Submitted:
10 November 2024
Posted:
11 November 2024
You are already at the latest version
Abstract
Keywords:
-
Key messages
- The bibliometric analysis of all EEGLAB Citations from SCOPUS & Web of Science
- Focus on 80 countries & territories including the United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) and West Asia (ESCWA)
- Estimating and Comparison of Lotka's law coefficient estimation for Author Scientific Productivity among subregions with Functional Data Analysis
- Provided the Most Global Cited Documents, historiographies, co-citation networks and co-occurrence network of WoS subject group by subregions, periods and databases
- Further analysis in the online Supplementary materials including specific analysis for China, Japan, India, Russian Federation and Iran.
1. Introduction [409 words]
2. Material and Methods [335 words]
2.1. Selected Regions
-
United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) with 58 countries and territories (Division, 2024). They divided into 5 Asia-Pacific subregions:
- I.
- East and North East Asia (ENEA): China, Democratic People's Republic of Korea, Hong Kong (China), Japan, Macao (China), Mongolia and Republic of Korea;
- II.
- North and Central Asia (NCA): Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Russian Federation, Tajikistan, Turkmenistan and Uzbekistan;
- III.
- Pacific (PACIFIC): American Samoa, Australia, Cook Islands, Fiji, French Polynesia, Guam, Kiribati, Marshall Islands, Micronesia (Federated States of) , Nauru , New Caledonia, New Zealand, Niue, Northern Mariana Islands, Palau, Papua New Guinea, Samoa, Solomon Islands, Tonga, Tuvalu and Vanuatu;
- IV.
- South East Asia (SEA): Brunei Darussalam, Cambodia, Indonesia, Lao People's Democratic Republic, Malaysia, Myanmar, Philippines, Singapore, Thailand, Timor-Leste and Vietnam;
- V.
- South and South West Asia (SSWA): Afghanistan, Bangladesh, Bhutan, India, Iran (Islamic Republic of), Maldives, Nepal, Pakistan, Sri Lanka and Türkiye.
-
The United Nations Economic and Social Commission for West Asia (ESCWA) or Arab States with the following 22 countries and territories (United Nations Economic and Social Commission for Western Asia, 2024):
- I.
- Algeria, Bahrain, Comoros, Djibouti, Egypt, Iraq, Jordan, Kuwait, Lebanon, Libya, Mauritania, Morocco, Oman, State of Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syrian Arab Republic, Tunisia, United Arab Emirates and Yemen.
2.2. Databases
2.3. Statistical and Data Analysis
3. Results (1958 Words)
3.1. The Descriptive Statistics
3.2. Lotka's law coefficient estimation for Author Scientific Productivity
3.3. Bradford Law
3.4. The Most Global Cited Documents
| Region | Period | Ref | TC | Article Title/Description | |
|---|---|---|---|---|---|
| # | per Year | ||||
| ENEA | |||||
|
All Time |
(Bin et al., 2009) | 558 | 34.88 | Online Multi-Channel Steady-State Visual Evoked Potential (SSVEP)-based BCI with Canonical Correlation Analysis (CCA) | |
| (Norton et al., 2015) | 270 | 27.00 | Online Multi-View Transfer Takagi-Sugeno-Kang (TSK) fuzzy system for estimating EEG-Based Driver Drowsiness | ||
| ≥2020 | (Jiang et al., 2020) | 120 | 30.00 | Soft, curved electrode systems capable of integration on the auricle for a persistent BCI | |
| (Jin et al., 2020) | 85 | 17.00 | Bispectrum based channel selection (BCS) method for motor imagery (MI)-based BCI | ||
| NCA | |||||
|
All Time |
(G. Knyazev et al., 2009) | 169 | 10.56 | Synchronization Of Event-Related Delta and Theta In Explicit And Implicit Emotion Processing | |
| (Knyazev et al., 2011) | 162 | 11.57 | Relations between Heart–brain interactions and somatosensory perception and evoked potentials | ||
| ≥2020 | (Al et al., 2020) | 104 | 20.80 | Independent Component Analysis (ICA) in default mode network and EEG alpha oscillations | |
| (Jin et al., 2020) | 85 | 17.00 | Bispectrum based channel selection (BCS) method for motor imagery (MI)-based BCI | ||
| PACIFIC | |||||
|
All Time |
(Whitham et al., 2007) | 343 | 19.06 | Statistical Significance that EEG frequencies above 20 Hz are contaminated by electromyogram (EMG) in the presence and absence of complete neuromuscular blockade, sparing the dominant arm trial. | |
| (Badcock et al., 2013) | 229 | 19.08 | Validation of the Emotiv EPOC® EEG Gaming System for Measuring Research Quality Auditory for Auditory Event-Related Potentials (ERPs) |
||
| ≥2020 | (Jiang et al., 2020) | 120 | 30.00 | Soft, curved electrode systems capable of integration on the auricle for a persistent BCI | |
| (Klug & Gramann, 2021) | 80 | 20.00 | The ICA method improves the quality of EEG mobile and stationary experiments | ||
| SEA | |||||
|
All Time |
(Norton et al., 2015) | 270 | 27.00 | Online Multi-View Transfer Takagi-Sugeno-Kang (TSK) fuzzy system for estimating EEG-Based Driver Drowsiness | |
| (Islam et al., 2016) | 219 | 24.33 | A Review about Detection and Removal Artifacts in Scalp EEG | ||
| ≥2020 | (Fahimi et al., 2020) | 77 | 19.25 | Deep Convolutional Generative Adversarial Networks (DCGANS) for Generating Artificial EEG in BCI | |
| (Jeong et al., 2020) | 70 | 14.00 | Decoding Movement-Related Cortical Potentials (MRCP) based Brain-Machine Interface (BMI) | ||
| SSWA | |||||
|
All Time |
(Acar et al., 2011) | 397 | 28.36 | Scalable Tensor Factorizations, CANDECOMP/PARAFAC (CP), with Missing Data | |
| (Islam et al., 2016) | 219 | 24.33 | A Review about Detection and Removal Artifacts in Scalp EEG | ||
| ≥2020 | (Hosseini et al., 2020) | 113 | 28.25 | A review of Machine Learning Methods for EEG signal Processing | |
| (Rossini et al., 2020) | 106 | 21.20 | A Review about Biomarkers (also EEG based) for Early diagnosis of Alzheimer’s disease based on the International Federation of Clinical Neurophysiology (IFCN) | ||
| Arab States | |||||
|
All Time |
(Arnal et al., 2015) | 177 | 17.70 | EEG Delta–Beta Coupled Oscillations Underlie Temporal Prediction Accuracy | |
| (Alhanbali et al., 2019) | 143 | 10.21 | A Trial about Listening Effort with capturing EEG | ||
| ≥2020 | (Čukić et al., 2020) | 27 | 5.40 | Using Higuchi's fractal dimension (HFD) and sample entropy (SampEn) methods to study the Biomarkers of major depressive disorder (MDD) with EEG. | |
| (Islam et al., 2020) | 25 | 5.00 | EEG mobility artifact removal for ambulatory epileptic seizure prediction applications | ||
| All Six Regions | |||||
|
All Time |
(Bin et al., 2009) | 558 | 34.88 | Online Multi-Channel Steady-State Visual Evoked Potential (SSVEP)-based BCI with Canonical Correlation Analysis (CCA) | |
| (Acar et al., 2011) | 397 | 28.36 | Scalable Tensor Factorizations, CANDECOMP/PARAFAC (CP), with Missing Data | ||
| ≥2020 | (Jiang et al., 2020) | 120 | 30.00 | Soft, curved electrode systems capable of integration on the auricle for a persistent BCI | |
| (Hosseini et al., 2020) | 113 | 28.25 | A review of Machine Learning Methods for EEG signal Processing | ||
3.5. The Co-Occurrence Network of WoS subject
3.6. The Co-Citation Network Papers
3.7. The Historiography





3.8. The Further Analysis
4. Discussion (359 words)
Supplementary Materials
References
- 2021 Virtual EEGLAB Workshop Pacific/Asia. (2021). https://eeglab.org/workshops/EEGLAB_2021_UCSD_asia.
- Acar, E.; Dunlavy, D.M.; Kolda, T.G.; Mørup, M. Scalable tensor factorizations for incomplete data. Chemometrics and Intelligent Laboratory Systems 2011, 106, 41–56. [Google Scholar] [CrossRef]
- Al-Ezzi, A.; Kamel, N.; Faye, I.; Gunaseli, E. Analysis of default mode network in social anxiety disorder: EEG resting-state effective connectivity study. Sensors 2021, 21, 4098. [Google Scholar] [CrossRef] [PubMed]
- Al-Shargie, F.; Kiguchi, M.; Badruddin, N.; Dass, S.C.; Hani, A.F.M.; Tang, T.B. Mental stress assessment using simultaneous measurement of EEG and fNIRS. Biomedical optics express 2016, 7, 3882–3898. [Google Scholar] [CrossRef] [PubMed]
- Al-Shargie, F.; Tariq, U.; Alex, M.; Mir, H.; Al-Nashash, H. Emotion recognition based on fusion of local cortical activations and dynamic functional networks connectivity: An EEG study. IEEE Access 2019, 7, 143550–143562. [Google Scholar] [CrossRef]
- Al, E.; Iliopoulos, F.; Forschack, N.; Nierhaus, T.; Grund, M.; Motyka, P.; Gaebler, M.; Nikulin, V.V.; Villringer, A. Heart–brain interactions shape somatosensory perception and evoked potentials. Proceedings of the National Academy of Sciences 2020, 117, 10575–10584. [Google Scholar] [CrossRef]
- Alazrai, R.; Alwanni, H.; Baslan, Y.; Alnuman, N.; Daoud, M.I. Eeg-based brain-computer interface for decoding motor imagery tasks within the same hand using choi-williams time-frequency distribution. Sensors 2017, 17, 1937. [Google Scholar] [CrossRef]
- Alazrai, R.; Momani, M.; Khudair, H.A.; Daoud, M.I. EEG-based tonic cold pain recognition system using wavelet transform. Neural Computing and Applications 2019, 31, 3187–3200. [Google Scholar] [CrossRef]
- Alex, M.; Tariq, U.; Al-Shargie, F.; Mir, H.S.; Al Nashash, H. Discrimination of genuine and acted emotional expressions using EEG signal and machine learning. IEEE Access 2020, 8, 191080–191089. [Google Scholar] [CrossRef]
- Alhanbali, S.; Dawes, P.; Millman, R.E.; Munro, K.J. Measures of listening effort are multidimensional. Ear and Hearing 2019, 40, 1084–1097. [Google Scholar] [CrossRef]
- Alhibshi, A.H.; Alamoudi, W.A.; Haq, I.U.; Rehman, S.U.; Farooq, R.K.; Al Shamrani, F.J. Bibliometric analysis of Neurosciences research productivity in Saudi Arabia from 2013-2018. Neurosciences Journal 2020, 25, 134–143. [Google Scholar] [CrossRef]
- Alsuradi, H.; Park, W.; Eid, M. Eeg-based neurohaptics research: A literature review. IEEE Access 2020, 8, 49313–49328. [Google Scholar] [CrossRef]
- Alsuradi, H.; Park, W.; Eid, M. Midfrontal theta oscillation encodes haptic delay. Scientific Reports 2021, 11, 17074. [Google Scholar] [CrossRef] [PubMed]
- Amorim, E.; Zheng, W.-L.; Ghassemi, M.M.; Aghaeeaval, M.; Kandhare, P.; Karukonda, V.; Lee, J.W.; Herman, S.T.; Sivaraju, A.; Gaspard, N. The international cardiac arrest research consortium electroencephalography database. Critical Care Medicine 2023, 51, 1802–1811. [Google Scholar] [CrossRef] [PubMed]
- Apicella, A.; Arpaia, P.; Frosolone, M.; Improta, G.; Moccaldi, N.; Pollastro, A. EEG-based measurement system for monitoring student engagement in learning 4.0. Scientific Reports 2022, 12, 5857. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Arnal, L.H.; Doelling, K.B.; Poeppel, D. Delta–beta coupled oscillations underlie temporal prediction accuracy. Cerebral Cortex 2015, 25, 3077–3085. [Google Scholar] [CrossRef]
- Ashrafi, F.; Mohammadhassanzadeh, H.; Shokraneh, F.; Valinejadi, A.; Johari, K.; Saemi, N.; Zali, A.; Mohaghegh, N.; Ashayeri, H. Iranians’ contribution to world literature on neuroscience. Health Information & Libraries Journal 2012, 29, 323–332. [Google Scholar]
- Aslan, Z.; Akin, M. A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals. Physical and Engineering Sciences in Medicine 2022, 45, 83–96. [Google Scholar] [CrossRef]
- Attaheri, A.; Choisdealbha, Á.N.; Di Liberto, G.M.; Rocha, S.; Brusini, P.; Mead, N.; Olawole-Scott, H.; Boutris, P.; Gibbon, S.; Williams, I. Delta-and theta-band cortical tracking and phase-amplitude coupling to sung speech by infants. NeuroImage 2022, 247, 118698. [Google Scholar] [CrossRef]
- Azab, M.A.; Salem, A.E. Egyptian neurosurgical publication productivity. A retrospective analysis from 2015 to 2020. Interdisciplinary Neurosurgery 2022, 28, 101505. [Google Scholar] [CrossRef]
- Badcock, N.A.; Mousikou, P.; Mahajan, Y.; De Lissa, P.; Thie, J.; McArthur, G. Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs. PeerJ 2013, 1, e38. [Google Scholar] [PubMed]
- Badcock, N.A.; Preece, K.A.; de Wit, B.; Glenn, K.; Fieder, N.; Thie, J.; McArthur, G. Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children. PeerJ 2015, 3, e907. [Google Scholar] [PubMed]
- Baillet, S.; Friston, K.; Oostenveld, R. Academic software applications for electromagnetic brain mapping using MEG and EEG. Computational intelligence and neuroscience 2011, 2011, 12–12. [Google Scholar]
- Bell, A.J.; Sejnowski, T.J. An information-maximization approach to blind separation and blind deconvolution. Neural computation 1995, 7, 1129–1159. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological) 1995, 57, 289–300. [Google Scholar]
- Bernadine, C.; Nanda, N.; Vijayalakshmi, R.; Thilaga, M.; Naga, D.; Nabaraj, D. Breaking the Camel's Back: Can Cognitive Overload be Quantified in the Human Brain? Procedia-Social and Behavioral Sciences 2013, 97, 21–29. [Google Scholar]
- Biabani, M.; Fornito, A.; Mutanen, T.P.; Morrow, J.; Rogasch, N.C. Characterizing and minimizing the contribution of sensory inputs to TMS-evoked potentials. Brain stimulation 2019, 12, 1537–1552. [Google Scholar]
- Bin, G.; Gao, X.; Yan, Z.; Hong, B.; Gao, S. An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method. Journal of neural engineering 2009, 6, 046002. [Google Scholar]
- Bottari, D.; Kekunnaya, R.; Hense, M.; Troje, N.F.; Sourav, S.; Röder, B. Motion processing after sight restoration: No competition between visual recovery and auditory compensation. NeuroImage 2018, 167, 284–296. [Google Scholar]
- Bottari, D.; Troje, N.F.; Ley, P.; Hense, M.; Kekunnaya, R.; Röder, B. The neural development of the biological motion processing system does not rely on early visual input. Cortex 2015, 71, 359–367. [Google Scholar]
- Bottari, D.; Troje, N.F.; Ley, P.; Hense, M.; Kekunnaya, R.; Röder, B. Sight restoration after congenital blindness does not reinstate alpha oscillatory activity in humans. Scientific Reports 2016, 6, 24683. [Google Scholar] [CrossRef] [PubMed]
- Brainard, D.H.; Vision, S. The psychophysics toolbox. Spatial vision 1997, 10, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Cecchetti, G.; Agosta, F.; Canu, E.; Basaia, S.; Barbieri, A.; Cardamone, R.; Bernasconi, M.P.; Castelnovo, V.; Cividini, C.; Cursi, M. Cognitive, EEG, and MRI features of COVID-19 survivors: a 10-month study. Journal of neurology 2022, 269, 3400–3412. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.-H.; Jeong, J.-H.; Lee, S.-W. NeuroGrasp: Real-time EEG classification of high-level motor imagery tasks using a dual-stage deep learning framework. IEEE Transactions on Cybernetics 2021, 52, 13279–13292. [Google Scholar] [CrossRef]
- Chung, S.W.; Lewis, B.P.; Rogasch, N.C.; Saeki, T.; Thomson, R.H.; Hoy, K.E.; Bailey, N.W.; Fitzgerald, P.B. Demonstration of short-term plasticity in the dorsolateral prefrontal cortex with theta burst stimulation: A TMS-EEG study. Clinical neurophysiology 2017, 128, 1117–1126. [Google Scholar] [CrossRef]
- Chung, S.W.; Rogasch, N.C.; Hoy, K.E.; Sullivan, C.M.; Cash, R.F.; Fitzgerald, P.B. Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance. Human brain mapping 2018, 39, 783–802. [Google Scholar] [CrossRef]
- Ciavolino, E.; Aria, M.; Cheah, J.-H.; Roldán, J.L. A tale of PLS structural equation modelling: episode I—a bibliometrix citation analysis. Social Indicators Research 2022, 164, 1323–1348. [Google Scholar] [CrossRef]
- Cuevas, A.; Febrero, M.; Fraiman, R. An anova test for functional data. Computational statistics & data analysis 2004, 47, 111–122. [Google Scholar]
- Čukić, M.; Stokić, M.; Radenković, S.; Ljubisavljević, M.; Simić, S.; Savić, D. Nonlinear analysis of EEG complexity in episode and remission phase of recurrent depression. International journal of methods in psychiatric research 2020, 29, e1816. [Google Scholar] [CrossRef]
- Dai, Z.; De Souza, J.; Lim, J.; Ho, P.M.; Chen, Y.; Li, J.; Thakor, N.; Bezerianos, A.; Sun, Y. EEG cortical connectivity analysis of working memory reveals topological reorganization in theta and alpha bands. Frontiers in human neuroscience 2017, 11, 237. [Google Scholar] [CrossRef]
- Dasdemir, Y.; Yildirim, E.; Yildirim, S. Analysis of functional brain connections for positive–negative emotions using phase locking value. Cognitive neurodynamics 2017, 11, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Daskalakis, Z.J.; Farzan, F.; Barr, M.S.; Maller, J.J.; Chen, R.; Fitzgerald, P.B. Long-interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS–EEG study. Neuropsychopharmacology 2008, 33, 2860–2869. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Di Gregorio, F.; Trajkovic, J.; Roperti, C.; Marcantoni, E.; Di Luzio, P.; Avenanti, A.; Thut, G.; Romei, V. Tuning alpha rhythms to shape conscious visual perception. Current Biology 2022, 32, 988–998 e986. [Google Scholar] [CrossRef]
- Dimitrakopoulos, G.N.; Kakkos, I.; Dai, Z.; Lim, J.; deSouza, J.J.; Bezerianos, A.; Sun, Y. Task-independent mental workload classification based upon common multiband EEG cortical connectivity. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2017, 25, 1940–1949. [Google Scholar] [CrossRef]
- Dimitrakopoulos, G.N.; Kakkos, I.; Dai, Z.; Wang, H.; Sgarbas, K.; Thakor, N.; Bezerianos, A.; Sun, Y. Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2018, 26, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Dimitrakopoulos, G.N.; Kakkos, I.; Vrahatis, A.G.; Sgarbas, K.; Li, J.; Sun, Y.; Bezerianos, A. Driving mental fatigue classification based on brain functional connectivity. Engineering Applications of Neural Networks: 18th International Conference, EANN 2017, Athens, Greece, August 25–27, 2017, Proceedings.
- Dimitriadis, S.I.; Sun, Y.; Kwok, K.; Laskaris, N.A.; Thakor, N.; Bezerianos, A. Cognitive workload assessment based on the tensorial treatment of EEG estimates of cross-frequency phase interactions. Annals of biomedical engineering 2015, 43, 977–989. [Google Scholar] [CrossRef]
- Ding, K.; Dragomir, A.; Bose, R.; Osborn, L.E.; Seet, M.S.; Bezerianos, A.; Thakor, N.V. Towards machine to brain interfaces: sensory stimulation enhances sensorimotor dynamic functional connectivity in upper limb amputees. Journal of neural engineering 2020, 17, 035002. [Google Scholar] [CrossRef]
- Ding, Z.; Xiong, Z.; Ouyang, Y. A Bibliometric Analysis of Neuroscience Tools Use in Construction Health and Safety Management. Sensors 2023, 23, 9522. [Google Scholar] [CrossRef]
- Division, E.S. (2024). List of countries in the Asia-Pacific region and subregions. https://data.unescap.org/stories/escap-database.
- Dong, R.; Wang, H.; Ye, J.; Wang, M.; Bi, Y. Publication trends for Alzheimer's disease worldwide and in China: a 30-year bibliometric analysis. Frontiers in human neuroscience 2019, 13, 259. [Google Scholar] [CrossRef]
- EEGLAB Website. eeglab.org.
- El Masri, J.; Dankar, R.; El Masri, D.; Chanbour, H.; El Hage, S.; Salameh, P. The Arab countries’ contribution to the research of neurodegenerative disorders. Cureus 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Fahimi, F.; Dosen, S.; Ang, K.K.; Mrachacz-Kersting, N.; Guan, C. Generative adversarial networks-based data augmentation for brain–computer interface. IEEE transactions on neural networks and learning systems 2020, 32, 4039–4051. [Google Scholar] [CrossRef] [PubMed]
- Farzan, F.; Barr, M.S.; Hoppenbrouwers, S.S.; Fitzgerald, P.B.; Chen, R.; Pascual-Leone, A.; Daskalakis, Z.J. The EEG correlates of the TMS-induced EMG silent period in humans. NeuroImage 2013, 83, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Farzan, F.; Barr, M.S.; Levinson, A.J.; Chen, R.; Wong, W.; Fitzgerald, P.B.; Daskalakis, Z.J. Evidence for gamma inhibition deficits in the dorsolateral prefrontal cortex of patients with schizophrenia. Brain 2010, 133, 1505–1514. [Google Scholar] [CrossRef]
- Farzan, F.; Barr, M.S.; Levinson, A.J.; Chen, R.; Wong, W.; Fitzgerald, P.B.; Daskalakis, Z.J. Reliability of long-interval cortical inhibition in healthy human subjects: a TMS–EEG study. Journal of neurophysiology 2010, 104, 1339–1346. [Google Scholar] [CrossRef]
- Farzan, F.; Barr, M.S.; Wong, W.; Chen, R.; Fitzgerald, P.B.; Daskalakis, Z.J. Suppression of γ-oscillations in the dorsolateral prefrontal cortex following long interval cortical inhibition: a TMS–EEG study. Neuropsychopharmacology 2009, 34, 1543–1551. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior research methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Fayaz, M. The Bibliometric Analysis of EEGLAB software in the Web of Science indexed Articles. Neuroscience Informatics 2023, 100154. [Google Scholar] [CrossRef]
- Febrero-Bande, M.; De La Fuente, M.O. Statistical computing in functional data analysis: The R package fda. usc. Journal of statistical Software 2012, 51, 1–28. [Google Scholar] [CrossRef]
- Forero, D.A.; Trujillo, M.L.; González-Giraldo, Y.; Barreto, G.E. Scientific productivity in neurosciences in Latin America: a scientometrics perspective. International Journal of Neuroscience 2020, 130, 398–406. [Google Scholar] [CrossRef]
- Gaur, S.; Panjwani, U.; Kumar, B. EEG Brain Wave Dynamics: A Systematic Review and Meta Analysis on Eff ect of Yoga on Mind Relaxation. J Biomed Res Environ Sci 2020, 1, 353–362. [Google Scholar] [CrossRef]
- Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.A.; Strohmeier, D.; Brodbeck, C.; Parkkonen, L.; Hämäläinen, M.S. MNE software for processing MEG and EEG data. NeuroImage 2014, 86, 446–460. [Google Scholar] [CrossRef] [PubMed]
- Gülmen Yener, G.; Güntekin, B.; Emek Savaş, D.D.; Kurt, P.; Başar, E. (2013). Beta oscillatory responses in healthy subjects and subjects with mild cognitive impairment.
- Guney, O.B.; Oblokulov, M.; Ozkan, H. A deep neural network for ssvep-based brain-computer interfaces. IEEE transactions on biomedical engineering 2021, 69, 932–944. [Google Scholar] [CrossRef]
- Güntekin, B.; Başar, E. A review of brain oscillations in perception of faces and emotional pictures. Neuropsychologia 2014, 58, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Güntekin, B.; Başar, E. Review of evoked and event-related delta responses in the human brain. International Journal of Psychophysiology 2016, 103, 43–52. [Google Scholar] [CrossRef]
- Güntekin, B.; Hanoğlu, L.; Aktürk, T.; Fide, E.; Emek-Savaş, D.D.; Ruşen, E.; Yıldırım, E.; Yener, G.G. Impairment in recognition of emotional facial expressions in Alzheimer's disease is represented by EEG theta and alpha responses. Psychophysiology 2019, 56, e13434. [Google Scholar] [CrossRef]
- Harvy, J.; Thakor, N.; Bezerianos, A.; Li, J. Between-frequency topographical and dynamic high-order functional connectivity for driving drowsiness assessment. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2019, 27, 358–367. [Google Scholar] [CrossRef]
- Hasanzadeh, F.; Mohebbi, M.; Rostami, R. Prediction of rTMS treatment response in major depressive disorder using machine learning techniques and nonlinear features of EEG signal. Journal of affective disorders 2019, 256, 132–142. [Google Scholar] [CrossRef]
- Hasanzadeh, F.; Mohebbi, M.; Rostami, R. Graph theory analysis of directed functional brain networks in major depressive disorder based on EEG signal. Journal of neural engineering 2020, 17, 026010. [Google Scholar] [CrossRef]
- Hassan, M.; Shamas, M.; Khalil, M.; El Falou, W.; Wendling, F. EEGNET: An open source tool for analyzing and visualizing M/EEG connectome. PLoS One 2015, 10, e0138297. [Google Scholar] [CrossRef]
- Hill, A.T.; Clark, G.M.; Bigelow, F.J.; Lum, J.A.; Enticott, P.G. Periodic and aperiodic neural activity displays age-dependent changes across early-to-middle childhood. Developmental Cognitive Neuroscience 2022, 54, 101076. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.T.; Rogasch, N.C.; Fitzgerald, P.B.; Hoy, K.E. Effects of prefrontal bipolar and high-definition transcranial direct current stimulation on cortical reactivity and working memory in healthy adults. NeuroImage 2017, 152, 142–157. [Google Scholar] [CrossRef]
- Hoppen, N.H.F.; Vanz, S.A. d. S. Neurosciences in Brazil: a bibliometric study of main characteristics, collaboration and citations. Scientometrics 2016, 109, 121–141. [Google Scholar] [CrossRef]
- Hosseini, M.-P.; Hosseini, A.; Ahi, K. A review on machine learning for EEG signal processing in bioengineering. IEEE reviews in biomedical engineering 2020, 14, 204–218. [Google Scholar] [CrossRef]
- Hu, L.; Cai, M.; Xiao, P.; Luo, F.; Iannetti, G. Human brain responses to concomitant stimulation of Aδ and C nociceptors. Journal of Neuroscience 2014, 34, 11439–11451. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Iannetti, G. Neural indicators of perceptual variability of pain across species. Proceedings of the National Academy of Sciences 2019, 116, 1782–1791. [Google Scholar] [CrossRef]
- Hu, L.; Mouraux, A.; Hu, Y.; Iannetti, G.D. A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials. NeuroImage 2010, 50, 99–111. [Google Scholar] [CrossRef]
- Hu, L.; Peng, W.; Valentini, E.; Zhang, Z.; Hu, Y. Functional features of nociceptive-induced suppression of alpha band electroencephalographic oscillations. The Journal of Pain 2013, 14, 89–99. [Google Scholar] [CrossRef]
- Hu, L.; Xiao, P.; Zhang, Z.; Mouraux, A.; Iannetti, G.D. Single-trial time–frequency analysis of electrocortical signals: Baseline correction and beyond. NeuroImage 2014, 84, 876–887. [Google Scholar] [CrossRef]
- Huang, G.; Xiao, P.; Hung, Y.; Iannetti, G.D.; Zhang, Z.; Hu, L. A novel approach to predict subjective pain perception from single-trial laser-evoked potentials. NeuroImage 2013, 81, 283–293. [Google Scholar] [CrossRef]
- Islam, M.K.; Rastegarnia, A.; Yang, Z. Methods for artifact detection and removal from scalp EEG: A review. Neurophysiologie Clinique/Clinical Neurophysiology 2016, 46, 287–305. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; El-Hajj, A.M.; Alawieh, H.; Dawy, Z.; Abbas, N.; El-Imad, J. EEG mobility artifact removal for ambulatory epileptic seizure prediction applications. Biomedical Signal Processing and Control 2020, 55, 101638. [Google Scholar] [CrossRef]
- Jahmunah, V.; Oh, S.L.; Rajinikanth, V.; Ciaccio, E.J.; Cheong, K.H.; Arunkumar, N.; Acharya, U.R. Automated detection of schizophrenia using nonlinear signal processing methods. Artificial intelligence in medicine 2019, 100, 101698. [Google Scholar] [CrossRef]
- Jeong, J.-H.; Kwak, N.-S.; Guan, C.; Lee, S.-W. Decoding movement-related cortical potentials based on subject-dependent and section-wise spectral filtering. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2020, 28, 687–698. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Y.; Lin, C.; Wu, D.; Lin, C.-T. EEG-based driver drowsiness estimation using an online multi-view and transfer TSK fuzzy system. IEEE Transactions on Intelligent Transportation Systems 2020, 22, 1752–1764. [Google Scholar] [CrossRef]
- Jin, J.; Liu, C.; Daly, I.; Miao, Y.; Li, S.; Wang, X.; Cichocki, A. Bispectrum-based channel selection for motor imagery based brain-computer interfacing. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2020, 28, 2153–2163. [Google Scholar] [CrossRef]
- Jmail, N.; Gavaret, M.; Bartolomei, F.; Chauvel, P.; Badier, J.-M.; Bénar, C.-G. Comparison of brain networks during interictal oscillations and spikes on magnetoencephalography and intracerebral EEG. Brain topography 2016, 29, 752–765. [Google Scholar] [CrossRef] [PubMed]
- Jmail, N.; Gavaret, M.; Wendling, F.; Kachouri, A.; Hamadi, G.; Badier, J.-M.; Bénar, C.-G. A comparison of methods for separation of transient and oscillatory signals in EEG. Journal of neuroscience methods 2011, 199, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.-P.; Makeig, S.; Humphries, C.; Lee, T.-W.; Mckeown, M.J.; Iragui, V.; Sejnowski, T.J. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000, 37, 163–178. [Google Scholar] [CrossRef]
- Jung, T.-P.; Sejnowski, T.J. Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing. IEEE Transactions on Affective Computing 2019, 13, 96–107. [Google Scholar]
- Kabbara, A.; Eid, H.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M. Reduced integration and improved segregation of functional brain networks in Alzheimer’s disease. Journal of neural engineering 2018, 15, 026023. [Google Scholar] [CrossRef] [PubMed]
- Kabbara, A.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M. The dynamic functional core network of the human brain at rest. Scientific Reports 2017, 7, 2936. [Google Scholar] [CrossRef] [PubMed]
- Kakkos, I.; Dimitrakopoulos, G.N.; Gao, L.; Zhang, Y.; Qi, P.; Matsopoulos, G.K.; Thakor, N.; Bezerianos, A.; Sun, Y. Mental workload drives different reorganizations of functional cortical connectivity between 2D and 3D simulated flight experiments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2019, 27, 1704–1713. [Google Scholar] [CrossRef] [PubMed]
- Kannan, M.A.; Ab Aziz, N.A.; Ab Rani, N.S.; Abdullah, M.W.; Rashid, M.H.M.; Shab, M.S.; Ismail, N.I.; Ab Ghani, M.A.; Reza, F.; Muzaimi, M. A review of the holy Quran listening and its neural correlation for its potential as a psycho-spiritual therapy. Heliyon 2022, 8. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Rouzbahani, H.; Bagheri, N.; Ebrahimpour, R. Average activity, but not variability, is the dominant factor in the representation of object categories in the brain. Neuroscience 2017, 346, 14–28. [Google Scholar] [CrossRef]
- Karimi-Rouzbahani, H.; Bagheri, N.; Ebrahimpour, R. Hard-wired feed-forward visual mechanisms of the brain compensate for affine variations in object recognition. Neuroscience 2017, 349, 48–63. [Google Scholar] [CrossRef]
- Keshavan, M.S.; Song, S.H.M.; Zhang, Y.; Lizano, P. Neuroscience in pictures: 1. History of psychiatric neuroscience. Asian Journal of Psychiatry 2024, 92, 103869. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain research reviews 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends in cognitive sciences 2012, 16, 606–617. [Google Scholar] [CrossRef]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: the inhibition–timing hypothesis. Brain research reviews 2007, 53, 63–88. [Google Scholar] [CrossRef]
- Klug, M.; Gramann, K. Identifying key factors for improving ICA-based decomposition of EEG data in mobile and stationary experiments. European Journal of Neuroscience 2021, 54, 8406–8420. [Google Scholar] [CrossRef]
- Knyazev, G.; Slobodskoj-Plusnin, J.Y.; Bocharov, A. Event-related delta and theta synchronization during explicit and implicit emotion processing. Neuroscience 2009, 164, 1588–1600. [Google Scholar] [CrossRef] [PubMed]
- Knyazev, G.G. Is cortical distribution of spectral power a stable individual characteristic? International Journal of Psychophysiology 2009, 72, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Knyazev, G.G. Cross-frequency coupling of brain oscillations: an impact of state anxiety. International Journal of Psychophysiology 2011, 80, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Knyazev, G.G. Comparison of spatial and temporal independent component analyses of electroencephalographic data: a simulation study. Clinical neurophysiology 2013, 124, 1557–1569. [Google Scholar] [CrossRef]
- Knyazev, G.G. EEG correlates of self-referential processing. Frontiers in human neuroscience 2013, 7, 264. [Google Scholar] [CrossRef]
- Knyazev, G.G.; Bocharov, A.V.; Levin, E.A.; Savostyanov, A.N.; Slobodskoj-Plusnin, J.Y. Anxiety and oscillatory responses to emotional facial expressions. Brain research 2008, 1227, 174–188. [Google Scholar] [CrossRef]
- Knyazev, G.G.; Bocharov, A.V.; Pylkova, L.V. Extraversion and fronto-posterior EEG spectral power gradient: An independent component analysis. Biological Psychology 2012, 89, 515–524. [Google Scholar] [CrossRef]
- Knyazev, G.G.; Bocharov, A.V.; Savostyanov, A.N.; Slobodskoy-Plusnin, J. Predisposition to depression and implicit emotion processing. Journal of clinical and experimental neuropsychology 2015, 37, 701–709. [Google Scholar] [CrossRef]
- Knyazev, G.G.; Bocharov, A.V.; Slobodskoj-Plusnin, J.Y. Hostility-and gender-related differences in oscillatory responses to emotional facial expressions. Aggressive Behavior: Official Journal of the International Society for Research on Aggression 2009, 35, 502–513. [Google Scholar] [CrossRef]
- Knyazev, G.G.; Levin, E.A.; Savostyanov, A.N. Impulsivity, anxiety, and individual differences in evoked and induced brain oscillations. International Journal of Psychophysiology 2008, 68, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Knyazev, G.G.; Savostyanov, A.N.; Bocharov, A.V.; Rimareva, J.M. Anxiety, depression, and oscillatory dynamics in a social interaction model. Brain research 2016, 1644, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Knyazev, G.G.; Savostyanov, A.N.; Volf, N.V.; Liou, M.; Bocharov, A.V. EEG correlates of spontaneous self-referential thoughts: a cross-cultural study. International Journal of Psychophysiology 2012, 86, 173–181. [Google Scholar] [CrossRef]
- Knyazev, G.G.; Slobodskoj-Plusnin, J.Y.; Bocharov, A.V. Gender differences in implicit and explicit processing of emotional facial expressions as revealed by event-related theta synchronization. Emotion 2010, 10, 678. [Google Scholar] [CrossRef] [PubMed]
- Knyazev, G.G.; Slobodskoj-Plusnin, J.Y.; Bocharov, A.V.; Pylkova, L.V. The default mode network and EEG alpha oscillations: an independent component analysis. Brain research 2011, 1402, 67–79. [Google Scholar] [CrossRef]
- Knyazev, G.G.; Slobodskoj-Plusnin, J.Y.; Bocharov, A.V.; Pylkova, L.V. Cortical oscillatory dynamics in a social interaction model. Behavioural brain research 2013, 241, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Kocak, M.; García-Zorita, C.; Marugán-Lázaro, S.; Çakır, M.P.; Sanz-Casado, E. Mapping and clustering analysis on neuroscience literature in Turkey: a bibliometric analysis from 2000 to 2017. Scientometrics 2019, 121, 1339–1366. [Google Scholar] [CrossRef]
- Krishna, S.; Choudhury, A.; Keough, M.B.; Seo, K.; Ni, L.; Kakaizada, S.; Lee, A.; Aabedi, A.; Popova, G.; Lipkin, B. Glioblastoma remodelling of human neural circuits decreases survival. Nature 2023, 617, 599–607. [Google Scholar] [CrossRef]
- Lachaux, J.P.; Rodriguez, E.; Martinerie, J.; Varela, F.J. Measuring phase synchrony in brain signals. Human brain mapping 1999, 8, 194–208. [Google Scholar] [CrossRef]
- Li, G.; Yan, W.; Li, S.; Qu, X.; Chu, W.; Cao, D. A temporal–spatial deep learning approach for driver distraction detection based on EEG signals. IEEE Transactions on Automation Science and Engineering 2021, 19, 2665–2677. [Google Scholar] [CrossRef]
- Lim, J.-H.; Cho, J.-H.; Kim, J.-H.; Kim, L.; Kang, H.-W.; Kim, B.-K. A Review on Clinical Research of Acupuncture Using Electroencephalogram. Journal of Oriental Neuropsychiatry 2021, 32, 345–378. [Google Scholar]
- Litvak, V.; Mattout, J.; Kiebel, S.; Phillips, C.; Henson, R.; Kilner, J.; Barnes, G.; Oostenveld, R.; Daunizeau, J.; Flandin, G. EEG and MEG data analysis in SPM8. Computational intelligence and neuroscience 2011. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Calderon, J.; Luck, S.J. ERPLAB: an open-source toolbox for the analysis of event-related potentials. Frontiers in human neuroscience 2014, 8, 213. [Google Scholar] [CrossRef] [PubMed]
- Lotka, A.J. The frequency distribution of scientific productivity. Journal of the Washington academy of sciences 1926, 16, 317–323. [Google Scholar]
- Luck, S.J. (2014). An introduction to the event-related potential technique. MIT press.
- Makeig, S. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalography and clinical neurophysiology 1993, 86, 283–293. [Google Scholar] [CrossRef]
- Makeig, S.; Jung, T.-P. Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness. cognitive brain research 1996, 4, 15–25. [Google Scholar] [CrossRef]
- Maris, E.; Oostenveld, R. Nonparametric statistical testing of EEG-and MEG-data. Journal of neuroscience methods 2007, 164, 177–190. [Google Scholar] [CrossRef]
- Mecarelli, O. Past, Present and Future of the EEG. Clinical Electroencephalography 2019, 3–8. [Google Scholar]
- Meng, J.; Hu, L.; Shen, L.; Yang, Z.; Chen, H.; Huang, X.; Jackson, T. Emotional primes modulate the responses to others’ pain: an ERP study. Experimental brain research 2012, 220, 277–286. [Google Scholar] [CrossRef]
- Meng, J.; Jackson, T.; Chen, H.; Hu, L.; Yang, Z.; Su, Y.; Huang, X. Pain perception in the self and observation of others: an ERP investigation. NeuroImage 2013, 72, 164–173. [Google Scholar] [CrossRef]
- Mheich, A.; Hassan, M.; Dufor, O.; Khalil, M.; Berrou, C.; Wendling, F. (2015). Spatiotemporal analysis of brain functional connectivity. 6th European Conference of the International Federation for Medical and Biological Engineering: MBEC 2014, 7-11 September 2014, Dubrovnik, Croatia,.
- Mognon, A.; Jovicich, J.; Bruzzone, L.; Buiatti, M. ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 2011, 48, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Mutanen, T.P.; Biabani, M.; Sarvas, J.; Ilmoniemi, R.J.; Rogasch, N.C. Source-based artifact-rejection techniques available in TESA, an open-source TMS–EEG toolbox. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation 2020, 13, 1349–1351. [Google Scholar] [CrossRef] [PubMed]
- Newsletter, E. (2024). EEGLAB is 20!;. https://sccn.ucsd.edu/eeglab/EEGLAB_Newsletter.php.
- Niso, G.; Krol, L.R.; Combrisson, E.; Dubarry, A.S.; Elliott, M.A.; François, C.; Héjja-Brichard, Y.; Herbst, S.K.; Jerbi, K.; Kovic, V. Good scientific practice in EEG and MEG research: Progress and perspectives. NeuroImage 2022, 257, 119056. [Google Scholar] [CrossRef] [PubMed]
- Noda, Y.; Zomorrodi, R.; Cash, R.F.; Barr, M.S.; Farzan, F.; Rajji, T.K.; Chen, R.; Daskalakis, Z.J.; Blumberger, D.M. Characterization of the influence of age on GABAA and glutamatergic mediated functions in the dorsolateral prefrontal cortex using paired-pulse TMS-EEG. Aging (Albany NY) 2017, 9, 556. [Google Scholar] [CrossRef]
- Norton, J.J.; Lee, D.S.; Lee, J.W.; Lee, W.; Kwon, O.; Won, P.; Jung, S.-Y.; Cheng, H.; Jeong, J.-W.; Akce, A. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proceedings of the National Academy of Sciences 2015, 112, 3920–3925. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Omar II, A.T.; Chan, K.I.P.; Ong, E.P.; Dy, L.F.; Go, D.A.D.; Capistrano, M.P.; Cua, S.K.N.; Diestro, J.D.B.; Espiritu, A.I.; Spears, J. Neurosurgical research in Southeast Asia: A bibliometric analysis. Journal of Clinical Neuroscience 2022, 106, 159–165. [Google Scholar] [CrossRef]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational intelligence and neuroscience 2011, 2011, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Jamil, M.H.; Eid, M. Neural activations associated with friction stimulation on touch-screen devices. Frontiers in neurorobotics 2019, 13, 27. [Google Scholar] [CrossRef]
- Park, W.; Kim, D.-H.; Kim, S.-P.; Lee, J.-H.; Kim, L. Gamma EEG correlates of haptic preferences for a dial interface. IEEE Access 2018, 6, 22324–22331. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 2002, 24 (Suppl D), 5–12. [Google Scholar] [PubMed]
- Pavlov, Y.G.; Adamian, N.; Appelhoff, S.; Arvaneh, M.; Benwell, C.S.; Beste, C.; Bland, A.R.; Bradford, D.E.; Bublatzky, F.; Busch, N.A. # EEGManyLabs: Investigating the replicability of influential EEG experiments. Cortex 2021, 144, 213–229. [Google Scholar] [PubMed]
- Peng, W.; Hu, L.; Zhang, Z.; Hu, Y. Causality in the association between P300 and alpha event-related desynchronization. PLoS One 2012, 7, e34163. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G.; Da Silva, F.L. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical neurophysiology 1999, 110, 1842–1857. [Google Scholar] [CrossRef]
- Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage 2019, 198, 181–197. [Google Scholar] [CrossRef]
- Polich, J. Updating P300: an integrative theory of P3a and P3b. Clinical neurophysiology 2007, 118, 2128–2148. [Google Scholar] [CrossRef]
- Putze, F.; Hesslinger, S.; Tse, C.-Y.; Huang, Y.; Herff, C.; Guan, C.; Schultz, T. Hybrid fNIRS-EEG based classification of auditory and visual perception processes. Frontiers in neuroscience 2014, 8, 83339. [Google Scholar] [CrossRef]
- R. (2023). R: A Language and Environment for Statistical Computing. In R Core Team. https://www.R-project.org/.
- Regional Commissions. https://research.un.org/c.php?g=98272&p=5600641#:~:text=ECE%3A%20Economic%20Commission%20for%20Europe,Social%20Commission%20for%20Western%20Asia.
- Ren, S.; Li, J.; Taya, F.; DeSouza, J.; Thakor, N.V.; Bezerianos, A. Dynamic functional segregation and integration in human brain network during complex tasks. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2016, 25, 547–556. [Google Scholar] [CrossRef]
- Röder, B.; Ley, P.; Shenoy, B.H.; Kekunnaya, R.; Bottari, D. Sensitive periods for the functional specialization of the neural system for human face processing. Proceedings of the National Academy of Sciences 2013, 110, 16760–16765. [Google Scholar] [CrossRef]
- Rogasch, N.C.; Daskalakis, Z.J.; Fitzgerald, P.B. Cortical inhibition of distinct mechanisms in the dorsolateral prefrontal cortex is related to working memory performance: A TMS–EEG study. Cortex 2015, 64, 68–77. [Google Scholar] [CrossRef]
- Rogasch, N.C.; Fitzgerald, P.B. Assessing cortical network properties using TMS–EEG. Human brain mapping 2013, 34, 1652–1669. [Google Scholar] [CrossRef] [PubMed]
- Rogasch, N.C.; Thomson, R.H.; Daskalakis, Z.J.; Fitzgerald, P.B. Short-latency artifacts associated with concurrent TMS–EEG. Brain stimulation 2013, 6, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Rogasch, N.C.; Thomson, R.H.; Farzan, F.; Fitzgibbon, B.M.; Bailey, N.W.; Hernandez-Pavon, J.C.; Daskalakis, Z.J.; Fitzgerald, P.B. Removing artefacts from TMS-EEG recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties. NeuroImage 2014, 101, 425–439. [Google Scholar] [CrossRef]
- Rossini, P.M.; Di Iorio, R.; Vecchio, F.; Anfossi, M.; Babiloni, C.; Bozzali, M.; Bruni, A.C.; Cappa, S.F.; Escudero, J.; Fraga, F.J. Early diagnosis of Alzheimer’s disease: the role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts. Clinical neurophysiology 2020, 131, 1287–1310. [Google Scholar] [CrossRef]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage 2010, 52, 1059–1069. [Google Scholar] [CrossRef]
- Sadiq, M.T.; Yu, X.; Yuan, Z.; Aziz, M.Z.; Siuly, S.; Ding, W. A matrix determinant feature extraction approach for decoding motor and mental imagery EEG in subject-specific tasks. IEEE Transactions on Cognitive and Developmental Systems 2020, 14, 375–387. [Google Scholar] [CrossRef]
- Sajovic, I.; Boh Podgornik, B. Bibliometric analysis of visualizations in computer graphics: a study. Sage Open 2022, 12, 21582440211071105. [Google Scholar] [CrossRef]
- Savostyanov, A.N.; Tsai, A.C.; Liou, M.; Levin, E.A.; Lee, J.-D.; Yurganov, A.V.; Knyazev, G.G. EEG-correlates of trait anxiety in the stop-signal paradigm. Neuroscience Letters 2009, 449, 112–116. [Google Scholar] [CrossRef]
- Shalbaf, A.; Bagherzadeh, S.; Maghsoudi, A. Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals. Physical and Engineering Sciences in Medicine 2020, 43, 1229–1239. [Google Scholar] [CrossRef]
- Sourav, S.; Bottari, D.; Kekunnaya, R.; Röder, B. Evidence of a retinotopic organization of early visual cortex but impaired extrastriate processing in sight recovery individuals. Journal of vision 2018, 18, 22–22. [Google Scholar] [CrossRef]
- Stegman, P.; Crawford, C.S.; Andujar, M.; Nijholt, A.; Gilbert, J.E. Brain–computer interface software: A review and discussion. IEEE Transactions on Human-Machine Systems 2020, 50, 101–115. [Google Scholar] [CrossRef]
- Sun, Y.; Lim, J.; Kwok, K.; Bezerianos, A. Functional cortical connectivity analysis of mental fatigue unmasks hemispheric asymmetry and changes in small-world networks. Brain and cognition 2014, 85, 220–230. [Google Scholar] [CrossRef]
- Sun, Y.; Lim, J.; Meng, J.; Kwok, K.; Thakor, N.; Bezerianos, A. Discriminative analysis of brain functional connectivity patterns for mental fatigue classification. Annals of biomedical engineering 2014, 42, 2084–2094. [Google Scholar] [CrossRef]
- Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: a user-friendly application for MEG/EEG analysis. Computational intelligence and neuroscience 2011, 2011, 1–13. [Google Scholar] [CrossRef]
- Tang, D.; Hu, L.; Chen, A. The neural oscillations of conflict adaptation in the human frontal region. Biological Psychology 2013, 93, 364–372. [Google Scholar] [CrossRef]
- Tremblay, S.; Rogasch, N.C.; Premoli, I.; Blumberger, D.M.; Casarotto, S.; Chen, R.; Di Lazzaro, V.; Farzan, F.; Ferrarelli, F.; Fitzgerald, P.B. Clinical utility and prospective of TMS–EEG. Clinical neurophysiology 2019, 130, 802–844. [Google Scholar] [CrossRef]
- Tu, Y.; Zhang, Z.; Tan, A.; Peng, W.; Hung, Y.S.; Moayedi, M.; Iannetti, G.D.; Hu, L. Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli. Human brain mapping 2016, 37, 501–514. [Google Scholar] [CrossRef]
- United Nations Economic and Social Commission for Western Asia. (2024). https://data.unescwa.org/.
- Valentini, E.; Hu, L.; Chakrabarti, B.; Hu, Y.; Aglioti, S.M.; Iannetti, G.D. The primary somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive stimuli. NeuroImage 2012, 59, 1571–1581. [Google Scholar] [CrossRef]
- Vijayalakshmi, R.; Nandagopal, D.; Dasari, N.; Cocks, B.; Dahal, N.; Thilaga, M. Minimum connected component–a novel approach to detection of cognitive load induced changes in functional brain networks. Neurocomputing 2015, 170, 15–31. [Google Scholar] [CrossRef]
- Wang, H.; Dragomir, A.; Abbasi, N.I.; Li, J.; Thakor, N.V.; Bezerianos, A. A novel real-time driving fatigue detection system based on wireless dry EEG. Cognitive neurodynamics 2018, 12, 365–376. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Hu, H.; Wan, F.; Li, T.; Gao, L.; Bezerianos, A.; Sun, Y.; Jung, T.-P. Dynamic reorganization of functional connectivity unmasks fatigue related performance declines in simulated driving. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2020, 28, 1790–1799. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Hu, C.; Yin, Z.; Song, Y. Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model. IEEE Sensors Journal 2022, 22, 4359–4368. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Zhang, J.; Hu, C.; Yin, Z.; Song, Y. Spatial-temporal feature fusion neural network for EEG-based emotion recognition. IEEE Transactions on Instrumentation and Measurement 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Whitham, E.M.; Pope, K.J.; Fitzgibbon, S.P.; Lewis, T.; Clark, C.R.; Loveless, S.; Broberg, M.; Wallace, A.; DeLosAngeles, D.; Lillie, P. Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clinical neurophysiology 2007, 118, 1877–1888. [Google Scholar] [CrossRef] [PubMed]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain–computer interfaces for communication and control. Clinical neurophysiology 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Yahya, F.; Hassanin, O.; Tariq, U.; Al-Nashash, H. (2020). EEG-Based Semantic Vigilance Level Classification Using Directed Connectivity Patterns and Graph Theory Analysis.
- Yahya, F.; Tariq, U.; Hassanin, O.; Mir, H.; Babiloni, F.; Al-Nashash, H. (2019). Brain Connectivity Analysis Under Semantic Vigilance and Enhanced Mental States.
- Yu, K.; Prasad, I.; Mir, H.; Thakor, N.; Al-Nashash, H. Cognitive workload modulation through degraded visual stimuli: A single-trial EEG study. Journal of neural engineering 2015, 12, 046020. [Google Scholar] [CrossRef]
- Yu, M.; Xiao, S.; Hua, M.; Wang, H.; Chen, X.; Tian, F.; Li, Y. EEG-based emotion recognition in an immersive virtual reality environment: From local activity to brain network features. Biomedical Signal Processing and Control 2022, 72, 103349. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Wang, Z.; Liu, X.; Zheng, Y. Temporal dynamics of reward anticipation in the human brain. Biological Psychology 2017, 128, 89–97. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Hu, L.; Hung, Y.S.; Mouraux, A.; Iannetti, G. Gamma-band oscillations in the primary somatosensory cortex—a direct and obligatory correlate of subjective pain intensity. Journal of Neuroscience 2012, 32, 7429–7438. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, L.; Liu, W.; Zhou, D.; Wu, X. Complementary and alternative medicine for treating epilepsy in China: a systematic review. Acta Neurologica Scandinavica 2022, 146, 775–785. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Q.; Zhang, Y.; Li, Q.; Shen, H.; Gao, Q.; Zhou, S. Reward processing in gain versus loss context: An ERP study. Psychophysiology 2017, 54, 1040–1053. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Huang, S.; Xu, Z.; Wang, P.; Wu, X.; Zhang, D. Cognitive workload recognition using EEG signals and machine learning: A review. IEEE Transactions on Cognitive and Developmental Systems 2021, 14, 799–818. [Google Scholar] [CrossRef]


| Database | WoS | Scopus | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Subregions | All | Subregions | All | ||||||||
| World* | ESCAP & ESCWA | ENEA | NCA | PACIFIC | SEA | SSWA | Arab States | World | |||
| Indices | |||||||||||
| From (Year) | 2004 | 2004 | 2005 | 2005 | 2004 | 2008 | 2007 | 2007 | 2004 | ||
| To (Year) | 2023 | 2024 | 2024 | 2023 | 2024 | 2024 | 2024 | 2024 | 2024 | ||
| Documents | 12,700 | 4,836 | 3,168 | 172 | 836 | 276 | 564 | 155 | 15,827 | ||
| Sources | 1,125 | 975 | 652 | 88 | 291 | 159 | 289 | 102 | 2,072 | ||
| Authors | 29,125 | 12,140 | 7,665 | 538 | 2,569 | 917 | 1,673 | 564 | 33,070 | ||
| Keywords | 19,062 | 9,375 | 6,729 | 557 | 2,113 | 848 | 1,719 | 541 | 21,384 | ||
| References | 279,617 | 134,022 | 94,266 | 8,576 | 33,891 | 11,719 | 22,987 | 7,057 | 763,160 | ||
| Annual Growth Rate | 28.12% | 20.85% | 15.37% | 15.31% | 14.11% | 10.58% | 15.15% | 9.93% | 18.63% | ||
| International Co-Authorship | 37.27% | 42.39% | 35.95% | 56.40% | 65.79% | 71.01% | 48.76% | 81.29% | 34.8% | ||
| Co-Authors per Doc | 4.89 | 5.42 | 5.58 | 5.28 | 5.69 | 5.41 | 4.70 | 5.28 | 5.14 | ||
| Document Average Age | 5.03 | 4.88 | 4.66 | 6.97 | 5.36 | 5.64 | 4.34 | 4.86 | 5.85 | ||
| Average Citation per Doc | 22.51 | 13.97 | 12.54 | 19.74 | 19.21 | 19.85 | 12.44 | 13.12 | 23.02 | ||
| Region | C | Beta | R2 | P-Value |
|---|---|---|---|---|
| ENEA | 0.17 | 2.12 | 0.99 | 0.98 |
| NCA | 0.68 | 2.44 | 0.99 | 0.75 |
| PACIFIC | 0.70 | 2.35 | 0.98 | 0.40 |
| SEA | 0.69 | 2.43 | 0.97 | 0.40 |
| SSWA | 0.89 | 2.71 | 0.95 | 0.16 |
| Arab States | 0.58 | 2.37 | 0.93 | 0.40 |
| All | 0.75 | 2.22 | 0.99 | 0.75 |
| Database | Region | Ref | TC | Title/Description |
|---|---|---|---|---|
| WoS | ESCAP & ESCWA | (Wang, Wang, Hu, et al., 2022)* | 49 | Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model |
| (Li et al., 2021)* | 38 | A Temporal–Spatial Deep Learning Approach for Driver Distraction Detection Based on EEG Signals | ||
| (Aslan & Akin, 2022)* | 33 | A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals | ||
| (Hill et al., 2022) | 33 | Periodic and aperiodic neural activity displays age-dependent changes across early-to-middle childhood | ||
| (Sadiq et al., 2020) | 32 | A Matrix Determinant Feature Extraction Approach for Decoding Motor and Mental Imagery EEG in Subject Specific Tasks | ||
| (Zhou et al., 2021) | 31 | A Review about Cognitive Workload Recognition Using EEG Signals and Machine Learning. | ||
| (Cho et al., 2021) | 27 | NeuroGrasp: Real-Time EEG Classification of High-Level Motor Imagery Tasks Using a Dual-Stage Deep Learning Framework | ||
| (Guney et al., 2021) | 26 | A Deep Neural Network for SSVEP-based BCIs | ||
| (Yu et al., 2022) | 25 | EEG-based emotion recognition in an immersive virtual reality environment: From local activity to brain network features | ||
| (Wang, Wang, Zhang, et al., 2022) | 25 | Spatial-temporal feature fusion neural network for EEG-based emotion recognition | ||
| Scopus | All World | (Jung & Sejnowski, 2019) | 89 | Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing |
| (Cecchetti et al., 2022) | 58 | Cognitive, EEG, and MRI features of COVID-19 survivors: a 10-month study | ||
| (Wang, Wang, Hu, et al., 2022)* | 57 | Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model | ||
| (Amorim et al., 2023) | 47 | The international cardiac arrest research consortium electroencephalography database | ||
| (Li et al., 2021)* | 42 | A Temporal–Spatial Deep Learning Approach for Driver Distraction Detection Based on EEG Signals | ||
| (Aslan & Akin, 2022)* | 42 | A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals | ||
| (Di Gregorio et al., 2022) | 42 | Tuning alpha rhythms to shape conscious visual perception | ||
| (Attaheri et al., 2022) | 42 | Delta-and theta-band cortical tracking and phase-amplitude coupling to sung speech by infants | ||
| (Apicella et al., 2022) | 41 | EEG-based measurement system for monitoring student engagement in learning 4.0 | ||
| (Krishna et al., 2023) | 41 | Glioblastoma remodelling of human neural circuits decreases survival |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
