, Li Y, Qiu L, Song N, Xu H, Liu Q, Luo Z, Li Y, Wang R, Chen G, Jiang X. Design and discovery of a highly potent ultralong-acting GLP-1 and glucagon co-agonist for attenuating renal fibrosis. Acta Pharm Sin B. 2024 Mar;14(3):1283-1301. [CrossRef] [PubMed]
- Abdel-Latif RG, Ahmed AF, Heeba GH. Low-dose lixisenatide protects against early-onset nephropathy induced in diabetic rats. Life Sci. 2020 Dec 15;263:118592. [CrossRef] [PubMed]
- Kristensen SL, Rørth R, Jhund PS, Docherty KF, Sattar N, Preiss D, Køber L, Petrie MC, McMurray JJV. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019 Oct;7(10):776-785. [CrossRef]
- Schechter M, Melzer Cohen C, Zelter T, Yanuv I, Rozenberg A, Chodick G, Mosenzon O (2023). Risk of hospitalization with sodium-glucose cotransporter-2 inhibitors versus dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes lacking evidence of chronic kidney disease: real-world data.. Diabetes, Obesity & Metabolism, 25(10), 3054-3058. [CrossRef]
- Lin Y, Wang TH, Tsai ML, Wu VC, Tseng CJ, Lin MS, Li YR, Chang CH, Chou TS, Tsai TH, Yang NI, Hung MJ, Chen TH. The cardiovascular and renal effects of glucagon-like peptide 1 receptor agonists in patients with advanced diabetic kidney disease. Cardiovasc Diabetol. 2023 Mar 17;22(1):60. [CrossRef] [PubMed]
- Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML, Woo V, Hansen O, Holst AG, Pettersson J, Vilsbøll T; SUSTAIN-6 Investigators. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016 Nov 10;375(19):1834-1844. [CrossRef] [PubMed]
- Mann JFE, Ørsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, Tornøe K, Zinman B, Buse JB; LEADER Steering Committee and Investigators. Liraglutide and Renal Outcomes in Type 2 Diabetes. N Engl J Med. 2017 Aug 31;377(9):839-848. [CrossRef] [PubMed]
- Shaman AM, Bain SC, Bakris GL, Buse JB, Idorn T, Mahaffey KW, Mann JFE, Nauck MA, Rasmussen S, Rossing P, Wolthers B, Zinman B, Perkovic V. Effect of the Glucagon-Like Peptide-1 Receptor Agonists Semaglutide and Liraglutide on Kidney Outcomes in Patients With Type 2 Diabetes: Pooled Analysis of SUSTAIN 6 and LEADER. Circulation. 2022 Feb 22;145(8):575-585. [CrossRef] [PubMed]
- Tuttle KR, Bosch-Traberg H, Cherney DZI, Hadjadj S, Lawson J, Mosenzon O, Rasmussen S, Bain SC. Post hoc analysis of SUSTAIN 6 and PIONEER 6 trials suggests that people with type 2 diabetes at high cardiovascular risk treated with semaglutide experience more stable kidney function compared with placebo. Kidney Int. 2023 Apr;103(4):772-781. [CrossRef] [PubMed]
- Husain M, Birkenfeld AL, Donsmark M, Dungan K, Eliaschewitz FG, Franco DR, Jeppesen OK, Lingvay I, Mosenzon O, Pedersen SD, Tack CJ, Thomsen M, Vilsbøll T, Warren ML, Bain SC; PIONEER 6 Investigators. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2019 Aug 29;381(9):841-851. [CrossRef]
- Sorli C, Harashima SI, Tsoukas GM, Unger J, Karsbøl JD, Hansen T, Bain SC. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): a double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. Lancet Diabetes Endocrinol. 2017 Apr;5(4):251-260. [CrossRef] [PubMed]
- Pratley RE, Aroda VR, Lingvay I, Lüdemann J, Andreassen C, Navarria A, Viljoen A; SUSTAIN 7 investigators. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): a randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol. 2018 Apr;6(4):275-286. [CrossRef] [PubMed]
- Aroda VR, Ahmann A, Cariou B, Chow F, Davies MJ, Jódar E, Mehta R, Woo V, Lingvay I. Comparative efficacy, safety, and cardiovascular outcomes with once-weekly subcutaneous semaglutide in the treatment of type 2 diabetes: Insights from the SUSTAIN 1-7 trials. Diabetes Metab. 2019 Oct;45(5):409-418. [CrossRef] [PubMed]
- Mann JFE, Hansen T, Idorn T, Leiter LA, Marso SP, Rossing P, Seufert J, Tadayon S, Vilsbøll T. Effects of once-weekly subcutaneous semaglutide on kidney function and safety in patients with type 2 diabetes: a post-hoc analysis of the SUSTAIN 1-7 randomised controlled trials. Lancet Diabetes Endocrinol. 2020 Nov;8(11):880-893. [CrossRef]
- Rossing P, Baeres FMM, Bakris G, Bosch-Traberg H, Gislum M, Gough SCL, Idorn T, Lawson J, Mahaffey KW, Mann JFE, Mersebach H, Perkovic V, Tuttle K, Pratley R. The rationale, design and baseline data of FLOW, a kidney outcomes trial with once-weekly semaglutide in people with type 2 diabetes and chronic kidney disease. Nephrol Dial Transplant. 2023 Aug 31;38(9):2041-2051. [CrossRef]
- Perkovic V, Tuttle KR, Rossing P, Mahaffey KW, Mann JFE, Bakris G, Baeres FMM, Idorn T, Bosch-Traberg H, Lausvig NL, Pratley R; FLOW Trial Committees and Investigators. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N Engl J Med. 2024 Jul 11;391(2):109-121. [CrossRef] [PubMed]
- Mahaffey KW, Tuttle KR, Arici M, Baeres FMM, Bakris G, Charytan DM, Cherney DZI, Chernin G, Correa-Rotter R, Gumprecht J, Idorn T, Pugliese G, Rasmussen IKB, Rasmussen S, Rossing P, Sokareva E, Mann JFE, Perkovic V, Pratley R. Cardiovascular outcomes with semaglutide by severity of chronic kidney disease in type 2 diabetes: the FLOW trial. Eur Heart J. 2024 Aug 30:ehae613. [CrossRef] [PubMed]
- Mann JFE, Rossing P, Bakris G, Belmar N, Bosch-Traberg H, Busch R, Charytan DM, Hadjadj S, Gillard P, Górriz JL, Idorn T, Ji L, Mahaffey KW, Perkovic V, Rasmussen S, Schmieder RE, Pratley RE, Tuttle KR. Effects of semaglutide with and without concomitant SGLT2 inhibitor use in participants with type 2 diabetes and chronic kidney disease in the FLOW trial. Nat Med. 2024 Jun 24. [CrossRef] [PubMed]
- Pratley RE, Tuttle KR, Rossing P, Rasmussen S, Perkovic V, Nielsen OW, Mann JFE, MacIsaac RJ, Kosiborod MN, Kamenov Z, Idorn T, Hansen MB, Hadjadj S, Bakris G, Baeres FMM, Mahaffey KW; FLOW Trial Committees and Investigators. Effects of Semaglutide on Heart Failure Outcomes in Diabetes and Chronic Kidney Disease in the FLOW Trial. J Am Coll Cardiol. 2024 Aug 23:S0735-1097(24)08116-6. [CrossRef] [PubMed]
- Mali N, Su F, Ge J, Fan WX, Zhang J, Ma J. Efficacy of liraglutide in patients with diabetic nephropathy: a meta-analysis of randomized controlled trials. BMC Endocr Disord. 2022 Apr 7;22(1):93. [CrossRef] [PubMed]
- Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, Probstfield J, Botros FT, Riddle MC, Rydén L, Xavier D, Atisso CM, Dyal L, Hall S, Rao-Melacini P, Wong G, Avezum A, Basile J, Chung N, Conget I, Cushman WC, Franek E, Hancu N, Hanefeld M, Holt S, Jansky P, Keltai M, Lanas F, Leiter LA, Lopez-Jaramillo P, Cardona Munoz EG, Pirags V, Pogosova N, Raubenheimer PJ, Shaw JE, Sheu WH, Temelkova-Kurktschiev T; REWIND Investigators. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet. 2019 Jul 13;394(10193):131-138. [CrossRef] [PubMed]
- Tuttle KR, Lakshmanan MC, Rayner B, Busch RS, Zimmermann AG, Woodward DB, Botros FT. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018 Aug;6(8):605-617. [CrossRef] [PubMed]
- Gerstein HC, Sattar N, Rosenstock J, Ramasundarahettige C, Pratley R, Lopes RD, Lam CSP, Khurmi NS, Heenan L, Del Prato S, Dyal L, Branch K; AMPLITUDE-O Trial Investigators. Cardiovascular and Renal Outcomes with Efpeglenatide in Type 2 Diabetes. N Engl J Med. 2021 Sep 2;385(10):896-907. [CrossRef]
- Capehorn MS, Catarig AM, Furberg JK, Janez A, Price HC, Tadayon S, Vergès B, Marre M. Efficacy and safety of once-weekly semaglutide 1.0mg vs once-daily liraglutide 1.2mg as add-on to 1-3 oral antidiabetic drugs in subjects with type 2 diabetes (SUSTAIN 10). Diabetes Metab. 2020 Apr;46(2):100-109. [CrossRef] [PubMed]
- Mann JFE, Fonseca VA, Poulter NR, Raz I, Idorn T, Rasmussen S, von Scholten BJ, Mosenzon O; LEADER Trial Investigators. Safety of Liraglutide in Type 2 Diabetes and Chronic Kidney Disease. Clin J Am Soc Nephrol. 2020 Apr 7;15(4):465-473. [CrossRef] [PubMed]
- Mosenzon O, Blicher TM, Rosenlund S, Eriksson JW, Heller S, Hels OH, Pratley R, Sathyapalan T, Desouza C; PIONEER 5 Investigators. Efficacy and safety of oral semaglutide in patients with type 2 diabetes and moderate renal impairment (PIONEER 5): a placebo-controlled, randomised, phase 3a trial. Lancet Diabetes Endocrinol. 2019 Jul;7(7):515-527. Erratum in: Lancet Diabetes Endocrinol. 2019 Sep;7(9):e21. https://doi.org/10.1016/S2213-8587(19)30246-3. [CrossRef] [PubMed]
| Reduction of oxidative stress |
| Reduction of inflammation |
| Natriuresis/Diuresis |
| Reduction of intraglomerular pressure |
| Reduction in hyperglycemia |
| Reduction in hypertension |
| Reduction in obesity |
| Reduction in endothelial dysfunction |
| Increase Renal Plasma Flow |
| Increase estimated Glomerular Filtration Rate |
| Increase Sympathetic Activity and Heart Rate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
