Submitted:
06 November 2024
Posted:
06 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Geological Settings and Experimental Methods
2.1. Characteristics of Geological Structure
2.2. Experimental Methods
2.2.1. Physical Properties, Thin Section and Field Emission Scanning Electron Microscopy
2.2.2. XRD whole Rock Test
2.2.3. High Pressure Mercury Intrusion
2.3. Fractal Method of Mercury Intrusion Curves
3. Results
3.1. Petrological Characterization
3.2. Physical Property Features
3.3. Pore structure Characteristics
3.3.1. Types of Reservoir Spaces
3.3.2. Distribution Characteristics of Pore Throats
3.4. Fractal Characteristics of Pore Structure
4. Discussions
4.1. Classification of Pore-throat Types
4.2. Control Factors of Different Types of Pore-throat Development
4.3. Influence of Rock Composition on Fractal Dimension
4.4. Control Factors for the Development of Tight Sandstone Reservoirs
5. Conclusions
Acknowledgments
References
- Jia, A.L.; Wei, Y.S.; Guo, Z., Wang, G.T.; Meng, D.W.; Huang, S.Q. Development status and prospect of tight sandstone gas in China. Natural Gas Industry B. 2022, 467-476. [CrossRef]
- Li, W.B.; Li, J.Q.; Lu, S.F.; Chen, G.H.; Pang, X.T.; Zhang, P.F.; He, T.H. Evaluation of gas-in-place content and gas-adsorbed ratio using carbon isotope fractionation model: A case study from Longmaxi shales in Sichuan Basin, China. International Journal of Coal Geology. 2022, 249: 103881. [CrossRef]
- Zhou, N.W.; Lu, J.M.; Lu, S.F.; Zhang, P.F.; Wang, M.; Lin, Z.Z.; Jiang, X.Y.; Liu, Y.; Xiao, G.S. Depositional and diagenetic controls over reservoir quality of tight sandstone and conglomerate in the lower Cretaceous Shahezi formation, Xujiaweizi fault depression, Songliao basin, China. Marine and Petroleum Geology. 2023, 155, 106374. [CrossRef]
- Zou, C.N.; Zhu, R.K.; Liu, K.Y.; Su, L.; Bai, B.; Zhang, X.X.; Yuan, X.J.; Wang, J.H. Tight gas sandstone reservoirs in China: characteristics and recognition criteria. Journal of Petroleum Science and Engineering. 2012, 88, 82-91. [CrossRef]
- Li, Z.; Wu, S.H.; Xia, D.L.; He, S.C.; Zhang, X.F. An investigation into pore structure and petrophysical property in tight sandstones: A case of the Yanchang Formation in the southern Ordos Basin, China. Marine and Petroleum Geology. 2018, 97, 390-406. [CrossRef]
- Lai, J.; Wang, G.W.; Ran, Y.; Zhou, Z.L. Predictive distribution of high-quality reservoirs of tight gas sandstones by linking diagenesis to depositional facies: Evidence from Xu-2 sandstones in the Penglai area of the central Sichuan basin, China. Journal of Natural Gas Science and Engineering. 2015, 23: 97-111. [CrossRef]
- Qiao, J.C.; Zeng, J.H.; Jiang, S.; Wang, Y. Impacts of sedimentology and diagenesis on pore structure and reservoir quality in tight oil sandstone reservoirs: Implications for macroscopic and microscopic heterogeneities. Marine and Petroleum Geology. 2020, 111, 279-300. [CrossRef]
- Yang, Y.B.; Xiao, W.L.; Zheng, L.L.; Lei, Q.H.; Qin, C.Z.; He, Y.A.; Liu, S.S.; Li, M.; Li, Y.M.; Zhao, J.Z.; Chen, M. Pore throat structure heterogeneity and its effect on gas-phase seepage capacity in tight sandstone reservoirs: A case study from the Triassic Yanchang Formation, Ordos Basin. Petroleum Science. 2023, 20(5), 2892-2907. [CrossRef]
- Wu, Y.P.; Liu, C.L.; Ouyang, S.Q.; Luo, B.; Zhao, D.D.; Sun, W.; Awan, R.S.; Lu, Z.D.; Li, G.X.; Zang, Q.B. Investigation of pore-throat structure and fractal characteristics of tight sandstones using HPMI, CRMI, and NMR methods: A case study of the lower Shihezi Formation in the Sulige area, Ordos Basin. Journal of Petroleum Science and Engineering. 2022, 210:110053. [CrossRef]
- Angulo, R.; Alvarado, V.; Gonzalez, H. Fractal Dimensions from Mercury Intrusion Capillary Tests. SPE Latin America Petroleum Engineering Conference. 1992.
- Liu, Y.; Pang, X.Q.; Ding, C.; Chen, D.; Li, M. Pore Structure and Fractal Characteristics of Yan 10 Tight Sandstone Reservoir in Wuqi Area. Science and Technology and Engineering. 2023, 23 (29), 12474-12483.
- Wang, A.; Liu, J.L.; Liu, Z.Q.; Xiao, K.H.; Huang, Y.Q.; Fan, L.X.; Li, J.T. Genetic mechanisms of high-quality tight siliciclastic reservoirs: A case study from the upper triassic xujiahe formation in the yuanba area, sichuan basin, China. Energy Geoscience. 2024, 100290.
- Yu, Y.; Lin, L.B.; Zhai, C.B.; Chen, H.D.; Wang, Y.N.; Li, Y.H.; Deng, X.L. Impacts of lithologic characteristics and diagenesis on reservoir quality of the 4th member of the upper triassic xujiahe formation tight gas sandstones in the western sichuan basin, southwest china. Marine and Petroleum Geology. 2019, 107: 1-9. [CrossRef]
- Zhao, C.J.; Jiang, Y.L.; Liu, J.D.; Liu, M.; Wang, L.J. Occurrence and origin of chlorite and associated impact on tight sandstone reservoir quality: A case study of the Xujiahe Formation (NE Sichuan Basin, China). Journal of Petroleum Science and Engineering. 2022, 209. [CrossRef]
- Liu, J.,D.; Zhang, C.J.; Jiang, Y.L.; Hou, S. Investigation on pore structure characteristics of ultra-tight sandstone reservoirs in the upper Triassic Xujiahe Formation of the northern Sichuan Basin, China. Marine and Petroleum Geology. 2022, (138-):138.
- Qiu, L.W.; Mu, X.J.; Li, H.; Zhang, J.; Ge, J.; Xu, S.; Zhou, S.B. Development characteristics of rock debris in the Lower Shihezi Formation of the Permian in the Hangjinqi area of the Ordos Basin and their impact on reservoir properties. Petroleum and Natural Gas Geology. 2019, 40 (01): 24-33.
- Yang, P.; Zhang, L.K.; Liu, K.Y.; Cao, B.F.; Gao, J.L.; Qiu, G.Q. Diagenetic history and reservoir evolution of tight sandstones in the second member of the Upper Triassic Xujiahe Formation, western Sichuan Basin, China. Journal of Petroleum Science and Engineering. 2021, 201, 108451. [CrossRef]
- Liu, J.L.; Liu, Z.Q.; Xiao, K.H.; Huang, Y.Q., Jin, W.J. Characterization of favorable lithofacies in tight sandstone reservoirs and its significance for gas exploration and exploitation: a case study of the 2~(nd) member of triassic xujiahe formation in the xinchang area, sichuan basin. Petroleum Exploration and Development. 2020, 47(06), 50-61.
- Ma, Y.S.; Guo, X.S.; Guo, T.L.; Huang, R.; Cai, X.Y.; Li, G.X. The puguang gas field: new giant discovery in the mature sichuan basin, southwest china. Aapg Bulletin. 2007, 91(5), 627-643. [CrossRef]
- Guo, Y.C.; Song, Y.; Pang, X.Q.; Wang, Y.W.; Yang, K.N.; Li, B.Y. Hydrocarbon generation and expulsion of the upper Triassic T3 × 5 source rocks in the western Sichuan Depression: Assessment for unconventional natural gas. Acta Geologica Sinica--English Edition. 2015, 89(1), 175-186.
- Liu, Y.F.; Hu, W.X.; Cao, J.; Wang, X.L.; Zhu, F.; Tang, Q.S.; Gao, W.L. Fluid–rock interaction and its effects on the Upper Triassic tight sandstones in the Sichuan Basin, China: Insights from petrographic and geochemical study of carbonate cements. Sedimentary Geology. 2019, 121-135.
- Lai, J.; Wang, G.W.; Fan, Z.Y.; Chen, J.; Wang, S.C.; Zhou, Z.L.; Fan, X.Q. Insight into the pore structure of tight sandstones using nmr and hpmi measurements. Energy & fuels. 2016, 30(12), 10200-10214. [CrossRef]
- Washburn, E. Note on a method of determining the distribution of pore sizes in a porous material. Proceedings of the National Academy of Sciences of the United States of America. 1921, 7(4), 115-116. [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature. New York: W. The Freeman. 1977.
- Xie, S.Y.; Cheng, Q.M.; Ling, Q.C.; Li, B.; Bao, Z.Y.; Fan, P. Fractal and multifractal analysis of carbonate pore-scale digital images of petroleum reservoirs. Marine and Petroleum Geology. 2010, 27, 476-485. [CrossRef]
- He, C.Z.; Hua, M.Q. Fractal geometry description of reservoir pore structure. Petroleum and Natural Gas Geology. 1998, (01): 17-25.
- Li, K. Analytical derivation of brooks–corey type capillary pressure models using fractal geometry and evaluation of rock heterogeneity. Journal of Petroleum Science & Engineering. 2010, 73(1-2), 20-26. [CrossRef]
- Merinero, R.; Cárdenes, V.; Lunar, R.; Boone, M.; Cnudde, V. Representative size distributions of framboidal, euhedral, and sunflower pyrite from high-resolution x-ray tomography and scanning electron microscopy analyses. American Mineralogist. 2017, 102(3), 620-631. [CrossRef]
- Ma, X.F.; Zhang, S.C.; Lang, Z.X. Calculate the fractal dimension of pore structure using segmented regression method. Journal of Petroleum University: Natural Science Edition. 2004, 28 (6), 4.
- Schmitt, M.; Fernandes, C.P.; da Cunha Neto, J.A.; Wolf, F.G.; dos Santos, V.S. Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques. Marine and Petroleum Geology. 2013, 39(1), 138-149. [CrossRef]
- Xiao, D.S.; Gao, Y.; Peng, S.C.; Wang, M.; Wang, M.; Lu, S.F. Classification and control factors of pore-throat systems in hybrid sedimentary rocks of Jimusar Sag, Junggar Basin, NW China. Petroleum Exploration and Development. 2021, 48(04): 719-731. [CrossRef]
- He, T.P.; Zhou, Y.Q.; Li, Y.H.; Xie, Y.Y.; Shang, Y.H.; Chen, T.T.; Zhang, Z.W. Research on the microscopic pore-throat structure and reservoir quality of tight sandstone using fractal dimensions. Scientific Reports. 2024, 14(1): 22825. [CrossRef]
- Cui, H.; Zhu, S.F.; Wang, J.P.; Gao, Y.; Wang, C.F.; Tong, H. Physical Properties, Pore-Throat Structure, Fractal Characteristics and Their Effects on the Gas-Bearing Capacity of Tight Sandstone: A Case Study from the Northern Tianhuan Depression, Ordos Basin, China. Nat Resour Res. 2022, 31, 1559–1584. [CrossRef]
- Kong X.X.; Xiao, D.S.; Jiang, S.; Lu, S.F.; Sun, B.; Wang, J.M. Application of the combination of high-pressure mercury injection and nuclear magnetic resonance to the classification and evaluation of tight sandstone reservoirs: A case study of the Linxing Block in the Ordos Basin. Natural Gas Industry B. 2020, 7(5): 433-442. [CrossRef]
- Wang, T.; Deng, Z.; Hu, H.Y.; Tian, F.H.; Ding, R.; Zhang, T.; Ma, Z.R.; Hou, S.Y.; Li, X.G.; Dai, R.R.; Hong, X. Pore structure and fractal characteristics of transitional shales with different lithofacies from the eastern margin of the Ordos Basin. Energy Science & Engineering. 2023, 11(11): 3979-4000. [CrossRef]
- Zha, X.J.; Lai, F.Q.; Gao, X.B.; Gao, Y.; Jiang, N.; Luo, L.; Li, Y.Y.; Wang, J.; Peng, S.C.; Luo, X.; Tan, X.F. Characteristics and Genetic Mechanism of Pore Throat Structure of Shale Oil Reservoir in Saline Lake—A Case Study of Shale Oil of the Lucaogou Formation in Jimsar Sag, Junggar Basin. Energies. 2021, 14, 8450. [CrossRef]
- Zhu, F.; Hu, W.X.; Cao, J.; Sun, F.N.; Liu, Y.F.; Sun, Z.M. Micro/nanoscale pore structure and fractal characteristics of tight gas sandstone: A case study from the Yuanba area, northeast Sichuan Basin, China. Marine & Petroleum Geology. 2018, 98:116-132. [CrossRef]
- Peng, J.; Han, H.D.; Xia, Q.S.; Li, B. Fractal characteristic of microscopic pore structure of tight sandstone reservoirs in Kalpintag Formation in Shuntuoguole area, Tarim Basin. Petroleum Research. 2020, 5(1): 1-17. [CrossRef]
- Zhang, M.; Zhong, Q.; Li, G.F.; Fu, X.H.; Duan, C.C.; Liu, H.H.; Xu, H.J. Fluid distribution and pore structure multifractal characteristics analysis of coal measure mudstone. Journal of Natural Gas Science and Engineering. 2021, 103810.
- Wang, Y.Z.; Mao, C.; Li, Q.; Jin, W.; Zhu, S.M.; Wang, X.D.; Wang, Z.G.; He, J.Y.; Shen, J.G.; Zhu, Y.P.; Wang, Y.; Wang, H.Y.; Tan, B.D.; Ren, J.H. Pore throat characteristics of tight reservoirs by a combined mercury method: A case study of the member 2 of Xujiahe Formation in Yingshan gasfield, North Sichuan Basin. Open Geosciences. 2021, vol. 13, no.1, pp. 1174-1186. [CrossRef]
- Wei, J.G.; Zhou, X.F.; Shamil, S.; Yuriy, K.; Yang, E.L.; Yang, Y.; Wang, A.L. High-pressure mercury intrusion analysis of pore structure in typical lithofacies shale. Energy. 2024, 295, 130879. [CrossRef]
- Yang, W.Z.; Hou, J.G.; Liu, Y.M.; Dou, L.X.; Wang, X.X. The pore structures of different lithofacies in low-permeability sandy conglomerate reservoirs and their diagenetic impacts: a case study from the Es4 member of the northern steep slope in Dongying depression, Bohai Bay Basin, NE China. Marine and Petroleum Geology. 2022, 136, 105481. [CrossRef]
- Nan, F.C.; Lin, L.B.; Lai, Y.T.; Wang, C.; Yu, Y.; Chen, Z.B. Research on Fractal Characteristics and Influencing Factors of Pore-Throats in Tight Sandstone Reservoirs: A Case Study of Chang 6 of the Upper Triassic Yanchang Formation in Huaqing Area, Ordos Basin, China. Minerals. 2023, 13, 1137. [CrossRef]
- Wang, Z.Y.; Liu, Y.C.; Lu, S.F.; Lin. L.M.; Zhou, N.W.; Liu, Y. Differential development characteristics of secondary pores and effects on pore structure and movable fluid distribution in tight gas sandstones in the lower Permian, northeastern Ordos Basin, China. Geoenergy Science and Engineering. 2023, 224:211580.
- Lu, H.; Yue, D.L.; Jones, S.J.; Li, S.X.; Wang, W.R.; Bai, B.; Hou, X.L.; Li, Z.; Wu, S.H.; Li, Q. Lithofacies assemblage and effects on diagenesis in lacustrine tight sandstone reservoirs: Samples from Upper Triassic Yanchang Formation, Ordos Basin, China. Marine and Petroleum Geology. 2024, 107001. [CrossRef]
- Chen, J.F.; Li, Q.; Zhu, R.K.; Mao, Z.G.; Chen, H.H. Crystal chemistry and formation of authigenic chlorite: Influence on tight sandstone reservoir in the Yanchang formation, Ordos Basin, China. Marine and Petroleum Geology. 2024, 165, 106874. [CrossRef]
- Zhang, Y.C.; Qu, X.Y.; Miao, C.S.; Zhu, J.F.; Xu, W.; Wang, W.M. Effect of Authigenic Chlorite on the Pore Structure of Tight Clastic Reservoir in Songliao Basin. International Journal of Environmental Research and Public Health. 2023, 20(2): 1406. [CrossRef]
- Busch, B.; Bocker, J.; Hilgers, C. Improved reservoir quality assessment by evaluating illite grain coatings, quartz cementation, and compaction – Case study from the Buntsandstein, Upper Rhine Graben, Germany. Geoenergy Science and Engineering. 2024, 241, 213141. [CrossRef]
- Zhong, Y.J.; Huang, K.K.; Ye, L.M.; Lan, Y.F.; Liu, L. Diagenesis of tight sandstone reservoirs of Xujiahe Formation (Upper Triassic), the Xinchang Gas Field, western Sichuan Basin, China. Geological Journal. 2020, 55(6): 4604-4624. [CrossRef]
- Zhu, N.; Yao, S.P.; Zhang, Y.X.; Ning, S.K.; Jia, B.F.; Zhou, Y.S.; Zhang, W.J. Influence of coupled dissolution-precipitation processes on the pore structure, characteristics, and evolution of tight sandstone: A case study in the upper Paleozoic reservoir of Bohai Bay Basin, eastern China. Journal of Asian Earth Sciences. 2024, 262:105998. [CrossRef]
- Yu, Y.; Lin, L.B.; Li, Z.; Chen, H.D. Source of quartz cement in tight gas sandstone: Evidence from the Upper Triassic Xujiahe Formation in the western Sichuan Basin, SW China. Journal of Petroleum Science and Engineering. 2022, 212, 110299. [CrossRef]
- Zhou, X.F.; Tang, H.Z.; Wei, J.; Zhou, Z.H.; Xiao, W.H.; Li, J. The occurrence status, genetic mechanism, and impact on physical properties of sandstone kaolinite: A case study of Xiagou Formation in Yinger Depression, Jiuquan Basin. Journal of Northeast Petroleum University. 2019, 43 (1), 12.
- Sun, Q.L.; Sun, H.S.; Jia, B.;Yu, J.J.; Luo, W.J. Genesis of chlorite in tight sandstone reservoirs of the Xujiahe Formation in western Sichuan and its relationship with high-quality reservoirs. Petroleum and Natural Gas Geology. 2012, 33 (05): 751-757.
- Ngia, N.R.; Hu, M.Y.; Gao, D. The interplay between dolomitizing fluids, tectonically-controlled saddle dolomite and calcite cements in Lower Cambrian to Furongian strata in the Tazhong Uplift. Marine and Petroleum Geology. 2024, Jun 21:106960. [CrossRef]
- Wang, W.G.; Lin, C.Y.; Zhang, X.G. Evaluation of sweet spots for a tight sandstone reservoir: A quantitative study of diagenesis in the fourth member of the Oligocene Huagang Formation, Xihu Depression, East China Sea Shelf Basin. Marine and Petroleum Geology. 2024, 163, p.106799. [CrossRef]
- Qin, S.; Wang, R.; Shi, W.Z.; Geng, F.; Luo, F.S.; Li, G.P.; Li, J.R.; Zhang, X.; Ostadhassan, M. Integrated controls of tectonics, diagenesis and sedimentation on sandstone densification in the Cretaceous paleo-uplift settings, north Tarim Basin. Geoenergy Science and Engineering. 2024, 233, 212561.. [CrossRef]











| Samples ID | Depth (m) |
Lithology | porosity (%) |
permeability (mD) |
Mineral content by XRD(%) | Relative content of clay (%) | |||||||
| Quartz | K-feldspar | Plagioclase | Calcite | Dolomite | Clay | Kaolinite | Chlorite | Illite | |||||
| JM103-1 | 4194.58 | SC | 2.52 | 0.3081 | 51.3 | 0 | 0 | 20.3 | 22.4 | 4.8 | 54.8 | 11.3 | 25.0 |
| JM103-2 | 4196.21 | MS | 4.67 | 0.1860 | 78.5 | 0.3 | 0.4 | 0.8 | 0.6 | 18.3 | 63.0 | 7.9 | 19.6 |
| JM103-5 | 4203.95 | S | 2.09 | 0.0743 | 54.3 | 0 | 0.4 | 7.4 | 5.2 | 30.3 | 47.1 | 13.6 | 30.6 |
| GA1-4 | 1903.91 | MS | ND | ND | 80.7 | 8.8 | 6.5 | 0.4 | 0 | 3.4 | 9.9 | 35.3 | 50.5 |
| GA1-7 | 1911.52 | FS | ND | ND | 88.5 | 2.4 | 4.4 | 0.2 | 0.5 | 3.5 | 8.6 | 37.6 | 47.4 |
| GA1-10 | 1918.64 | FS | 6.23 | 0.4868 | 77.6 | 4.9 | 10.4 | 0.3 | 0.8 | 5.8 | 17.3 | 34.6 | 39.0 |
| GA1-19 | 1926.65 | FS | 7.05 | 0.4676 | 63.2 | 5.0 | 18.1 | 1.3 | 2.9 | 9.5 | 17.4 | 61.3 | 16.3 |
| GA1-21 | 1934.21 | MS | 11.23 | 3.7255 | 68.6 | 15.0 | 9.1 | 0.9 | 0.2 | 6.2 | 14.3 | 66.7 | 13.1 |
| AJ1-9 | 2168.28 | FS | 8.15 | 0.4586 | 65.1 | 4.5 | 18.9 | 0.4 | 1.8 | 8.9 | 8.4 | 31.2 | 48.6 |
| HC101-2 | 2073.69 | FS | 4.27 | 0.3438 | 65.1 | 7.4 | 15.0 | 0.3 | 0.2 | 11.3 | 9.4 | 31.5 | 48.0 |
| HC101-4 | 2076.25 | MS | 6.77 | 4.4631 | 81.0 | 4.6 | 9.1 | 0.2 | 0 | 4.4 | 9.5 | 40.6 | 32.9 |
| YQ101-1 | 2753.14 | FS | 4.19 | 0.2190 | 50.2 | 5.1 | 13.8 | 23.9 | 0 | 5.6 | 7.3 | 33.7 | 48.1 |
| YQ101-3 | 2758.12 | FS | 7.94 | 0.4151 | 62.5 | 7.3 | 18.8 | 0.4 | 0 | 11.0 | 18.0 | 40.2 | 33.8 |
| YQ101-14 | 2774.05 | MS | 4.39 | 0.6499 | 61.7 | 3.9 | 6.5 | 9.3 | 0.9 | 16.5 | 8.3 | 27.2 | 49.2 |
| YQ101-16 | 2778.97 | MS | 5.93 | 0.3146 | 81.7 | 4.2 | 7.0 | 0.4 | 0.2 | 6.2 | 13.1 | 38.2 | 42.2 |
| QL22-3 | 3542.55 | MFS | 12.48 | 0.9218 | 60.9 | 6.1 | 19.6 | 0.4 | 0.8 | 11.9 | 17.1 | 56.9 | 16.0 |
| QL22-6 | 3557.39 | MS | 6.25 | 0.3114 | 76.1 | 7.3 | 2.1 | 0.6 | 0 | 13.9 | 8.9 | 37.0 | 44.6 |
| QL22-17 | 3574.20 | MFS | 2.09 | 0.0962 | 63.0 | 6.5 | 3.8 | 15.0 | 1.0 | 9.3 | 6.3 | 13.4 | 66.9 |
| PL2-1 | 3229.30 | FS | 7.56 | 13.4186 | 78.1 | 0 | 13.0 | 0 | 1.4 | 7.5 | 46.0 | 13.0 | 35.0 |
| PL2-2 | 3237.30 | FS | 4.89 | 0.3098 | 75.7 | 0 | 14.3 | 0 | 0 | 9.3 | 51.0 | 12.0 | 29.0 |
| PL2-3 | 3244.00 | FS | 7.41 | 0.1613 | 82.4 | 0 | 9.4 | 0 | 1.1 | 6.3 | 81.0 | 3.0 | 12.0 |
| H4-5 | 3060.42 | MFS | 4.78 | 0.1944 | 79.2 | 0 | 5.4 | 0 | 0 | 13.5 | 22.0 | 12.0 | 22.0 |
| Z1-2 | 3717.55 | SC | ND | ND | 8.7 | 0 | 0.8 | 36.2 | 51.3 | 3.0 | 0 | 58.0 | 27.0 |
| W4-1 | 3516.60 | FS | ND | ND | 79.2 | 3.3 | 4.9 | 1.6 | 0 | 11.0 | 0 | 53.0 | 40.0 |
| W4-2 | 3518.40 | S | ND | ND | 68.4 | 3.8 | 2.2 | 4.2 | 0 | 15.5 | 0 | 58.0 | 33.0 |
| W4-3 | 3522.15 | MS | 6.96 | 9.9057 | 77.2 | 5.4 | 0 | 5.0 | 0 | 8.5 | 0 | 43.0 | 45.0 |
| W4-5 | 3525.16 | MFS | 1.90 | 1.2002 | 50.5 | 3.3 | 0 | 28.7 | 0 | 13.1 | 0 | 40.0 | 46.0 |
| W4-6 | 3533.70 | MS | 9.25 | 1.1261 | 81.8 | 3.5 | 0 | 0.7 | 1.7 | 12.2 | 0 | 43.0 | 30.0 |
| W4-7 | 3535.25 | MFS | 11.31 | 0.5372 | 76.8 | 7.2 | 2.9 | 1.2 | 0 | 10.2 | 0 | 45.0 | 25.0 |
| W4-8 | 3541.84 | MS | ND | ND | 90.0 | 2.0 | 0 | 2.3 | 0 | 5.1 | 0 | 35.0 | 58.0 |
| W4-9 | 3547.58 | FS | 7.03 | 0.5029 | 79.0 | 5.0 | 0 | 3.9 | 0 | 10.1 | 0 | 21.0 | 74.0 |
| W4-10 | 3549.32 | MS | 6.21 | ND | 88.2 | 1.4 | 0 | 6.2 | 0 | 3.4 | 0 | 43.0 | 51.0 |
| W4-11 | 3554.25 | MS | 10.06 | 1.0137 | 81.7 | 3.7 | 0 | 5.2 | 0 | 9.4 | 0 | 55.0 | 39.0 |
| W4-12 | 3560.50 | MS | 6.29 | 0.2490 | 70.3 | 6.2 | 0 | 12.3 | 0 | 10.0 | 0 | 41.0 | 51.0 |
| W4-14 | 3571.38 | C | ND | ND | 38.1 | 1.1 | 0 | 36.5 | 0 | 3.6 | 9.0 | 26.0 | 53.0 |
| W4-15 | 3574.68 | S | ND | ND | 52.8 | 7.6 | 0 | 1.2 | 9.2 | 29.1 | 0 | 43.0 | 40.0 |
| W6-1 | 3664.20 | MS | 10.52 | 1.2276 | 83.5 | 0 | 3.2 | 3.9 | 0 | 8.7 | 0 | 16.0 | 80.0 |
| W6-2 | 3667.30 | MFS | 13.31 | 3.8826 | 83.3 | 0 | 4.0 | 1.5 | 0 | 11.2 | 0 | 25.0 | 65.0 |
| W6-3 | 3678.40 | FS | 6.67 | 0.2192 | 64.0 | 13.8 | 3.2 | 4.1 | 0 | 14.0 | 0 | 29.0 | 66.0 |
| W6-5 | 3709.70 | MS | ND | ND | 92.2 | 0 | 0 | 1.3 | 0 | 6.5 | 0 | 42.0 | 51.0 |
| AY2-5 | 2016.80 | FS | 10.12 | 0.6670 | 74.9 | 4.8 | 14.1 | 0.2 | 1.1 | 4.6 | ND | ND | ND |
| AY2-6 | 2019.35 | FS | 5.95 | 0.1370 | 52.5 | 6.8 | 19.0 | 1.8 | 2.9 | 17.0 | ND | ND | ND |
| AY2-8 | 2066.70 | MFS | 9.31 | 0.5070 | 69.0 | 6.9 | 15.4 | 0.3 | 1.1 | 7.1 | ND | ND | ND |
| HC1-6 | 2041.85 | MFS | 11.16 | 0.4950 | 76.8 | 6.2 | 9.3 | 0.2 | 0.4 | 6.9 | ND | ND | ND |
| HC1-8 | 2044.13 | MS | 12.38 | 0.7540 | 77.0 | 0 | 9.6 | 0.3 | 3.1 | 10.0 | ND | ND | ND |
| HC1-9 | 2044.62 | MS | 9.56 | 0.4350 | 72.5 | 8.3 | 8.7 | 0.5 | 2.7 | 7.1 | ND | ND | ND |
| HC1-11 | 2048.06 | FS | 7.03 | 0.2740 | 64.6 | 10.1 | 10.0 | 0.4 | 1.2 | 11.8 | ND | ND | ND |
| Y2-3 | 2054.90 | FS | 7.10 | 0.0437 | 59.6 | 7.4 | 18.6 | 0.5 | 0.6 | 13.3 | ND | ND | ND |
| Y2-4 | 2057.82 | FS | 2.84 | 0.0070 | 53.7 | 6.9 | 17.9 | 18.2 | 0.3 | 3.0 | ND | ND | ND |
| Samples ID | Depth(m) | Mudstone debris(%) |
Sandstone debris(%) |
Carbonate rock debris(%) | Metamorphic rock debris(%) | Volcanic rock debris(%) | Chert(%) |
| GA1-10 | 1918.64 | 0.00 | 8.21 | 0.00 | 9.94 | 4.76 | 0.00 |
| GA1-21 | 1934.21 | 0.17 | 8.27 | 0.00 | 12.47 | 1.29 | 5.91 |
| AJ1-9 | 2168.28 | 7.64 | 0.00 | 1.55 | 0.00 | 4.31 | 0.00 |
| HC101-2 | 2073.69 | 0.80 | 12.98 | 0.70 | 11.16 | 1.29 | 0.00 |
| YQ101-1 | 2753.14 | 4.04 | 0.85 | 5.98 | 0.00 | 4.16 | 0.00 |
| YQ101-3 | 2758.12 | 10.32 | 2.08 | 0.00 | 5.26 | 0.00 | 0.97 |
| YQ101-16 | 2778.97 | 7.77 | 6.36 | 0.00 | 3.45 | 1.35 | 0.00 |
| QL22-3 | 3542.55 | 8.88 | 0.36 | 0.00 | 3.83 | 2.87 | 0.00 |
| PL2-2 | 3237.30 | 1.91 | 18.65 | 0.58 | 3.56 | 5.28 | 0.00 |
| PL2-3 | 3244.00 | 1.25 | 17.82 | 0.00 | 2.31 | 6.79 | 2.10 |
| W4-11 | 3554.25 | 0.83 | 6.07 | 1.96 | 15.86 | 1.53 | 1.16 |
| AY2-5 | 2016.80 | 10.58 | 5.18 | 0.10 | 1.81 | 0.47 | 0.16 |
| AY2-6 | 2019.35 | 14.96 | 2.55 | 2.48 | 2.33 | 0.00 | 0.00 |
| HC1-8 | 2044.13 | 0.00 | 10.60 | 0.30 | 10.81 | 2.52 | 1.14 |
| Y2-4 | 2057.82 | 5.57 | 2.31 | 3.56 | 1.20 | 1.03 | 0.00 |
| Lithology | D | D1 | D2 | D3 | D4 |
| Min – Max (average) | Min – Max (average) | Min – Max (average) | Min – Max (average) | Min – Max (average) | |
| medium sandstone | 2.65-2.83(2.74) | 2.8-2.86(2.83) | 2.81-2.87(2.83) | 2.35-2.69(2.53) | 2.75-2.91(2.85) |
| medium-fine sandstone | 2.58-2.91(2.75) | 2.77-2.93(2.86) | 2.7-2.89(2.82) | 2.15-2.95(2.64) | 2.56-2.98(2.82) |
| fine sandstone | 2.75-2.88(2.82) | 2.78-2.99(2.9) | 2.79-2.89(2.83) | 2.58-2.89(2.82) | 2.7-2.96(2.84) |
| Parameter | Total | Macropore | Mesopore | Small-pore | Micropore |
| D/Proportion | D1/Proportion | D2/Proportion | D3/Proportion | D4/Proportion | |
| permeability | 0.55/ND | 0.46/0.58 | 0.52/0.41 | 0.44/0.38 | 0.32/0.7 |
| porosity | 0.53/ND | 0.36/0.45 | 0.3/0.21 | 0.57/0.32 | 0.21/0.45 |
| Mercury removal efficiency | 0.15/ND | 0.06/0.37 | 0.11/0.33 | 0.21/0.31 | 0.04/0.25 |
| R15 | 0.34/ND | 0.4/0.7 | 0.47/0.49 | 0.22/0.41 | 0.22/0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).