Submitted:
12 November 2024
Posted:
13 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. DNIC/CPM in Chronic pain
3. DNIC and the Descending Modulation of Pain
3.1. Descending Pain Modulation
3.2. DNIC Circuits Overlap with the Circuits Mediating Descending Pain Modulation
4. DNIC as a Descending Modulatory Mechanism: Neurochemical and Pharmacological Studies
4.1. Descending Serotonergic System
4.2. Descending Noradrenergic System
4.3. Descending Opioidergic System
| 5-HT STUDIES | NA STUDIES | OPIOID STUDIES | |
|
NORMAL HEALTHY ANIMALS |
● 5-HT3R blockade increases DNIC analgesia magnitude and WDR inhibition [57,61] ● 5-HT7R blockade abolishes DNIC analgesia [134] ● Spinal 5-HT1AR antagonism reduced DNIC analgesia [137] |
● a2AR blockade attenuates/abolishes DNIC analgesia and WDR inhibition [55,61,65,67,68,128,134,137,145] ● LC lesion (neurotoxin) abolishes DNIC analgesia [67] ● LC chemogenetic activation produces DNIC analgesia [66] ● A5-SC optoinhibition abolishes DNIC (WDR neuronal inhibition) [128] ● LC:SC optoactivation abolishes DNIC (WDR neuronal inhibition) through a1AR [104] |
● Systemic naloxone reverses DNIC analgesia induced by chemical but not electrical conditioning stimuli [145] ● Systemic and intracerebroventricular naloxone reduced DNIC analgesia [137] ● MOR activation at DRt increases DNIC analgesia [58] ● Naloxone at the DRt abolishes DNIC [63] |
| INFLAMMATORY PAIN | |||
|
Muscle inflammation DNIC was enhanced and similar in acute and chronic phases of inflammation |
● Systemic naloxone abolished DNIC analgesia ● Naloxone into the DRt abolished DNIC analgesia ● Naloxone into the RVM had no effect on DNIC analgesia [14] |
||
|
Early-stage osteoarthritis (Monoiodoacetate model) |
● Blockade of spinal 5-HT7R partially reduced DNIC (WDR neuronal inhibition) [55] | ● Blockade of spinal a2AR abolished DNIC (WDR neuronal inhibition) [55] | |
|
Late-stage osteoarthritis (Monoiodoacetate model) Loss/attenuation of DNIC analgesia or WDR neuronal inhibition |
● Activation of spinal 5-HT7R restored DNIC (WDR neuronal inhibition) [55] | ● Activation of spinal a2AR restored the DNIC (WDR neuronal inhibition)[55] | |
| ● 5-HT7R levels unchanged in the dorsal horn and lumbar dorsal root ganglia [55] | ● a2AR levels unchanged in the dorsal horn and lumbar dorsal root ganglia [55] | ||
| ● Duloxetine improved DNIC analgesia [65] | |||
| ● Tapentadol restored the DNIC (WDR neuronal inhibition) [55] | |||
|
Intermediate stage of monoarthritis (CFA model) Magnitude of DNIC analgesia peaked at an intermediate time point |
● No changes in spinal levels of DBH ● No changes in spinal NA levels [56] |
||
|
Late stage monoarthritis (CFA model) Loss of DNIC analgesia |
● Increased spinal 5-HT levels [57] ● Blockade of spinal 5-HT3R restored DNIC analgesia [57] ● Increased spinal 5-HT3R expression [57] ● Increased RVM serotonergic activity (pERKs1/2 + TPH labelling) [57]. |
● Decreased spinal NA levels ● Increased spinal levels of DBH [56] ● Spinal a2AR potentiated [56] ● No changes in the spinal a2AR expression [56] ● Increased LC neuronal activity (pERKs1/2 labelling) ● Increased neuronal activity (pERKs1/2 labelling) in brain areas connected with the LC involved in the affective component of pain [56]. |
● MOR activation at DRt produces DNIC hyperalgesia ● Blockade of MOR coupling to the excitatory Gs protein at the DRt restores DNIC analgesia [58] ● Decreased levels of MOR and increased pMOR at the DRt ● Increased levels of pCREB at the DRt [58] |
| PERIPHERAL NEUROPATHY | |||
|
Spinal nerve ligation Loss of DNIC analgesia and WDR neuronal inhibition |
● 5-HT3R blockade restored DNIC (inhibition of WDR neurons) [61] ● Systemic citalopram and fluoxetine yielded no results ● Spinal application of citalopram and fluoxetine restored DNIC (inhibition of WDR neurons) through 5-HT7R and a2AR [60]. |
● Reboxetine restored DNIC (inhibition of WDR neurons) [61] | ● Naloxone into the DRt had no effects on DNIC inhibition of WDR neurons [63] ● Systemic KOR blockade restored DNIC analgesia [64] ● KOR blockade at the central nucleus of the amygdala restored DNIC analgesia and WDR neuronal inhibition [64] ● Morphine at the ipsilateral central nucleus of the amygdala restored DNIC analgesia [62] |
| ● Systemic KOR blockade prevented the loss of DNIC analgesia [17] | |||
|
Partial sciatic nerve ligation Attenuation of DNIC analgesia |
● Duloxetine improved DNIC analgesia [65] | ||
|
Chronic constriction injury of the infraorbital nerve Loss of DNIC analgesia in females |
● Tapentadol restored DNIC (inhibition of WDR neurons) [61] | ||
|
TRAUMATIC BRAIN INJURY DNIC analgesia impaired |
● Spinal depletion of 5-HT fails to restore DNIC [67] | ● LC chemogenetic activation restores DNIC through a1AR [66] | |
| ● 5-HT3R blockade fails to restore DNIC [68] | ● Reduced spinal a2AR sensitivity [68] | ||
| ● Systemic escitalopram restores DNIC [67,68] ● Escitalopram restores DNIC; α2AR signaling is not involved [67] ● Increased spinal 5-HT levels [68] |
● Reboxetine fails to restore DNIC analgesia [67,68] ● Unchanged spinal NA levels [68] |
||
| ● Duloxetine restores DNIC [67,68] | |||
|
MEDICATION OVERUSE-INDUCED MIGRAINE Loss of DNIC analgesia/ inhibition of medullary dorsal horn neurons |
● Continuous exposure to a low dose of the 5-HT1R agonist sumatriptan did not cause loss of DNIC analgesia [138] ● Continuous exposure to a high dose of sumatriptan followed by noxious stimulation induced loss of DNIC analgesia two weeks after treatment cessation [138] |
● Continuous exposure to morphine caused opioid-induced hyperalgesia (OIH) and abolished DNIC analgesia both during and upon cessation of OIH manifestation [138] ● Continuous exposure to morphine abolished DNIC and inactivation of the RVM restored DNIC [156] |
|
5. Is DNIC Only a Descending INHIBITORY/ANALGESIC Mechanism?
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le Bars, D.; Chitour, D.; Kraus, E.; Clot, A.M.; Dickenson, A.H.; Besson, J.M. The effect of systemic morphine upon diffuse noxious inhibitory controls (DNIC) in the rat: evidence for a lifting of certain descending inhibitory controls of dorsal horn convergent neurones. Brain Res 1981, 215, 257-274. [CrossRef]
- Le Bars, D.; Chitour, D.; Kraus, E.; Dickenson, A.H.; Besson, J.M. [Depression by morphine of various descending inhibitory controls modulating the transmission of nociceptive information at the spinal level in the rat]. C R Seances Acad Sci D 1980, 291, 433-436.
- Le Bars, D.; Chitour, D.; Kraus, E.; Dickenson, A.H.; Besson, J.M. Effect of naloxone upon diffuse noxious inhibitory controls (DNIC) in the rat. Brain Res 1981, 204, 387-402. [CrossRef]
- Le Bars, D.; Dickenson, A.H.; Besson, J.M. Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications. Pain 1979, 6, 305-327. [CrossRef]
- Le Bars, D.; Dickenson, A.H.; Besson, J.M. Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain 1979, 6, 283-304. [CrossRef]
- Nir, R.R.; Yarnitsky, D. Conditioned pain modulation. Curr Opin Support Palliat Care 2015, 9, 131-137. [CrossRef]
- Ramaswamy, S.; Wodehouse, T. Conditioned pain modulation-A comprehensive review. Neurophysiol Clin 2021, 51, 197-208. [CrossRef]
- Youssef, A.M.; Macefield, V.G.; Henderson, L.A. Cortical influences on brainstem circuitry responsible for conditioned pain modulation in humans. Hum Brain Mapp 2016, 37, 2630-2644. [CrossRef]
- Goubert, D.; Danneels, L.; Cagnie, B.; Van Oosterwijck, J.; Kolba, K.; Noyez, H.; Meeus, M. Effect of Pain Induction or Pain Reduction on Conditioned Pain Modulation in Adults: A Systematic Review. Pain Pract 2015, 15, 765-777. [CrossRef]
- Granovsky, Y. Conditioned pain modulation: a predictor for development and treatment of neuropathic pain. Curr Pain Headache Rep 2013, 17, 361. [CrossRef]
- Kucharczyk, M.W.; Valiente, D.; Bannister, K. Developments in Understanding Diffuse Noxious Inhibitory Controls: Pharmacological Evidence from Pre-Clinical Research. J Pain Res 2021, 14, 1083-1095. [CrossRef]
- Granot, M.; Weissman-Fogel, I.; Crispel, Y.; Pud, D.; Granovsky, Y.; Sprecher, E.; Yarnitsky, D. Determinants of endogenous analgesia magnitude in a diffuse noxious inhibitory control (DNIC) paradigm: do conditioning stimulus painfulness, gender and personality variables matter? Pain 2008, 136, 142-149. [CrossRef]
- Pud, D.; Sprecher, E.; Yarnitsky, D. Homotopic and heterotopic effects of endogenous analgesia in healthy volunteers. Neurosci Lett 2005, 380, 209-213. [CrossRef]
- de Resende, M.A.; Silva, L.F.; Sato, K.; Arendt-Nielsen, L.; Sluka, K.A. Blockade of opioid receptors in the medullary reticularis nucleus dorsalis, but not the rostral ventromedial medulla, prevents analgesia produced by diffuse noxious inhibitory control in rats with muscle inflammation. J Pain 2011, 12, 687-697. [CrossRef]
- Hermans, L.; Van Oosterwijck, J.; Goubert, D.; Goudman, L.; Crombez, G.; Calders, P.; Meeus, M. Inventory of Personal Factors Influencing Conditioned Pain Modulation in Healthy People: A Systematic Literature Review. Pain Pract 2016, 16, 758-769. [CrossRef]
- Edwards, R.R.; Fillingim, R.B.; Ness, T.J. Age-related differences in endogenous pain modulation: a comparison of diffuse noxious inhibitory controls in healthy older and younger adults. Pain 2003, 101, 155-165. [CrossRef]
- Fiatcoski, F.; Jesus, C.H.A.; de Melo Turnes, J.; Chichorro, J.G.; Kopruszinski, C.M. Sex differences in descending control of nociception (DCN) responses after chronic orofacial pain induction in rats and the contribution of kappa opioid receptors. Behav Brain Res 2024, 459, 114789. [CrossRef]
- Cormier, S.; Piche, M.; Rainville, P. Expectations modulate heterotopic noxious counter-stimulation analgesia. J Pain 2013, 14, 114-125. [CrossRef]
- Lindstedt, F.; Berrebi, J.; Greayer, E.; Lonsdorf, T.B.; Schalling, M.; Ingvar, M.; Kosek, E. Conditioned pain modulation is associated with common polymorphisms in the serotonin transporter gene. PLoS One 2011, 6, e18252. [CrossRef]
- Normand, E.; Potvin, S.; Gaumond, I.; Cloutier, G.; Corbin, J.F.; Marchand, S. Pain inhibition is deficient in chronic widespread pain but normal in major depressive disorder. J Clin Psychiatry 2011, 72, 219-224. [CrossRef]
- Nahman-Averbuch, H.; Nir, R.R.; Sprecher, E.; Yarnitsky, D. Psychological Factors and Conditioned Pain Modulation: A Meta-Analysis. Clin J Pain 2016, 32, 541-554. [CrossRef]
- Olesen, A.E.; Nielsen, L.M.; Feddersen, S.; Erlenwein, J.; Petzke, F.; Przemeck, M.; Christrup, L.L.; Drewes, A.M. Association Between Genetic Polymorphisms and Pain Sensitivity in Patients with Hip Osteoarthritis. Pain Pract 2018, 18, 587-596. [CrossRef]
- Fernandes, C.; Pidal-Miranda, M.; Samartin-Veiga, N.; Carrillo-de-la-Pena, M.T. Conditioned pain modulation as a biomarker of chronic pain: a systematic review of its concurrent validity. Pain 2019, 160, 2679-2690. [CrossRef]
- Granovsky, Y.; Yarnitsky, D. Personalized pain medicine: the clinical value of psychophysical assessment of pain modulation profile. Rambam Maimonides Med J 2013, 4, e0024. [CrossRef]
- Nuwailati, R.; Bobos, P.; Drangsholt, M.; Curatolo, M. Reliability of conditioned pain modulation in healthy individuals and chronic pain patients: a systematic review and meta-analysis. Scand J Pain 2022, 22, 262-278. [CrossRef]
- Dursteler, C.; Salazar, Y.; Rodriguez, U.; Pelfort, X.; Verdie, L.P. Conditioned pain modulation predicts persistent pain after knee replacement surgery. Pain Rep 2021, 6, e910. [CrossRef]
- Larsen, D.B.; Laursen, M.; Edwards, R.R.; Simonsen, O.; Arendt-Nielsen, L.; Petersen, K.K. The Combination of Preoperative Pain, Conditioned Pain Modulation, and Pain Catastrophizing Predicts Postoperative Pain 12 Months After Total Knee Arthroplasty. Pain Med 2021, 22, 1583-1590. [CrossRef]
- Kennedy, D.L.; Kemp, H.I.; Ridout, D.; Yarnitsky, D.; Rice, A.S.C. Reliability of conditioned pain modulation: a systematic review. Pain 2016, 157, 2410-2419. [CrossRef]
- King, C.D.; Wong, F.; Currie, T.; Mauderli, A.P.; Fillingim, R.B.; Riley, J.L., 3rd. Deficiency in endogenous modulation of prolonged heat pain in patients with Irritable Bowel Syndrome and Temporomandibular Disorder. Pain 2009, 143, 172-178. [CrossRef]
- Song, G.H.; Venkatraman, V.; Ho, K.Y.; Chee, M.W.; Yeoh, K.G.; Wilder-Smith, C.H. Cortical effects of anticipation and endogenous modulation of visceral pain assessed by functional brain MRI in irritable bowel syndrome patients and healthy controls. Pain 2006, 126, 79-90. [CrossRef]
- Nahman-Averbuch, H.; Granovsky, Y.; Coghill, R.C.; Yarnitsky, D.; Sprecher, E.; Weissman-Fogel, I. Waning of "conditioned pain modulation": a novel expression of subtle pronociception in migraine. Headache 2013, 53, 1104-1115. [CrossRef]
- Pielsticker, A.; Haag, G.; Zaudig, M.; Lautenbacher, S. Impairment of pain inhibition in chronic tension-type headache. Pain 2005, 118, 215-223. [CrossRef]
- Sandrini, G.; Rossi, P.; Milanov, I.; Serrao, M.; Cecchini, A.P.; Nappi, G. Abnormal modulatory influence of diffuse noxious inhibitory controls in migraine and chronic tension-type headache patients. Cephalalgia 2006, 26, 782-789. [CrossRef]
- Oono, Y.; Wang, K.; Baad-Hansen, L.; Futarmal, S.; Kohase, H.; Svensson, P.; Arendt-Nielsen, L. Conditioned pain modulation in temporomandibular disorders (TMD) pain patients. Exp Brain Res 2014, 232, 3111-3119. [CrossRef]
- Staud, R. Evidence for shared pain mechanisms in osteoarthritis, low back pain, and fibromyalgia. Curr Rheumatol Rep 2011, 13, 513-520. [CrossRef]
- Arendt-Nielsen, L.; Nie, H.; Laursen, M.B.; Laursen, B.S.; Madeleine, P.; Simonsen, O.H.; Graven-Nielsen, T. Sensitization in patients with painful knee osteoarthritis. Pain 2010, 149, 573-581. [CrossRef]
- Graven-Nielsen, T.; Wodehouse, T.; Langford, R.M.; Arendt-Nielsen, L.; Kidd, B.L. Normalization of widespread hyperesthesia and facilitated spatial summation of deep-tissue pain in knee osteoarthritis patients after knee replacement. Arthritis Rheum 2012, 64, 2907-2916. [CrossRef]
- Kosek, E.; Ordeberg, G. Lack of pressure pain modulation by heterotopic noxious conditioning stimulation in patients with painful osteoarthritis before, but not following, surgical pain relief. Pain 2000, 88, 69-78. [CrossRef]
- Lewis, G.N.; Rice, D.A.; McNair, P.J. Conditioned pain modulation in populations with chronic pain: a systematic review and meta-analysis. J Pain 2012, 13, 936-944. [CrossRef]
- Grosberg, B.; Rabany, L.; Lin, T.; Harris, D.; Vizel, M.; Ironi, A.; O'Carroll, C.P.; Schim, J. Safety and efficacy of remote electrical neuromodulation for the acute treatment of chronic migraine: an open-label study. Pain Rep 2021, 6, e966. [CrossRef]
- Yarnitsky, D.; Granot, M.; Nahman-Averbuch, H.; Khamaisi, M.; Granovsky, Y. Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain 2012, 153, 1193-1198. [CrossRef]
- Niesters, M.; Proto, P.L.; Aarts, L.; Sarton, E.Y.; Drewes, A.M.; Dahan, A. Tapentadol potentiates descending pain inhibition in chronic pain patients with diabetic polyneuropathy. Br J Anaesth 2014, 113, 148-156. [CrossRef]
- Nahman-Averbuch, H.; Yarnitsky, D.; Granovsky, Y.; Sprecher, E.; Steiner, M.; Tzuk-Shina, T.; Pud, D. Pronociceptive pain modulation in patients with painful chemotherapy-induced polyneuropathy. J Pain Symptom Manage 2011, 42, 229-238. [CrossRef]
- Gruener, H.; Zeilig, G.; Laufer, Y.; Blumen, N.; Defrin, R. Differential pain modulation properties in central neuropathic pain after spinal cord injury. Pain 2016, 157, 1415-1424. [CrossRef]
- Gil-Ugidos, A.; Vazquez-Millan, A.; Samartin-Veiga, N.; Carrillo-de-la-Pena, M.T. Conditioned pain modulation (CPM) paradigm type affects its sensitivity as a biomarker of fibromyalgia. Sci Rep 2024, 14, 7798. [CrossRef]
- Arant, K.R.; Katz, J.N.; Neogi, T. Quantitative sensory testing: identifying pain characteristics in patients with osteoarthritis. Osteoarthritis Cartilage 2022, 30, 17-31. [CrossRef]
- Granovsky, Y.; Shafran Topaz, L.; Laycock, H.; Zubiedat, R.; Crystal, S.; Buxbaum, C.; Bosak, N.; Hadad, R.; Domany, E.; Khamaisi, M.; et al. Conditioned pain modulation is more efficient in patients with painful diabetic polyneuropathy than those with nonpainful diabetic polyneuropathy. Pain 2022, 163, 827-833. [CrossRef]
- Neelapala, Y.V.R.; Bhagat, M.; Frey-Law, L. Conditioned Pain Modulation in Chronic Low Back Pain: A Systematic Review of Literature. Clin J Pain 2020, 36, 135-141. [CrossRef]
- Nahman-Averbuch, H.; Callahan, D.; Darken, R.; Haroutounian, S. Harnessing the conditioned pain modulation response in migraine diagnosis, outcome prediction, and treatment-A narrative review. Headache 2023, 63, 1167-1177. [CrossRef]
- Williams, A.E.; Miller, M.M.; Bartley, E.J.; McCabe, K.M.; Kerr, K.L.; Rhudy, J.L. Impairment of Inhibition of Trigeminal Nociception via Conditioned Pain Modulation in Persons with Migraine Headaches. Pain Med 2019, 20, 1600-1610. [CrossRef]
- Guy, N.; Voisin, D.; Mulliez, A.; Clavelou, P.; Dallel, R. Medication overuse reinstates conditioned pain modulation in women with migraine. Cephalalgia 2018, 38, 1148-1158. [CrossRef]
- Kisler, L.B.; Weissman-Fogel, I.; Coghill, R.C.; Sprecher, E.; Yarnitsky, D.; Granovsky, Y. Individualization of Migraine Prevention: A Randomized Controlled Trial of Psychophysical-based Prediction of Duloxetine Efficacy. Clin J Pain 2019, 35, 753-765. [CrossRef]
- Granovsky, Y.; Nahman-Averbuch, H.; Khamaisi, M.; Granot, M. Efficient conditioned pain modulation despite pain persistence in painful diabetic neuropathy. Pain Rep 2017, 2, e592. [CrossRef]
- Yarnitsky, D.; Bouhassira, D.; Drewes, A.M.; Fillingim, R.B.; Granot, M.; Hansson, P.; Landau, R.; Marchand, S.; Matre, D.; Nilsen, K.B.; et al. Recommendations on practice of conditioned pain modulation (CPM) testing. Eur J Pain 2015, 19, 805-806. [CrossRef]
- Lockwood, S.M.; Bannister, K.; Dickenson, A.H. An investigation into the noradrenergic and serotonergic contributions of diffuse noxious inhibitory controls in a monoiodoacetate model of osteoarthritis. J Neurophysiol 2019, 121, 96-104. [CrossRef]
- Pereira-Silva, R.; Costa-Pereira, J.T.; Alonso, R.; Serrao, P.; Martins, I.; Neto, F.L. Attenuation of the Diffuse Noxious Inhibitory Controls in Chronic Joint Inflammatory Pain Is Accompanied by Anxiodepressive-Like Behaviors and Impairment of the Descending Noradrenergic Modulation. Int J Mol Sci 2020, 21. [CrossRef]
- Pereira-Silva, R.; Serrao, P.; Lourenca Neto, F.; Martins, I. Diffuse noxious inhibitory controls in chronic joint inflammatory Pain: Study of the descending serotonergic modulation mediated through 5HT3 receptors. Neurobiol Pain 2023, 13, 100123. [CrossRef]
- Pereira-Silva, R.; Teixeira-Pinto, A.; Neto, F.L.; Martins, I. micro-opioid receptor activation at the dorsal reticular nucleus shifts diffuse noxious inhibitory controls to hyperalgesia in chronic joint pain in male rats. Anesthesiology 2024. [CrossRef]
- Danziger, N.; Weil-Fugazza, J.; Le Bars, D.; Bouhassira, D. Alteration of descending modulation of nociception during the course of monoarthritis in the rat. J Neurosci 1999, 19, 2394-2400. [CrossRef]
- Bannister, K.; Lockwood, S.; Goncalves, L.; Patel, R.; Dickenson, A.H. An investigation into the inhibitory function of serotonin in diffuse noxious inhibitory controls in the neuropathic rat. Eur J Pain 2017, 21, 750-760. [CrossRef]
- Bannister, K.; Patel, R.; Goncalves, L.; Townson, L.; Dickenson, A.H. Diffuse noxious inhibitory controls and nerve injury: restoring an imbalance between descending monoamine inhibitions and facilitations. Pain 2015, 156, 1803-1811. [CrossRef]
- Navratilova, E.; Nation, K.; Remeniuk, B.; Neugebauer, V.; Bannister, K.; Dickenson, A.H.; Porreca, F. Selective modulation of tonic aversive qualities of neuropathic pain by morphine in the central nucleus of the amygdala requires endogenous opioid signaling in the anterior cingulate cortex. Pain 2020, 161, 609-618. [CrossRef]
- Patel, R.; Dickenson, A.H. A study of cortical and brainstem mechanisms of diffuse noxious inhibitory controls in anaesthetised normal and neuropathic rats. Eur J Neurosci 2020, 51, 952-962. [CrossRef]
- Phelps, C.E.; Navratilova, E.; Dickenson, A.H.; Porreca, F.; Bannister, K. Kappa opioid signaling in the right central amygdala causes hind paw specific loss of diffuse noxious inhibitory controls in experimental neuropathic pain. Pain 2019, 160, 1614-1621. [CrossRef]
- Yoneda, S.; Kasai, E.; Matsuo, M.; Tamano, R.; Sakurai, Y.; Asaki, T.; Fujita, M. Duloxetine ameliorates the impairment of diffuse noxious inhibitory control in rat models of peripheral neuropathic pain and knee osteoarthritis pain. Neurosci Lett 2020, 729, 134990. [CrossRef]
- Irvine, K.A.; Peters, C.M.; Vazey, E.M.; Ferguson, A.R.; Clark, J.D. Activation of the Locus Coeruleus Mediated by Designer Receptor Exclusively Activated by Designer Drug Restores Descending Nociceptive Inhibition after Traumatic Brain Injury in Rats. J Neurotrauma 2022, 39, 964-978. [CrossRef]
- Irvine, K.A.; Sahbaie, P.; Ferguson, A.R.; Clark, J.D. Loss of diffuse noxious inhibitory control after traumatic brain injury in rats: A chronic issue. Exp Neurol 2020, 333, 113428. [CrossRef]
- Sahbaie, P.; Irvine, K.A.; Shi, X.Y.; Clark, J.D. Monoamine control of descending pain modulation after mild traumatic brain injury. Sci Rep 2022, 12, 16359. [CrossRef]
- Melzack, R. Pain and the neuromatrix in the brain. J Dent Educ 2001, 65, 1378-1382.
- Millan, M.J. Descending control of pain. Prog Neurobiol 2002, 66, 355-474. [CrossRef]
- Bagley, E.E.; Ingram, S.L. Endogenous opioid peptides in the descending pain modulatory circuit. Neuropharmacology 2020, 173, 108131.
- Costa, A.R.; Tavares, I.; Martins, I. How do opioids control pain circuits in the brainstem during opioid-induced disorders and in chronic pain? Implications for the treatment of chronic pain. Pain 2024, 165, 324-336. [CrossRef]
- Martins, I.; Carvalho, P.; de Vries, M.G.; Teixeira-Pinto, A.; Wilson, S.P.; Westerink, B.H.; Tavares, I. Increased noradrenergic neurotransmission to a pain facilitatory area of the brain is implicated in facilitation of chronic pain. Anesthesiology 2015, 123, 642-653. [CrossRef]
- Martins, I.; Costa-Araujo, S.; Fadel, J.; Wilson, S.P.; Lima, D.; Tavares, I. Reversal of neuropathic pain by HSV-1-mediated decrease of noradrenaline in a pain facilitatory area of the brain. Pain 2010, 151, 137-145. [CrossRef]
- Martins, I.; de Vries, M.G.; Teixeira-Pinto, A.; Fadel, J.; Wilson, S.P.; Westerink, B.H.; Tavares, I. Noradrenaline increases pain facilitation from the brain during inflammatory pain. Neuropharmacology 2013, 71, 299-307. [CrossRef]
- Camarena-Delgado, C.; Llorca-Torralba, M.; Suarez-Pereira, I.; Bravo, L.; Lopez-Martin, C.; Garcia-Partida, J.A.; Mico, J.A.; Berrocoso, E. Nerve injury induces transient locus coeruleus activation over time: role of the locus coeruleus-dorsal reticular nucleus pathway. Pain 2022, 163, 943-954. [CrossRef]
- Hirschberg, S.; Li, Y.; Randall, A.; Kremer, E.J.; Pickering, A.E. Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. Elife 2017, 6. [CrossRef]
- Martins, I.; Tavares, I. Reticular Formation and Pain: The Past and the Future. Front Neuroanat 2017, 11, 51. [CrossRef]
- Lima, D.; Almeida, A. The medullary dorsal reticular nucleus as a pronociceptive centre of the pain control system. Prog Neurobiol 2002, 66, 81-108. [CrossRef]
- Suarez-Pereira, I.; Llorca-Torralba, M.; Bravo, L.; Camarena-Delgado, C.; Soriano-Mas, C.; Berrocoso, E. The Role of the Locus Coeruleus in Pain and Associated Stress-Related Disorders. Biol Psychiatry 2022, 91, 786-797. [CrossRef]
- Martins, I.; Pinto, M.; Wilson, S.P.; Lima, D.; Tavares, I. Dynamic of migration of HSV-1 from a medullary pronociceptive centre: antinociception by overexpression of the preproenkephalin transgene. Eur J Neurosci 2008, 28, 2075-2083. [CrossRef]
- Pinto, M.; Castro, A.R.; Tshudy, F.; Wilson, S.P.; Lima, D.; Tavares, I. Opioids modulate pain facilitation from the dorsal reticular nucleus. Mol Cell Neurosci 2008, 39, 508-518. [CrossRef]
- Pinto, M.; Sousa, M.; Lima, D.; Tavares, I. Participation of mu-opioid, GABA(B), and NK1 receptors of major pain control medullary areas in pathways targeting the rat spinal cord: implications for descending modulation of nociceptive transmission. J Comp Neurol 2008, 510, 175-187. [CrossRef]
- Costa, A.R.; Carvalho, P.; Flik, G.; Wilson, S.P.; Reguenga, C.; Martins, I.; Tavares, I. Neuropathic Pain Induced Alterations in the Opioidergic Modulation of a Descending Pain Facilitatory Area of the Brain. Front Cell Neurosci 2019, 13, 287. [CrossRef]
- Costa, A.R.; Sousa, M.; Wilson, S.P.; Reguenga, C.; Teixeira-Pinto, A.; Tavares, I.; Martins, I. Shift of micro-opioid Receptor Signaling in the Dorsal Reticular Nucleus Is Implicated in Morphine-induced Hyperalgesia in Male Rats. Anesthesiology 2020, 133, 628-644. [CrossRef]
- Oliva, V.; Hartley-Davies, R.; Moran, R.; Pickering, A.E.; Brooks, J.C. Simultaneous brain, brainstem, and spinal cord pharmacological-fMRI reveals involvement of an endogenous opioid network in attentional analgesia. Elife 2022, 11. [CrossRef]
- Tracey, I. Neuroimaging mechanisms in pain: from discovery to translation. Pain 2017, 158 Suppl 1, S115-S122. [CrossRef]
- Tavares, I.; Costa-Pereira, J.T.; Martins, I. Monoaminergic and Opioidergic Modulation of Brainstem Circuits: New Insights Into the Clinical Challenges of Pain Treatment? Front Pain Res (Lausanne) 2021, 2, 696515. [CrossRef]
- De Preter, C.C.; Heinricher, M.M. The 'in's and out's' of descending pain modulation from the rostral ventromedial medulla. Trends Neurosci 2024, 47, 447-460. [CrossRef]
- Ossipov, M.H.; Morimura, K.; Porreca, F. Descending pain modulation and chronification of pain. Curr Opin Support Palliat Care 2014, 8, 143-151. [CrossRef]
- Dogrul, B.N.; Machado Kopruszinski, C.; Dolatyari Eslami, M.; Watanabe, M.; Luo, S.; Moreira de Souza, L.H.; Vizin, R.L.; Yue, X.; Palmiter, R.D.; Navratilova, E.; et al. Descending facilitation from rostral ventromedial medulla mu opioid receptor-expressing neurons is necessary for maintenance of sensory and affective dimensions of chronic neuropathic pain. Pain 2024. [CrossRef]
- Francois, A.; Low, S.A.; Sypek, E.I.; Christensen, A.J.; Sotoudeh, C.; Beier, K.T.; Ramakrishnan, C.; Ritola, K.D.; Sharif-Naeini, R.; Deisseroth, K.; et al. A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins. Neuron 2017, 93, 822-839 e826. [CrossRef]
- Zhang, Y.; Zhao, S.; Rodriguez, E.; Takatoh, J.; Han, B.-X.; Zhou, X.; Wang, F. Identifying local and descending inputs for primary sensory neurons. The Journal of clinical investigation 2015, 125, 3782-3794.
- Fatt, M.P.; Zhang, M.D.; Kupari, J.; Altinkok, M.; Yang, Y.; Hu, Y.; Svenningsson, P.; Ernfors, P. Morphine-responsive neurons that regulate mechanical antinociception. Science 2024, 385, eado6593. [CrossRef]
- Pertovaara, A. The noradrenergic pain regulation system: a potential target for pain therapy. Eur J Pharmacol 2013, 716, 2-7. [CrossRef]
- Pan, Y.Z.; Li, D.P.; Chen, S.R.; Pan, H.L. Activation of mu-opioid receptors excites a population of locus coeruleus-spinal neurons through presynaptic disinhibition. Brain Res 2004, 997, 67-78. [CrossRef]
- Howorth, P.W.; Thornton, S.R.; O'Brien, V.; Smith, W.D.; Nikiforova, N.; Teschemacher, A.G.; Pickering, A.E. Retrograde viral vector-mediated inhibition of pontospinal noradrenergic neurons causes hyperalgesia in rats. J Neurosci 2009, 29, 12855-12864. [CrossRef]
- Kim, J.H.; Gangadharan, G.; Byun, J.; Choi, E.J.; Lee, C.J.; Shin, H.S. Yin-and-yang bifurcation of opioidergic circuits for descending analgesia at the midbrain of the mouse. Proc Natl Acad Sci U S A 2018, 115, 11078-11083. [CrossRef]
- Al-Hasani, R.; Bruchas, M.R. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 2011, 115, 1363-1381. [CrossRef]
- Chakrabarti, S.; Liu, N.J.; Gintzler, A.R. Relevance of Mu-Opioid Receptor Splice Variants and Plasticity of Their Signaling Sequelae to Opioid Analgesic Tolerance. Cell Mol Neurobiol 2021, 41, 855-862. [CrossRef]
- Marrone, G.F.; Le Rouzic, V.; Varadi, A.; Xu, J.; Rajadhyaksha, A.M.; Majumdar, S.; Pan, Y.X.; Pasternak, G.W. Genetic dissociation of morphine analgesia from hyperalgesia in mice. Psychopharmacology (Berl) 2017, 234, 1891-1900. [CrossRef]
- Wang, H.Y.; Friedman, E.; Olmstead, M.C.; Burns, L.H. Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor-G protein coupling and Gbetagamma signaling. Neuroscience 2005, 135, 247-261. [CrossRef]
- Pertovaara, A. Noradrenergic pain modulation. Prog Neurobiol 2006, 80, 53-83. [CrossRef]
- Kucharczyk, M.W.; Di Domenico, F.; Bannister, K. Distinct brainstem to spinal cord noradrenergic pathways inversely regulate spinal neuronal activity. Brain 2022, 145, 2293-2300. [CrossRef]
- Cortes-Altamirano, J.L.; Olmos-Hernandez, A.; Jaime, H.B.; Carrillo-Mora, P.; Bandala, C.; Reyes-Long, S.; Alfaro-Rodriguez, A. Review: 5-HT1, 5-HT2, 5-HT3 and 5-HT7 Receptors and their Role in the Modulation of Pain Response in the Central Nervous System. Curr Neuropharmacol 2018, 16, 210-221. [CrossRef]
- Tao, Z.Y.; Wang, P.X.; Wei, S.Q.; Traub, R.J.; Li, J.F.; Cao, D.Y. The Role of Descending Pain Modulation in Chronic Primary Pain: Potential Application of Drugs Targeting Serotonergic System. Neural Plast 2019, 2019, 1389296. [CrossRef]
- Adell, A.; Garcia-Marquez, C.; Armario, A.; Gelpi, E. Chronic stress increases serotonin and noradrenaline in rat brain and sensitizes their responses to a further acute stress. J Neurochem 1988, 50, 1678-1681. [CrossRef]
- Villanueva, L.; Cadden, S.W.; Le Bars, D. Evidence that diffuse noxious inhibitory controls (DNIC) are medicated by a final post-synaptic inhibitory mechanism. Brain Res 1984, 298, 67-74. [CrossRef]
- Okada, K.; Oshima, M.; Kawakita, K. Examination of the afferent fiber responsible for the suppression of jaw-opening reflex in heat, cold, and manual acupuncture stimulation in rats. Brain Res 1996, 740, 201-207. [CrossRef]
- Bouhassira, D.; Villanueva, L.; Bing, Z.; le Bars, D. Involvement of the subnucleus reticularis dorsalis in diffuse noxious inhibitory controls in the rat. Brain Res 1992, 595, 353-357. [CrossRef]
- Roby-Brami, A.; Bussel, B.; Willer, J.C.; Le Bars, D. An electrophysiological investigation into the pain-relieving effects of heterotopic nociceptive stimuli. Probable involvement of a supraspinal loop. Brain 1987, 110 ( Pt 6), 1497-1508. [CrossRef]
- van Wijk, G.; Veldhuijzen, D.S. Perspective on diffuse noxious inhibitory controls as a model of endogenous pain modulation in clinical pain syndromes. J Pain 2010, 11, 408-419. [CrossRef]
- Bester, H.; Chapman, V.; Besson, J.M.; Bernard, J.F. Physiological properties of the lamina I spinoparabrachial neurons in the rat. J Neurophysiol 2000, 83, 2239-2259. [CrossRef]
- Lapirot, O.; Chebbi, R.; Monconduit, L.; Artola, A.; Dallel, R.; Luccarini, P. NK1 receptor-expressing spinoparabrachial neurons trigger diffuse noxious inhibitory controls through lateral parabrachial activation in the male rat. Pain 2009, 142, 245-254. [CrossRef]
- Suzuki, R.; Morcuende, S.; Webber, M.; Hunt, S.P.; Dickenson, A.H. Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways. Nat Neurosci 2002, 5, 1319-1326. [CrossRef]
- Castro, A.R.; Pinto, M.; Lima, D.; Tavares, I. Nociceptive spinal neurons expressing NK1 and GABAB receptors are located in lamina I. Brain Res 2004, 1003, 77-85. [CrossRef]
- Pauli, J.L.; Chen, J.Y.; Basiri, M.L.; Park, S.; Carter, M.E.; Sanz, E.; McKnight, G.S.; Stuber, G.D.; Palmiter, R.D. Molecular and anatomical characterization of parabrachial neurons and their axonal projections. Elife 2022, 11. [CrossRef]
- Conte, D.; Legg, E.D.; McCourt, A.C.; Silajdzic, E.; Nagy, G.G.; Maxwell, D.J. Transmitter content, origins and connections of axons in the spinal cord that possess the serotonin (5-hydroxytryptamine) 3 receptor. Neuroscience 2005, 134, 165-173. [CrossRef]
- Le Bars, D.; Villanueva, L.; Bouhassira, D.; Willer, J.C. Diffuse noxious inhibitory controls (DNIC) in animals and in man. Patol Fiziol Eksp Ter 1992, 55-65.
- Villanueva, L.; Le Bars, D. The activation of bulbo-spinal controls by peripheral nociceptive inputs: diffuse noxious inhibitory controls. Biol Res 1995, 28, 113-125.
- Villanueva, L.; Peschanski, M.; Calvino, B.; Le Bars, D. Ascending pathways in the spinal cord involved in triggering of diffuse noxious inhibitory controls in the rat. J Neurophysiol 1986, 55, 34-55. [CrossRef]
- Bouhassira, D.; Bing, Z.; Le Bars, D. Studies of the brain structures involved in diffuse noxious inhibitory controls: the mesencephalon. J Neurophysiol 1990, 64, 1712-1723. [CrossRef]
- Bouhassira, D.; Chitour, D.; Villanueva, L.; Le Bars, D. Morphine and diffuse noxious inhibitory controls in the rat: effects of lesions of the rostral ventromedial medulla. Eur J Pharmacol 1993, 232, 207-215. [CrossRef]
- Chitour, D.; Dickenson, A.H.; Le Bars, D. Pharmacological evidence for the involvement of serotonergic mechanisms in diffuse noxious inhibitory controls (DNIC). Brain Res 1982, 236, 329-337. [CrossRef]
- Dickenson, A.H.; Le Bars, D. Morphine microinjections into periaqueductal grey matter of the rat: effects on dorsal horn neuronal responses to C-fibre activity and diffuse noxious inhibitory controls. Life Sci 1983, 33 Suppl 1, 549-552. [CrossRef]
- Dickenson, A.H.; Rivot, J.P.; Chaouch, A.; Besson, J.M.; Le Bars, D. Diffuse noxious inhibitory controls (DNIC) in the rat with or without pCPA pretreatment. Brain Res 1981, 216, 313-321. [CrossRef]
- Chebbi, R.; Boyer, N.; Monconduit, L.; Artola, A.; Luccarini, P.; Dallel, R. The nucleus raphe magnus OFF-cells are involved in diffuse noxious inhibitory controls. Exp Neurol 2014, 256, 39-45. [CrossRef]
- Kucharczyk, M.W.; Di Domenico, F.; Bannister, K. A critical brainstem relay for mediation of diffuse noxious inhibitory controls. Brain 2023, 146, 2259-2267. [CrossRef]
- Le Bars, D. The whole body receptive field of dorsal horn multireceptive neurones. Brain Res Brain Res Rev 2002, 40, 29-44. [CrossRef]
- Villanueva, L.; Bouhassira, D.; Le Bars, D. The medullary subnucleus reticularis dorsalis (SRD) as a key link in both the transmission and modulation of pain signals. Pain 1996, 67, 231-240. [CrossRef]
- Damien, J.; Colloca, L.; Bellei-Rodriguez, C.E.; Marchand, S. Pain Modulation: From Conditioned Pain Modulation to Placebo and Nocebo Effects in Experimental and Clinical Pain. Int Rev Neurobiol 2018, 139, 255-296. [CrossRef]
- Moont, R.; Crispel, Y.; Lev, R.; Pud, D.; Yarnitsky, D. Temporal changes in cortical activation during conditioned pain modulation (CPM), a LORETA study. Pain 2011, 152, 1469-1477. [CrossRef]
- Sirucek, L.; Ganley, R.P.; Zeilhofer, H.U.; Schweinhardt, P. Diffuse noxious inhibitory controls and conditioned pain modulation: a shared neurobiology within the descending pain inhibitory system? Pain 2023, 164, 463-468. [CrossRef]
- Nemoto, W.; Kozak, D.; Sotocinal, S.G.; Tansley, S.; Bannister, K.; Mogil, J.S. Monoaminergic mediation of hyperalgesic and analgesic descending control of nociception in mice. Pain 2023, 164, 1096-1105. [CrossRef]
- Costa-Pereira, J.T.; Serrao, P.; Martins, I.; Tavares, I. Serotoninergic pain modulation from the rostral ventromedial medulla (RVM) in chemotherapy-induced neuropathy: The role of spinal 5-HT3 receptors. Eur J Neurosci 2020, 51, 1756-1769. [CrossRef]
- Kraus, E.; Besson, J.M.; Le Bars, D. Behavioral model for diffuse noxious inhibitory controls (DNIC): potentiation by 5-hydroxytryptophan. Brain Res 1982, 231, 461-465. [CrossRef]
- Itomi, Y.; Tsukimi, Y.; Kawamura, T. Impaired diffuse noxious inhibitory controls in specific alternation of rhythm in temperature-stressed rats. Eur J Pharmacol 2016, 784, 61-68. [CrossRef]
- Nation, K.M.; Dodick, D.W.; Navratilova, E.; Porreca, F. Sustained exposure to acute migraine medications combined with repeated noxious stimulation dysregulates descending pain modulatory circuits: Relevance to medication overuse headache. Cephalalgia 2019, 39, 617-625. [CrossRef]
- Brenchat, A.; Nadal, X.; Romero, L.; Ovalle, S.; Muro, A.; Sanchez-Arroyos, R.; Portillo-Salido, E.; Pujol, M.; Montero, A.; Codony, X.; et al. Pharmacological activation of 5-HT7 receptors reduces nerve injury-induced mechanical and thermal hypersensitivity. Pain 2010, 149, 483-494. [CrossRef]
- Alhaider, A.A.; Lei, S.Z.; Wilcox, G.L. Spinal 5-HT3 receptor-mediated antinociception: possible release of GABA. J Neurosci 1991, 11, 1881-1888. [CrossRef]
- Ali, Z.; Wu, G.; Kozlov, A.; Barasi, S. The role of 5HT3 in nociceptive processing in the rat spinal cord: results from behavioural and electrophysiological studies. Neurosci Lett 1996, 208, 203-207. [CrossRef]
- Green, M.G.; Scarth, J.; Dickenson, A. An excitatory role for 5-HT in spinal inflammatory nociceptive transmission; state-dependent actions via dorsal horn 5-HT(3) receptors in the anaesthetized rat. Pain 2000, 89, 81-88. [CrossRef]
- Bétry, C.; Etiévant, A.; Oosterhof, C.; Ebert, B.; Sanchez, C.; Haddjeri, N. Role of 5-HT3 Receptors in the Antidepressant Response. Pharmaceuticals 2011, 4, 603-629.
- Okada, M.; Okubo, R.; Fukuyama, K. Vortioxetine Subchronically Activates Serotonergic Transmission via Desensitization of Serotonin 5-HT(1A) Receptor with 5-HT(3) Receptor Inhibition in Rats. Int J Mol Sci 2019, 20. [CrossRef]
- Wen, Y.R.; Wang, C.C.; Yeh, G.C.; Hsu, S.F.; Huang, Y.J.; Li, Y.L.; Sun, W.Z. DNIC-mediated analgesia produced by a supramaximal electrical or a high-dose formalin conditioning stimulus: roles of opioid and alpha2-adrenergic receptors. J Biomed Sci 2010, 17, 19. [CrossRef]
- De Felice, M.; Ossipov, M.H. Cortical and subcortical modulation of pain. Pain Manag 2016, 6, 111-120. [CrossRef]
- Ossipov, M.H.; Dussor, G.O.; Porreca, F. Central modulation of pain. J Clin Invest 2010, 120, 3779-3787. [CrossRef]
- Baba, H.; Goldstein, P.A.; Okamoto, M.; Kohno, T.; Ataka, T.; Yoshimura, M.; Shimoji, K. Norepinephrine facilitates inhibitory transmission in substantia gelatinosa of adult rat spinal cord (part 2): effects on somatodendritic sites of GABAergic neurons. Anesthesiology 2000, 92, 485-492. [CrossRef]
- Baba, H.; Shimoji, K.; Yoshimura, M. Norepinephrine facilitates inhibitory transmission in substantia gelatinosa of adult rat spinal cord (part 1): effects on axon terminals of GABAergic and glycinergic neurons. Anesthesiology 2000, 92, 473-484. [CrossRef]
- Gassner, M.; Ruscheweyh, R.; Sandkuhler, J. Direct excitation of spinal GABAergic interneurons by noradrenaline. Pain 2009, 145, 204-210. [CrossRef]
- Budai, D.; Harasawa, I.; Fields, H.L. Midbrain periaqueductal gray (PAG) inhibits nociceptive inputs to sacral dorsal horn nociceptive neurons through alpha2-adrenergic receptors. J Neurophysiol 1998, 80, 2244-2254. [CrossRef]
- Le Bars, D.; Willer, J.C.; De Broucker, T. Morphine blocks descending pain inhibitory controls in humans. Pain 1992, 48, 13-20. [CrossRef]
- Willer, J.C.; Le Bars, D.; De Broucker, T. Diffuse noxious inhibitory controls in man: involvement of an opioidergic link. Eur J Pharmacol 1990, 182, 347-355. [CrossRef]
- Bouhassira, D.; Villanueva, L.; Le Bars, D. Intracerebroventricular morphine decreases descending inhibitions acting on lumbar dorsal horn neuronal activities related to pain in the rat. J Pharmacol Exp Ther 1988, 247, 332-342.
- Duale, C.; Molat, J.L.; Dallel, R. Morphine microinjected into the nucleus raphe magnus does not block the activity of spinal trigeminal nucleus oralis convergent neurons in the rat. Brain Res 1998, 803, 208-211. [CrossRef]
- Okada-Ogawa, A.; Porreca, F.; Meng, I.D. Sustained morphine-induced sensitization and loss of diffuse noxious inhibitory controls in dura-sensitive medullary dorsal horn neurons. J Neurosci 2009, 29, 15828-15835. [CrossRef]
- Navratilova, E.; Ji, G.; Phelps, C.; Qu, C.; Hein, M.; Yakhnitsa, V.; Neugebauer, V.; Porreca, F. Kappa opioid signaling in the central nucleus of the amygdala promotes disinhibition and aversiveness of chronic neuropathic pain. Pain 2019, 160, 824-832. [CrossRef]
- Bee, L.A.; Bannister, K.; Rahman, W.; Dickenson, A.H. Mu-opioid and noradrenergic alpha(2)-adrenoceptor contributions to the effects of tapentadol on spinal electrophysiological measures of nociception in nerve-injured rats. Pain 2011, 152, 131-139. [CrossRef]
- Corder, G.; Castro, D.C.; Bruchas, M.R.; Scherrer, G. Endogenous and exogenous opioids in pain. Annual review of neuroscience 2018, 41, 453-473.
- Sun, J.; Chen, S.R.; Pan, H.L. mu-Opioid receptors in primary sensory neurons are involved in supraspinal opioid analgesia. Brain Res 2020, 1729, 146623. [CrossRef]
- Wang, D.; Zeng, J.; Li, Q.; Huang, J.; Couture, R.; Hong, Y. Contribution of adrenomedullin to the switch of G protein-coupled mu-opioid receptors from Gi to Gs in the spinal dorsal horn following chronic morphine exposure in rats. Br J Pharmacol 2016, 173, 1196-1207. [CrossRef]
- Dugast, C.; Almeida, A.; Lima, D. The medullary dorsal reticular nucleus enhances the responsiveness of spinal nociceptive neurons to peripheral stimulation in the rat. Eur J Neurosci 2003, 18, 580-588. [CrossRef]
- Bannister, K.; Kucharczyk, M.W.; Graven-Nielsen, T.; Porreca, F. Introducing descending control of nociception: a measure of diffuse noxious inhibitory controls in conscious animals. Pain 2021, 162, 1957-1959. [CrossRef]
- Firouzian, S.; Osborne, N.R.; Cheng, J.C.; Kim, J.A.; Bosma, R.L.; Hemington, K.S.; Rogachov, A.; Davis, K.D. Individual variability and sex differences in conditioned pain modulation and the impact of resilience, and conditioning stimulus pain unpleasantness and salience. Pain 2020, 161, 1847-1860. [CrossRef]
- Kennedy, D.L.; Kemp, H.I.; Wu, C.; Ridout, D.A.; Rice, A.S.C. Determining Real Change in Conditioned Pain Modulation: A Repeated Measures Study in Healthy Volunteers. J Pain 2020, 21, 708-721. [CrossRef]
- Tansley, S.N.; Macintyre, L.C.; Diamond, L.; Sotocinal, S.G.; George, N.; Meluban, L.; Austin, J.S.; Coderre, T.J.; Martin, L.J.; Mogil, J.S. Conditioned pain modulation in rodents can feature hyperalgesia or hypoalgesia depending on test stimulus intensity. Pain 2019, 160, 784-792. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
