Submitted:
11 November 2024
Posted:
13 November 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Epidemiology
Etiopathogenesis
Celiac Disease Diagnosis
Pathomorphological Changes in the Duodenum
Criteria for the Diagnosis of Celiac Disease
New Diagnostic Techniques for Celiac Disease
Types of Celiac Disease
Celiac Disease Treatment
New Treatment Strategies
The Use of Bacteria in the Treatment of Celiac Disease
Oral Supplementation of Endopeptidases
Modification of Immune Response
Zonulin Inhibitors
Tissue Transglutaminase 2 Inhibitors
Funding
References
- Rubio-Tapia A, Hill ID, Semrad C, Kelly CP, Greer KB, Limketkai BN, Lebwohl B. American College of Gastroenterology Guidelines Update: Diagnosis and Management of Celiac Disease. Am J Gastroenterol. 2023 Jan 1;118(1):59-76. Epub 2022 Sep 21. Erratum in: Am J Gastroenterol. 2024 Jul 1;119(7):1441. [CrossRef]
- Husby, S., et al., European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J Pediatr Gastroenterol Nutr, 2020. 70(1): p. 141-156. [CrossRef]
- Garampazzi, A., et al., Clinical pattern of celiac disease is still changing. J Pediatr Gastroenterol Nutr, 2007. 45(5): p. 611-4. [CrossRef]
- Dinler, G., E. Atalay, and A.G. Kalayci, Celiac disease in 87 children with typical and atypical symptoms in Black Sea region of Turkey. World J Pediatr, 2009. 5(4): p. 282-6.
- Bottaro, G., et al., Changes in coeliac disease behaviour over the years. Acta Paediatr, 1993. 82(6-7): p. 566-8.
- Faulkner-Hogg, K.B., W.S. Selby, and R.H. Loblay, Dietary analysis in symptomatic patients with coeliac disease on a gluten-free diet: the role of trace amounts of gluten and non-gluten food intolerances. Scand J Gastroenterol, 1999. 34(8): p. 784-9. [CrossRef]
- Montón Rodríguez C, Sánchez Serrano J, Poyatos García P, Abril García C, Gómez Medina C, Capilla-Lozano M, Lluch Garcia P, Pascual Moreno I. Liver disorders and celiac disease. Rev Esp Enferm Dig. 2024 Jan;116(1):41-42.
- Zanchetta, M.B., et al., Impaired Bone Microarchitecture Improves After One Year On Gluten- Free Diet: A Prospective Longitudinal HRpQCT Study in Women with Celiac Disease. J Bone Miner Res, 2016. [CrossRef]
- Kalayci, A.G., et al., Bone mineral density and importance of a gluten-free diet in patients with celiac disease in childhood. Pediatrics, 2001. 108(5): p. E89. [CrossRef]
- Santonicola A, Wieser H, Gizzi C, Soldaini C, Ciacci C. Associations between Celiac Disease, Extra-Gastrointestinal Manifestations, and Gluten-Free Diet: A Narrative Overview. Nutrients. 2024 Jun 9;16(12):1814.
- Ciacci, C., et al., Effects of dietary treatment on bone mineral density in adults with celiac disease: factors predicting response. Am J Gastroenterol, 1997. 92(6): p. 992-6.
- Marek K. Kowalski, A.G., Czy choroba trzewna predysponuje do rozwoju chorób nowotworowych? Onkol. Prakt. Klin., 2015. 2(3): p. 140-148.
- Schosler, L., L.A. Christensen, and C.L. Hvas, Symptoms and findings in adult-onset celiac disease in a historical Danish patient cohort. Scand J Gastroenterol, 2016. 51(3): p. 288-94. [CrossRef]
- Zingone F, Bai JC, Cellier C, Ludvigsson JF. Celiac Disease-Related Conditions: Who to Test? Gastroenterology. 2024 Jun;167(1):64-78.
- Hansen S, Osler M, Thysen SM, Rumessen JJ, Linneberg A, Kårhus LL. Celiac disease and risk of neuropsychiatric disorders: A nationwide cohort study. Acta Psychiatr Scand. 2023 Jul;148(1):60-70. [CrossRef]
- Bingley, P.J., et al., Undiagnosed coeliac disease at age seven: population based prospective birth cohort study. BMJ, 2004. 328(7435): p. 322-3.
- Maki, M., et al., Prevalence of Celiac disease among children in Finland, in N Engl J Med. 2003, 2003 Massachusetts Medical Society: United States. p. 2517-24.
- Laass, M.W., et al., The prevalence of celiac disease in children and adolescents in Germany. Dtsch Arztebl Int, 2015. 112(33-34): p. 553-60. [CrossRef]
- Singh, P., et al., Prevalence of Celiac disease in Asia: A systematic review and meta-analysis. J Gastroenterol Hepatol, 2015.
- Choung, R.S., et al., Trends and racial/ethnic disparities in gluten-sensitive problems in the United States: findings from the National Health and Nutrition Examination Surveys from 1988 to 2012. Am J Gastroenterol, 2015. 110(3): p. 455-61. [CrossRef]
- Fasano, A., et al., Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study, in Arch Intern Med. 2003: United States. p. 286-92.
- Singh, P., et al., Risk of Celiac Disease in the First- and Second-Degree Relatives of Patients With Celiac Disease: A Systematic Review and Meta-Analysis. Am J Gastroenterol, 2015. 110(11): p. 1539-48. [CrossRef]
- Tamai, T. and K. Ihara, Celiac Disease Genetics, Pathogenesis, and Standard Therapy for Japanese Patients. Int J Mol Sci, 2023. 24(3).
- Singh, P., et al., Global Prevalence of Celiac Disease: Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol, 2018. 16(6): p. 823-836.e2.
- Aboulaghras S, Piancatelli D, Taghzouti K, Balahbib A, Alshahrani MM, Al Awadh AA, Goh KW, Ming LC, Bouyahya A, Oumhani K. Meta-Analysis and Systematic Review of HLA DQ2/DQ8 in Adults with Celiac Disease. Int J Mol Sci. 2023 Jan 7;24(2):1188.
- Palova-Jelinkova, L., et al., Pepsin digest of wheat gliadin fraction increases production of IL- 1beta via TLR4/MyD88/TRIF/MAPK/NF-kappaB signaling pathway and an NLRP3 inflammasome activation. PLoS One, 2013. 8(4): p. e62426.
- Garcia-Horsman, J.A., et al., Deficient activity of mammalian prolyl oligopeptidase on the immunoactive peptide digestion in coeliac disease. Scand J Gastroenterol, 2007. 42(5): p. 562- 71. [CrossRef]
- Matysiak-Budnik, T., et al., Limited efficiency of prolyl-endopeptidase in the detoxification of gliadin peptides in celiac disease, in Gastroenterology. 2005: United States. p. 786-96.
- Wei, G., et al., Gluten Degrading Enzymes for Treatment of Celiac Disease. Nutrients, 2020. 12(7).
- Dunaevsky, Y.E., et al., Effective Degradation of Gluten and Its Fragments by Gluten-Specific Peptidases: A Review on Application for the Treatment of Patients with Gluten Sensitivity. Pharmaceutics, 2021. 13(10).
- Nistal, E., et al., Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients, in Biochimie. 2012, 2012 Elsevier Masson SAS: France. p. 1724-9.
- Sanz, Y., Effects of a gluten-free diet on gut microbiota and immune function in healthy adult humans, in Gut Microbes. 2010: United States. p. 135-7.
- Di Cagno, R., et al., Different fecal microbiotas and volatile organic compounds in treated and untreated children with celiac disease. Appl Environ Microbiol, 2009. 75(12): p. 3963-71.
- De Palma, G., et al., Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol, 2010. 10: p. 63.
- Bonder, M.J., et al., The influence of a short-term gluten-free diet on the human gut microbiome. Genome Med, 2016. 8(1): p. 45.
- Caminero, A., et al., Differences in gluten metabolism among healthy volunteers, coeliac disease patients and first-degree relatives. Br J Nutr, 2015. 114(8): p. 1157-67.
- Zamakhchari, M., et al., Identification of Rothia bacteria as gluten-degrading natural colonizers of the upper gastro-intestinal tract. PLoS One, 2011. 6(9): p. e24455. [CrossRef]
- Helmerhorst, E.J., et al., Discovery of a novel and rich source of gluten-degrading microbial enzymes in the oral cavity, in PLoS One. 2010: United States. p. e13264. [CrossRef]
- Stepniak, D., et al., Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease, in Am J Physiol Gastrointest Liver Physiol. 2006: United States. p. G621-9. [CrossRef]
- Shan, L., et al., Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue. Biochem J, 2004. 383(Pt 2): p. 311-8. [CrossRef]
- Yoshimoto, T., R. Walter, and D. Tsuru, Proline-specific endopeptidase from Flavobacterium. Purification and properties. J Biol Chem, 1980. 255(10): p. 4786-92.
- Meresse, B., et al., Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity, 2004. 21(3): p. 357-66.
- Londei, M., et al., Gliadin as a stimulator of innate responses in celiac disease. Mol Immunol, 2005. 42(8): p. 913-8. [CrossRef]
- Maiuri, L., et al., Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet, 2003. 362(9377): p. 30-7.
- Andre, P., et al., Comparative analysis of human NK cell activation induced by NKG2D and natural cytotoxicity receptors. Eur J Immunol, 2004. 34(4): p. 961-71. [CrossRef]
- Hue, S., et al., A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity, 2004. 21(3): p. 367-77.
- Vilasi, S., et al., Interaction of 'toxic' and 'immunogenic' A-gliadin peptides with a membrane- mimetic environment. J Mol Recognit, 2010. 23(3): p. 322-8.
- Nanayakkara, M., et al., A celiac cellular phenotype, with altered LPP sub-cellular distribution, is inducible in controls by the toxic gliadin peptide P31-43. PLoS One, 2013. 8(11): p. e79763. [CrossRef]
- Barone, M.V., et al., Growth factor-like activity of gliadin, an alimentary protein: implications for coeliac disease. Gut, 2007. 56(4): p. 480-8. [CrossRef]
- Giovannini, C., et al., Wheat gliadin induces apoptosis of intestinal cells via an autocrine mechanism involving Fas-Fas ligand pathway. FEBS Lett, 2003. 540(1-3): p. 117-24. [CrossRef]
- Menard, S., et al., Paracellular versus transcellular intestinal permeability to gliadin peptides in active celiac disease. Am J Pathol, 2012. 180(2): p. 608-15.
- Lammers, K.M., et al., Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology, 2008. 135(1): p. 194-204.e3.
- Clemente, M.G., et al., Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut, 2003. 52(2): p. 218-23.
- Drago, S., et al., Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol, 2006. 41(4): p. 408-19.
- Fasano, A., et al., Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease, in Lancet. 2000: England. p. 1518-9.
- Tripathi, A., et al., Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci U S A, 2009. 106(39): p. 16799-804.
- Sapone, A., et al., Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes, 2006. 55(5): p. 1443-9.
- El Asmar, R., et al., Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology, 2002. 123(5): p. 1607-15.
- Wang, W., et al., Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci, 2000. 113 Pt 24: p. 4435-40.
- Lindfors, K., et al., Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol, 2008. 152(3): p. 552-8.
- Arentz-Hansen, H., et al., The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J Exp Med, 2000. 191(4): p. 603-12.
- Molberg, O., et al., T cells from celiac disease lesions recognize gliadin epitopes deamidated in situ by endogenous tissue transglutaminase. Eur J Immunol, 2001. 31(5): p. 1317-23.
- Quarsten, H., et al., HLA binding and T cell recognition of a tissue transglutaminase-modified gliadin epitope. Eur J Immunol, 1999. 29(8): p. 2506-14.
- Camarca, A., et al., Intestinal T cell responses to gluten peptides are largely heterogeneous: implications for a peptide-based therapy in celiac disease. J Immunol, 2009. 182(7): p. 4158- 66.
- Anderson, R.P., et al., T cells in peripheral blood after gluten challenge in coeliac disease. Gut, 2005. 54(9): p. 1217-23. [CrossRef]
- van de Wal, Y., et al., Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J Immunol, 1998. 161(4): p. 1585-8.
- Dorum, S., et al., A quantitative analysis of transglutaminase 2-mediated deamidation of gluten peptides: implications for the T-cell response in celiac disease. J Proteome Res, 2009. 8(4): p. 1748-55. [CrossRef]
- Qiao, S.W., et al., Refining the rules of gliadin T cell epitope binding to the disease-associated DQ2 molecule in celiac disease: importance of proline spacing and glutamine deamidation. J Immunol, 2005. 175(1): p. 254-61. [CrossRef]
- Tollefsen, S., et al., HLA-DQ2 and -DQ8 signatures of gluten T cell epitopes in celiac disease. J Clin Invest, 2006. 116(8): p. 2226-36.
- Vader, W., et al., The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc Natl Acad Sci U S A, 2003. 100(21): p. 12390-5. [CrossRef]
- Henderson, K.N., et al., The production and crystallization of the human leukocyte antigen class II molecules HLA-DQ2 and HLA-DQ8 complexed with deamidated gliadin peptides implicated in coeliac disease. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2007. 63(Pt 12): p. 1021-5. [CrossRef]
- Korponay-Szabo, I.R., et al., Deamidated gliadin peptides form epitopes that transglutaminase antibodies recognize. J Pediatr Gastroenterol Nutr, 2008. 46(3): p. 253-61. [CrossRef]
- Vitoria, J.C., et al., Antibodies to gliadin, endomysium, and tissue transglutaminase for the diagnosis of celiac disease. J Pediatr Gastroenterol Nutr, 1999. 29(5): p. 571-4.
- Aleanzi, M., et al., Celiac disease: antibody recognition against native and selectively deamidated gliadin peptides. Clin Chem, 2001. 47(11): p. 2023-8.
- Agardh, D., et al., Autoantibodies against soluble and immobilized human recombinant tissue transglutaminase in children with celiac disease. J Pediatr Gastroenterol Nutr, 2005. 41(3): p. 322-7. [CrossRef]
- Sulkanen, S., et al., Tissue transglutaminase autoantibody enzyme-linked immunosorbent assay in detecting celiac disease. Gastroenterology, 1998. 115(6): p. 1322-8.
- Bodd, M., et al., HLA-DQ2-restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. Mucosal Immunol, 2010. 3(6): p. 594-601. [CrossRef]
- Harris, K.M., A. Fasano, and D.L. Mann, Monocytes differentiated with IL-15 support Th17 and Th1 responses to wheat gliadin: implications for celiac disease. Clin Immunol, 2010. 135(3): p. 430-9.
- Salvati, V.M., et al., Interleukin 18 and associated markers of T helper cell type 1 activity in coeliac disease. Gut, 2002. 50(2): p. 186-90. [CrossRef]
- Fina, D., et al., Interleukin 21 contributes to the mucosal T helper cell type 1 response in coeliac disease. Gut, 2008. 57(7): p. 887-92.
- Di Sabatino, A., et al., Evidence for the role of interferon-alfa production by dendritic cells in the Th1 response in celiac disease. Gastroenterology, 2007. 133(4): p. 1175-87.
- Mora, B., et al., Association of the matrix metalloproteinase-3 (MMP-3) promoter polymorphism with celiac disease in male subjects. Hum Immunol, 2005. 66(6): p. 716-20.
- Ciccocioppo, R., et al., Matrix metalloproteinase pattern in celiac duodenal mucosa. Lab Invest, 2005. 85(3): p. 397-407.
- Bister, V., et al., Metalloelastase (MMP-12) is upregulated in the gut of pediatric patients with potential celiac disease and in type 1 diabetes. Scand J Gastroenterol, 2005. 40(12): p. 1413- 22. [CrossRef]
- Lammers, K.M., et al., Identification of a novel immunomodulatory gliadin peptide that causes interleukin-8 release in a chemokine receptor CXCR3-dependent manner only in patients with coeliac disease. Immunology, 2011. 132(3): p. 432-40. [CrossRef]
- Nanayakkara, M., et al., An undigested gliadin peptide activates innate immunity and proliferative signaling in enterocytes: the role in celiac disease. Am J Clin Nutr, 2013. 98(4): p. 1123-35. [CrossRef]
- Barone, M.V., R. Troncone, and S. Auricchio, Gliadin peptides as triggers of the proliferative and stress/innate immune response of the celiac small intestinal mucosa. Int J Mol Sci, 2014. 15(11): p. 20518-37. [CrossRef]
- Marsh, M.N., Grains of truth: evolutionary changes in small intestinal mucosa in response to environmental antigen challenge. Gut, 1990. 31(1): p. 111-4. [CrossRef]
- Marsh, M.N., Studies of intestinal lymphoid tissue. III. Quantitative analyses of epithelial lymphocytes in the small intestine of human control subjects and of patients with celiac sprue. Gastroenterology, 1980. 79(3): p. 481-92.
- Oberhuber, G., G. Granditsch, and H. Vogelsang, The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol, 1999. 11(10): p. 1185-94.
- Oberhuber, G., et al., [Study Group of Gastroenterological Pathology of the German Society of Pathology. Recommendations for celiac disease/sprue diagnosis]. Z Gastroenterol, 2001. 39(2): p. 157-66.
- Oberhuber, G., Histopathology of celiac disease. Biomed Pharmacother, 2000. 54(7): p. 368- 72. [CrossRef]
- Konopka, E., et al., Clinical utility of quantitative multi-antibody Polycheck immunoassays in the diagnosis of coeliac disease. World J Gastrointest Pharmacol Ther, 2016. 7(2): p. 254-60.
- Agardh, D., Antibodies against synthetic deamidated gliadin peptides and tissue transglutaminase for the identification of childhood celiac disease. Clin Gastroenterol Hepatol, 2007. 5(11): p. 1276-81. [CrossRef]
- Giersiepen, K., et al., Accuracy of diagnostic antibody tests for coeliac disease in children: summary of an evidence report. J Pediatr Gastroenterol Nutr, 2012. 54(2): p. 229-41.
- Lytton, S.D., et al., Neo-epitope tissue transglutaminase autoantibodies as a biomarker of the gluten sensitive skin disease--dermatitis herpetiformis. Clin Chim Acta, 2013. 415: p. 346-9. [CrossRef]
- Lerner, A., et al., Antibodies against neo-epitope tTg complexed to gliadin are different and more reliable then anti-tTg for the diagnosis of pediatric celiac disease. J Immunol Methods, 2016. 429: p. 15-20. [CrossRef]
- Bodd, M., et al., Direct cloning and tetramer staining to measure the frequency of intestinal gluten-reactive T cells in celiac disease. Eur J Immunol, 2013. 43(10): p. 2605-12. [CrossRef]
- Picascia, S., et al., Gliadin-Specific T-Cells Mobilized in the Peripheral Blood of Coeliac Patients by Short Oral Gluten Challenge: Clinical Applications. Nutrients, 2015. 7(12): p. 10020-31. [CrossRef]
- Raki, M., et al., Tetramer visualization of gut-homing gluten-specific T cells in the peripheral blood of celiac disease patients. Proc Natl Acad Sci U S A, 2007. 104(8): p. 2831-6.
- Brottveit, M., et al., Assessing possible celiac disease by an HLA-DQ2-gliadin Tetramer Test. Am J Gastroenterol, 2011. 106(7): p. 1318-24.
- Christophersen, A., et al., Tetramer-visualized gluten-specific CD4+ T cells in blood as a potential diagnostic marker for coeliac disease without oral gluten challenge. United European Gastroenterol J, 2014. 2(4): p. 268-78. [CrossRef]
- Christophersen, A., et al., Healthy HLA-DQ2.5+ Subjects Lack Regulatory and Memory T Cells Specific for Immunodominant Gluten Epitopes of Celiac Disease. J Immunol, 2016. 196(6): p. 2819-26. [CrossRef]
- Özgenel Ş, M., et al., HLA-DQ2/DQ8 frequency in adult patients with celiac disease, their first-degree relatives, and normal population in Turkey. Turk J Gastroenterol, 2019. 30(4): p. 321-325.
- Cecilio, L.A. and M.W. Bonatto, The prevalence of HLA DQ2 and DQ8 in patients with celiac disease, in family and in general population. Arq Bras Cir Dig, 2015. 28(3): p. 183-5.
- Mansouri, M., et al., The frequency of HLA-DQ2/DQ8 haplotypes and celiac disease among the first-degree relatives of patients with celiac disease. Gastroenterol Hepatol Bed Bench, 2021. 14(1): p. 36-43.
- Paziewska, A., et al., Combination Testing Using a Single MSH5 Variant alongside HLA Haplotypes Improves the Sensitivity of Predicting Coeliac Disease Risk in the Polish Population. PLoS One, 2015. 10(9): p. e0139197. [CrossRef]
- Romanos, J., et al., Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants. Gut, 2014. 63(3): p. 415-22.
- Koskinen, L., et al., Cost-effective HLA typing with tagging SNPs predicts celiac disease risk haplotypes in the Finnish, Hungarian, and Italian populations. Immunogenetics, 2009. 61(4): p. 247-56. [CrossRef]
- Monsuur, A.J., et al., Effective detection of human leukocyte antigen risk alleles in celiac disease using tag single nucleotide polymorphisms. PLoS One, 2008. 3(5): p. e2270.
- Anderson, R.P., et al., Whole blood interleukin-2 release test to detect and characterize rare circulating gluten-specific T cell responses in coeliac disease. Clin Exp Immunol, 2021. 204(3): p. 321-334. [CrossRef]
- Goel, G., et al., Cytokine release and gastrointestinal symptoms after gluten challenge in celiac disease. Sci Adv, 2019. 5(8): p. eaaw7756.
- Tye-Din, J.A., et al., Patient factors influencing acute gluten reactions and cytokine release in treated coeliac disease. BMC Med, 2020. 18(1): p. 362.
- Molberg, O., et al., T cells from celiac disease lesions recognize gliadin epitopes deamidated in situ by endogenous tissue transglutaminase. Eur J Immunol, 2001. 31(5): p. 1317-23.
- Molberg, O., et al., HLA restriction patterns of gliadin- and astrovirus-specific CD4+ T cells isolated in parallel from the small intestine of celiac disease patients. Tissue Antigens, 1998. 52(5): p. 407-15. [CrossRef]
- Anderson, R.P., et al., In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat Med, 2000. 6(3): p. 337-42.
- Gjertsen, H.A., et al., T cells from the peripheral blood of coeliac disease patients recognize gluten antigens when presented by HLA-DR, -DQ, or -DP molecules. Scand J Immunol, 1994. 39(6): p. 567-74.
- Anderson, R.P., et al., T cells in peripheral blood after gluten challenge in coeliac disease. Gut, 2005. 54(9): p. 1217-23. [CrossRef]
- Zühlke, S., et al., CD38 expression on gluten-specific T cells is a robust marker of gluten re-exposure in coeliac disease. United European Gastroenterol J, 2019. 7(10): p. 1337-1344. [CrossRef]
- Iwańczak, F. and B. Iwańczak, New guidelines for diagnosis and treatment of coeliac disease in children and adolescents. Gastroenterology Review/Przegląd Gastroenterologiczny, 2012. 7(4): p. 185-191. [CrossRef]
- Al-Toma, A., et al., European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United European Gastroenterol J, 2019. 7(5): p. 583-613. [CrossRef]
- Villanacci, V., et al., Histopathology of Celiac Disease. Position Statements of the Italian Group of Gastrointestinal Pathologists (GIPAD-SIAPEC). Transl Med UniSa, 2020. 23: p. 28-36.
- Green, P.H.R., et al., AGA Clinical Practice Update on Management of Refractory Celiac Disease: Expert Review. Gastroenterology, 2022. 163(5): p. 1461-1469. [CrossRef]
- Ondrejka, S. and D. Jagadeesh, Enteropathy-Associated T-Cell Lymphoma. Curr Hematol Malig Rep, 2016. 11(6): p. 504-513.
- Olaussen, R.W., et al., Effect of elemental diet on mucosal immunopathology and clinical symptoms in type 1 refractory celiac disease. Clin Gastroenterol Hepatol, 2005. 3(9): p. 875- 85. [CrossRef]
- Demiroren, K., Possible relationship between refractory celiac disease and malignancies. World J Clin Oncol, 2022. 13(3): p. 200-208. [CrossRef]
- Daum, S., C. Cellier, and C.J. Mulder, Refractory coeliac disease. Best Pract Res Clin Gastroenterol, 2005. 19(3): p. 413-24.
- van Wanrooij, R.L., et al., Outcome of Referrals for Non-Responsive Celiac Disease in a Tertiary Center: Low Incidence of Refractory Celiac Disease in the Netherlands. Clin Transl Gastroenterol, 2017. 8(1): p. e218. [CrossRef]
- Ludvigsson, J.F., et al., Diagnosis and management of adult coeliac disease: guidelines from the British Society of Gastroenterology. Gut, 2014. 63(8): p. 1210-28.
- Rubio-Tapia, A., et al., ACG clinical guidelines: diagnosis and management of celiac disease. Am J Gastroenterol, 2013. 108(5): p. 656-76; quiz 677.
- Bai, J.C. and C. Ciacci, World Gastroenterology Organisation Global Guidelines: Celiac Disease February 2017. J Clin Gastroenterol, 2017. 51(9): p. 755-768.
- Parfenov, A.I., et al., [All-Russian Consensus on Diagnosis and Treatment of Celiac Disease in Children and Adults]. Ter Arkh, 2017. 89(3): p. 94-107.
- Downey, L., et al., Recognition, assessment, and management of coeliac disease: summary of updated NICE guidance. Bmj, 2015. 351: p. h4513. [CrossRef]
- Remes-Troche, J.M., et al., Clinical guidelines on the diagnosis and treatment of celiac disease in Mexico. Rev Gastroenterol Mex (Engl Ed), 2018. 83(4): p. 434-450.
- Raiteri, A., et al., Current guidelines for the management of celiac disease: A systematic review with comparative analysis. World J Gastroenterol, 2022. 28(1): p. 154-175.
- Comino, I., L. Moreno Mde, and C. Sousa, Role of oats in celiac disease. World J Gastroenterol, 2015. 21(41): p. 11825-31. [CrossRef]
- Pulido, O.M., et al., Introduction of oats in the diet of individuals with celiac disease: a systematic review. Adv Food Nutr Res, 2009. 57: p. 235-85.
- La Vieille, S., et al., Celiac Disease and Gluten-Free Oats: A Canadian Position Based on a Literature Review. Can J Gastroenterol Hepatol, 2016. 2016: p. 1870305.
- Lahdeaho, M.L., et al., Small- bowel mucosal changes and antibody responses after low- and moderate-dose gluten challenge in celiac disease. BMC Gastroenterol, 2011. 11: p. 129. [CrossRef]
- Catassi, C., et al., A prospective, double-blind, placebo-controlled trial to establish a safe gluten threshold for patients with celiac disease. Am J Clin Nutr, 2007. 85(1): p. 160-6. [CrossRef]
- Bruins, M.J., The clinical response to gluten challenge: a review of the literature. Nutrients, 2013. 5(11): p. 4614-41. [CrossRef]
- Akobeng, A.K. and A.G. Thomas, Systematic review: tolerable amount of gluten for people with coeliac disease. Aliment Pharmacol Ther, 2008. 27(11): p. 1044-52.
- Gibert, A., et al., Consumption of gluten-free products: should the threshold value for trace amounts of gluten be at 20, 100 or 200 p.p.m.? Eur J Gastroenterol Hepatol, 2006. 18(11): p. 1187-95. [CrossRef]
- Food labeling: gluten-free labeling of foods. Final rule. Fed Regist, 2013. 78(150): p. 47154-79.
- Tuire, I., et al., Persistent duodenal intraepithelial lymphocytosis despite a long-term strict gluten-free diet in celiac disease. Am J Gastroenterol, 2012. 107(10): p. 1563-9. [CrossRef]
- Hollon, J.R., et al., Trace gluten contamination may play a role in mucosal and clinical recovery in a subgroup of diet-adherent non-responsive celiac disease patients. BMC Gastroenterol, 2013. 13: p. 40.
- Zanini, B., et al., Persistent Intraepithelial Lymphocytosis in Celiac Patients Adhering to Gluten- Free Diet Is Not Abolished Despite a Gluten Contamination Elimination Diet. Nutrients, 2016. 8(9).
- Lanzini, A., et al., Complete recovery of intestinal mucosa occurs very rarely in adult coeliac patients despite adherence to gluten-free diet. Aliment Pharmacol Ther, 2009. 29(12): p. 1299- 308.
- Tursi, A., et al., Endoscopic and histological findings in the duodenum of adults with celiac disease before and after changing to a gluten-free diet: a 2-year prospective study. Endoscopy, 2006. 38(7): p. 702-7.
- Sasaki, M., B.W. Bosman, and P.S. Tan, A new, broad-substrate-specificity aminopeptidase from the dairy organism Lactobacillus helveticus SBT 2171. Microbiology, 1996. 142 ( Pt 4): p. 799-808.
- Tan, P.S., K.M. Pos, and W.N. Konings, Purification and characterization of an endopeptidase from Lactococcus lactis subsp. cremoris Wg2. Appl Environ Microbiol, 1991. 57(12): p. 3593-9.
- Laloi, P., et al., Cell-wall-associated proteinase of Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397: differential extraction, purification and properties of the enzyme. Appl Microbiol Biotechnol, 1991. 36(2): p. 196-204.
- Di Cagno, R., et al., Proteolysis by sourdough lactic acid bacteria: effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl Environ Microbiol, 2002. 68(2): p. 623-33.101.
- Di Cagno, R., et al., Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl Environ Microbiol, 2004. 70(2): p. 1088-96.
- di Cagno, R., et al., Pasta made from durum wheat semolina fermented with selected lactobacilli as a tool for a potential decrease of the gluten intolerance. J Agric Food Chem, 2005. 53(11): p. 4393-402.
- Gerez, C.L., G. Font de Valdez, and G.C. Rollan, Functionality of lactic acid bacteria peptidase activities in the hydrolysis of gliadin-like fragments, in Lett Appl Microbiol. 2008: England. p. 427-32.
- Rollan, G., et al., Proteolytic activity and reduction of gliadin-like fractions by sourdough lactobacilli, in J Appl Microbiol. 2005: England. p. 1495-502. [CrossRef]
- Thiele, C., S. Grassl, and M. Ganzle, Gluten hydrolysis and depolymerization during sourdough fermentation. J Agric Food Chem, 2004. 52(5): p. 1307-14. [CrossRef]
- Thiele, C., M.G. Ganzle, and R.F. Vogel, Fluorescence labeling of wheat proteins for determination of gluten hydrolysis and depolymerization during dough processing and sourdough fermentation. J Agric Food Chem, 2003. 51(9): p. 2745-52. [CrossRef]
- Rizzello, C.G., et al., Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Appl Environ Microbiol, 2007. 73(14): p. 4499-507.
- Greco, L., et al., Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clin Gastroenterol Hepatol, 2011. 9(1): p. 24-9.
- Stefanolo JP, Segura V, Grizzuti M, Heredia A, Comino I, Costa AF, Puebla R, Temprano MP, Niveloni SI, de Diego G, Oregui ME, Smecuol EG, de Marzi MC, Verdú EF, Sousa C, Bai JC. Effect of Aspergillus niger prolyl endopeptidase in patients with celiac disease on a long-term gluten-free diet. World J Gastroenterol. 2024 Mar 21;30(11):1545-1555.
- Tack, G.J., et al., Consumption of gluten with gluten-degrading enzyme by celiac patients: a pilot-study. World J Gastroenterol, 2013. 19(35): p. 5837-47.
- Tye-Din, J.A., et al., The effects of ALV003 pre-digestion of gluten on immune response and symptoms in celiac disease in vivo. Clin Immunol, 2010. 134(3): p. 289-95.
- Siegel, M., et al., Safety, tolerability, and activity of ALV003: results from two phase 1 single, escalating-dose clinical trials. Dig Dis Sci, 2012. 57(2): p. 440-50.
- Lahdeaho, M.L., et al., Glutenase ALV003 attenuates gluten-induced mucosal injury in patients with celiac disease. Gastroenterology, 2014. 146(7): p. 1649-58. [CrossRef]
- Murray, J.A., et al., Latiglutenase Protects the Mucosa and Attenuates Symptom Severity in Patients With Celiac Disease Exposed to a Gluten Challenge. Gastroenterology, 2022. 163(6): p. 1510-1521.e6.
- Wolf, C., et al., Engineering of Kuma030: A Gliadin Peptidase That Rapidly Degrades Immunogenic Gliadin Peptides in Gastric Conditions. J Am Chem Soc, 2015. 137(40): p. 13106-13.
- Pultz, I.S., et al., Gluten Degradation, Pharmacokinetics, Safety, and Tolerability of TAK-062, an Engineered Enzyme to Treat Celiac Disease. Gastroenterology, 2021. 161(1): p. 81-93.e3.
- Klemenak, M., et al., Administration of Bifidobacterium breve Decreases the Production of TNF- alpha in Children with Celiac Disease. Dig Dis Sci, 2015. 60(11): p. 3386-92. [CrossRef]
- Olivares, M., et al., Influence of Bifidobacterium longum CECT 7347 and gliadin peptides on intestinal epithelial cell proteome, in J Agric Food Chem. 2011: United States. p. 7666-71. [CrossRef]
- Olivares, M., et al., Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed coeliac disease. Br J Nutr, 2014. 112(1): p. 30-40.
- Smecuol, E., et al., Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J Clin Gastroenterol, 2013. 47(2): p. 139-47.
- Lloyd-Still, J.D., et al., The use of corticosteroids in celiac crisis. J Pediatr, 1972. 81(6): p. 1074-81.
- Abbas, A., et al., Addition of a Short Course of Prednisolone to a Gluten-Free Diet vs. Gluten-Free Diet Alone in Recovery of Celiac Disease: A Pilot Randomized Controlled Trial. Cureus, 2018. 10(1): p. e2118. [CrossRef]
- Ali Ibrahim, A., et al., Budesonide and the Gluten Containing Elimination Diet as Treatments for Non-responsive Celiac Disease in Children. J Pediatr Gastroenterol Nutr, 2022. 75(5): p. 616-622.
- Rubio-Tapia, A. and J.A. Murray, Classification and management of refractory coeliac disease. Gut, 2010. 59(4): p. 547-57.
- Mukewar, S.S., et al., Open-Capsule Budesonide for Refractory Celiac Disease. Am J Gastroenterol, 2017. 112(6): p. 959-967.
- Therrien, A., et al., Enteric-Release Budesonide May Be Useful in the Management of Non-Responsive Celiac Disease. Dig Dis Sci, 2021. 66(6): p. 1989-1997. [CrossRef]
- Mauriño, E., et al., Azathioprine in refractory sprue: results from a prospective, open-label study. Am J Gastroenterol, 2002. 97(10): p. 2595-602.
- Goerres, M.S., et al., Azathioprine and prednisone combination therapy in refractory coeliac disease. Aliment Pharmacol Ther, 2003. 18(5): p. 487-94. [CrossRef]
- Iqbal, U., et al., Refractory Celiac Disease Successfully Treated With Azathioprine. Gastroenterology Res, 2017. 10(3): p. 199-201.
- Rawal, N., et al., Remission of Refractory Celiac Disease With Infliximab in a Pediatric Patient. ACG Case Rep J, 2015. 2(2): p. 121-3. [CrossRef]
- Valitutti, F., et al., Autoimmune enteropathy in a 13-year-old celiac girl successfully treated with infliximab. J Clin Gastroenterol, 2014. 48(3): p. 264-6.
- Costantino, G., et al., Treatment of life-threatening type I refractory coeliac disease with long-term infliximab. Dig Liver Dis, 2008. 40(1): p. 74-7.
- Senolt, L., et al., Prospective new biological therapies for rheumatoid arthritis. Autoimmun Rev, 2009. 9(2): p. 102-7.
- Waldmann, T.A., et al., Phase 1 trial of IL-15 trans presentation blockade using humanized Mikbeta1 mAb in patients with T-cell large granular lymphocytic leukemia. Blood, 2013. 121(3): p. 476-84.
- Morris, J.C., et al., Preclinical and phase I clinical trial of blockade of IL-15 using Mikbeta1 monoclonal antibody in T cell large granular lymphocyte leukemia. Proc Natl Acad Sci U S A, 2006. 103(2): p. 401-6.
- Dieckman T et al. Enduring clinical remission in refractory celiac disease type II with tofacitinib: an open-label clinical study. Clin Gastroenterol Hepatol. 2024. [CrossRef]
- Lähdeaho, M.L., et al., Safety and efficacy of AMG 714 in adults with coeliac disease exposed to gluten challenge: a phase 2a, randomised, double-blind, placebo-controlled study. Lancet Gastroenterol Hepatol, 2019. 4(12): p. 948-959.
- Croese, J., et al., Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease. J Allergy Clin Immunol, 2015. 135(2): p. 508-16.
- McSorley, H.J., et al., Suppression of inflammatory immune responses in celiac disease by experimental hookworm infection. PLoS One, 2011. 6(9): p. e24092. [CrossRef]
- Daveson, A.J., et al., Effect of hookworm infection on wheat challenge in celiac disease--a randomised double-blinded placebo controlled trial. PLoS One, 2011. 6(3): p. e17366. [CrossRef]
- Giacomin, P., et al., Experimental hookworm infection and escalating gluten challenges are associated with increased microbial richness in celiac subjects. Sci Rep, 2015. 5: p. 13797.
- Cantacessi, C., et al., Impact of experimental hookworm infection on the human gut microbiota. J Infect Dis, 2014. 210(9): p. 1431-4. 102.
- Murray, J.A., et al., Safety and tolerability of KAN-101, a liver-targeted immune tolerance therapy, in patients with coeliac disease (ACeD): a phase 1 trial. Lancet Gastroenterol Hepatol, 2023. 8(8): p. 735-747. [CrossRef]
- Kelly, C.P., et al., TAK-101 Nanoparticles Induce Gluten-Specific Tolerance in Celiac Disease: A Randomized, Double-Blind, Placebo-Controlled Study. Gastroenterology, 2021. 161(1): p. 66-80.e8. [CrossRef]
- Riedmann, E.M., Human vaccines: news, in Hum Vaccin Immunother. 2012: United States. p. 1550-3.
- Hardy, M.Y., et al., A Sensitive Whole Blood Assay Detects Antigen-Stimulated Cytokine Release From CD4+ T Cells and Facilitates Immunomonitoring in a Phase 2 Clinical Trial of Nexvax2 in Coeliac Disease. Front Immunol, 2021. 12: p. 661622.
- Daveson, A.J.M., et al., Epitope-Specific Immunotherapy Targeting CD4-Positive T Cells in Celiac Disease: Safety, Pharmacokinetics, and Effects on Intestinal Histology and Plasma Cytokines with Escalating Dose Regimens of Nexvax2 in a Randomized, Double-Blind, Placebo-Controlled Phase 1 Study. EBioMedicine, 2017. 26: p. 78-90. [CrossRef]
- Truitt, K.E., et al., Randomised clinical trial: a placebo-controlled study of subcutaneous or intradermal NEXVAX2, an investigational immunomodulatory peptide therapy for coeliac disease. Aliment Pharmacol Ther, 2019. 50(5): p. 547-555.
- Fasano, A., Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev, 2011. 91(1): p. 151-75. [CrossRef]
- Fasano, A., Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications. Clin Gastroenterol Hepatol, 2012. 10(10): p. 1096-100.
- Fasano, A., Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci, 2012. 1258: p. 25-33.
- Leffler, D.A., et al., A randomized, double-blind study of larazotide acetate to prevent the activation of celiac disease during gluten challenge. Am J Gastroenterol, 2012. 107(10): p. 1554-62.
- Kelly, C.P., et al., Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment Pharmacol Ther, 2013. 37(2): p. 252-62.
- Leffler, D.A., et al., Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: a randomized controlled trial. Gastroenterology, 2015. 148(7): p. 1311-9.e6. [CrossRef]
- Paterson, B.M., et al., The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment Pharmacol Ther, 2007. 26(5): p. 757-66.
- Gopalakrishnan, S., et al., Larazotide acetate regulates epithelial tight junctions in vitro and in vivo. Peptides, 2012. 35(1): p. 86-94. [CrossRef]
- 9 Meters Biopharma announces interim analysis of Phase 3 study of larazotide for celiac disease does not support trial continuation. (Press release June 21, 2022). Accessed 19 January 2024.
- Pardin, C., et al., Cinnamoyl inhibitors of tissue transglutaminase. J Org Chem, 2008. 73(15): p. 5766-75.
- Klock, C., et al., Acylideneoxoindoles: a new class of reversible inhibitors of human transglutaminase 2. Bioorg Med Chem Lett, 2011. 21(9): p. 2692-6.
- Hausch, F., et al., Design, synthesis, and evaluation of gluten peptide analogs as selective inhibitors of human tissue transglutaminase. Chem Biol, 2003. 10(3): p. 225-31.
- Toth, B., et al., Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells. J Immunol, 2009. 182(4): p. 2084-92. [CrossRef]
- Szondy, Z., et al., Transglutaminase 2-/- mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells. Proc Natl Acad Sci U S A, 2003. 100(13): p. 7812-7.
- Rauhavirta, T., et al., Are transglutaminase 2 inhibitors able to reduce gliadin-induced toxicity related to celiac disease? A proof-of-concept study. J Clin Immunol, 2013. 33(1): p. 134-42. [CrossRef]
- Sulic, A.M., et al., Transglutaminase as a therapeutic target for celiac disease. Expert Opin Ther Targets, 2015. 19(3): p. 335-48.
- Schuppan, D., et al., A Randomized Trial of a Transglutaminase 2 Inhibitor for Celiac Disease. N Engl J Med, 2021. 385(1): p. 35-45.
- Dotsenko V et al. Transcriptomic analysis of intestine following administration of a transglutaminase 2 inhibitor to prevent gluten-induced intestinal damage in celiac disease. Nat Immunol. 2024;25:1218–1230. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
