Submitted:
31 October 2024
Posted:
04 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Animal Characteristics
2.2. Experimental Model
2.3. Rationale for the Chosen Medications and Their Attributes
- The intact group consisted of rats born from females with basic pregnancies and received a physiological solution.
- The control group included rats born after experiencing intrauterine hypoxia and also received a physiological solution.
- Thiotriazoline, also known as morpholinium-3-methyl-1,2,4-triazolyl-5-thioacetic acid (2.5% injection solution, “Arterium”, Ukraine), is an antioxidant and metabolitotropic cardioprotector that is injected intraperitoneally at a dose of 50 mg/kg [22].
- Angiolin, additionally known as [S]-2,6-diaminohexane acid 3-methyl-1,2,4-triazolyl-5-thioacecate (substance, RPA "Farmatron", Ukraine) is an endothelium-protective, anti-ischemic injection given intraperitoneally at a dose of 50 mg/kg [24].
- L-arginine (42% injection solution in vial, Tivortin, Yuria-pharm, Ukraine), an NO precursor; to decrease ischemia-related nitroxidergic system disruptions, is given intraperitoneally at a dose of 200 mg/kg [25].
- As a metabolitotropic drug, mildronate (2-(2-carboxyethyl)-1,1,1-trimethylhydrazinium) (10% injectable solution in ampoules, Grindex (Latvia)) is injected intraperitoneally at a dose of 100 mg/kg [26].
2.4. Anaesthesia
2.5. Biological Material Preparation
2.6. Immunoenzymatic Assay
2.7. Statistical Analysis:
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghodeshwar, G.K.; Dube, A.; Khobragade, D. Impact of Lifestyle Modifications on Cardiovascular Health: A Narrative Review. Cureus. 2023, 15, e42616. [Google Scholar] [CrossRef] [PubMed]
- Giussani, D.A.; Davidge, S.T. Developmental programming of cardiovascular disease by prenatal hypoxia. J Dev Orig Health Dis. 2013, 4, 328–37. [Google Scholar] [CrossRef] [PubMed]
- Aljunaidy, M.M.; Morton, J.S.; Cooke, C.-L.M.; and Davidge, S.T. Prenatal hypoxia and placental oxidative stress: linkages to developmental origins of cardiovascular disease. Am J Physiol Regul Integr Comp Physiol. 2017, 313, R395–R399. [Google Scholar] [CrossRef] [PubMed]
- Giussani, D.A.; Niu, Y.; Herrera, E.A.; Richter, H.G.; Camm, E.J.; Thakor, A.S.; Kane, A.D.; Hansell, J.A.; Brain, K.L.; Skeffington, K.L.; Itani, N.; Wooding, F.B.; Cross, C.M.; Allison, B.J. Heart disease link to fetal hypoxia and oxidative stress. Adv Exp Med Biol. 2014, 814, 77-87.
- Sutovska, H.; Babarikova, K.; Zeman, M.; Molcan, L. Prenatal Hypoxia Affects Foetal Cardiovascular Regulatory Mechanisms in a Sex- and Circadian-Dependent Manner: A Review. Int J of Mol Scі. 2022, 23, 2885. [Google Scholar] [CrossRef]
- Kornacki, J.; Gutaj, P.; Kalantarova, A.; Sibiak, R.; Jankowski, M.; Wender-Ozegowska, E. Endothelial Dysfunction in Pregnancy Complications. Biomedicines. 2021, 9, 1756. [Google Scholar] [CrossRef]
- llbritton-King, J.D.; García-Cardeña, G. Endothelial cell dysfunction in cardiac disease: driver or consequence? Front. Cell Dev. Biol. 2023, 11, 1278166. [Google Scholar]
- Janaszak-Jasiecka, A.; Siekierzycka, A.; Płoska, A.; Dobrucki, I.T.; Kalinowski, L. Endothelial Dysfunction Driven by Hypoxia—The Influence of Oxygen Deficiency on NO Bioavailability. Biomolecules. 2021, 11, 982. [Google Scholar] [CrossRef]
- McElwain, C.J.; Tuboly, E.; McCarthy, F.P.; McCarthy, C.M. Mechanisms of Endothelial Dysfunction in Pre-eclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health? Front Endocrinol (Lausanne). 2020, 11, 655. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, Y.; Yang, Y.; Du, Z.; Fan, Y.; Zhao, Y.; Yuan, S. Oxidative stress on vessels at the maternal-fetal interface for female reproductive system disorders: Update. Front Endocrinol (Lausanne). 2023; 14, 1118121. [Google Scholar]
- Belenichev, I.; Popazova, O.; Bukhtiyarova, N.; Savchenko, D.; Oksenych, V.; Kamyshnyi, O. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. Antioxidant. 2024, 13, 504. [Google Scholar] [CrossRef]
- Popazova, O.; Belenichev, I.; Bukhtiyarova, N.; Ryzhenko, V.; Oksenych, V.; Kamyshnyi, A. Cardioprotective Activity of Pharmacological Agents Affecting NO Production and Bioavailability in the Early Postnatal Period after Intrauterine Hypoxia in Rats. Biomedicines. 2023, 11, 2854. [Google Scholar] [CrossRef]
- Bednov, A.; Espinoza, J.; Betancourt, A.; Vedernikov, Y.; Belfort, M.; Yallampalli, C. L-arginine prevents hypoxia-induced vasoconstriction in dual-perfused human placental cotyledons. Placenta. 2015, 36, 1254–9. [Google Scholar] [CrossRef] [PubMed]
- King, R.G.; Gude, N.M.; Di Iulio, J.L.; Brennecke, S.P. Regulation of human placental fetal vessel tone: role of nitric oxide. Reprod Fertil Dev. 1995, 7, 1407–11. [Google Scholar] [CrossRef] [PubMed]
- Popazova, O.; Belenichev, I.; Yadlovskyi, O.; Oksenych, V.; Kamyshnyi, A. Altered Blood Molecular Markers of Cardiovascular Function in Rats after Intrauterine Hypoxia and Drug Therapy. Curr Issues Mol Biol. 2023, 45, 8704–8715. [Google Scholar] [CrossRef] [PubMed]
- Belenichev, I.F.; Vіzіr, V.A.; Mamchur, V.Y.; and Kuriata, O.V. Place of tiotriazoline in the gallery of modern metabolitotropic medicines. Zap Med J, 2019; 1. [Google Scholar]
- Belenichev, I.F.; Mazur, I.A.; Abramov, A.V.; et al. The endothelium-protective effect of 3-methyl-1,2,4-triazolyl-5-thioacetate (S)-2,6-diaminohexanic acid (lysinium): Effects on the expression of vascular endothelial growth factor (VEGF) and the characteristics of the endotheliocytes of the cerebral vessels of animals with cerebral ischemia. Neurochem J. 2013, 7, 296–302. [Google Scholar]
- Vilskersts, R.; Kigitovica, D.; Korzh, S.; Videja, M.; Vilks, K.; Cirule, H.; Skride, A.; Makrecka-Kuka, M.; Liepinsh, E.; Dambrova, M. Protective Effects of Meldonium in Experimental Models of Cardiovascular Complications with a Potential Application in COVID-19. Int J Mol Sci. 2021, 23, 45. [Google Scholar] [CrossRef]
- Oyovwi, M.O.; Atere, A.D. Exploring the medicinal significance of l-Arginine mediated nitric oxide in preventing health disorders (2024) Europ J Med Chem. 2024, 12:100-175.
- Zadnipryanyi, I.V.; Tret'yakova, O.S.; Sataeva, T.P. Morphological Changes in Rat Myocardium under Hemic Hypoxia and Cytoflavin Treatment. Eksp Klin Farmakol. 2016, 79, 20–25. [Google Scholar]
- Zadnipryanyy, I.V.; Tretiakova, O.S.; Sataieva, T.P. Cardio and cytoprotective effect of cytoflavin in terms of experimental perinatal hemic hypoxia. Patol Fiziol Eksp Ter. 2016, 60, 64–71. [Google Scholar]
- Cherkasova, D.U.; Magomedgadzhieva, D.N.; Rabadanova, A.I. Functional changes in the mother-fetus system in experimental chronic nitrite hypoxia. Cent. Rus. Acad. Sci. 2009, 11, 934–937. [Google Scholar]
- Mukhina, I.V. Report on the Independent Preclinical Evaluation of the Specific Activity of the Dosage Forms of Thiotriazoline (2.5% Injection and Tablets). Unpublished internal report. Nizhnij Novgorod. 2009; 112p. (In Russian).
- Kolesnik, Y.M. Report on preclinical study of specific biological activity (anti-ischemic, endothelioprotective) of the drug Lisinium (Angiolin) at parenteral administration. Zaporozhye 2018, 11, 2584. [Google Scholar]
- Ghotbeddin, Z.; Basir, Z.; Jamshidian, J.; Delfi, F. Modulation of behavioral responses and CA1 neuronal death by nitric oxide in the neonatal rat's hypoxia model. Brain Behav. 2020; 10, e01841. [Google Scholar]
- Berlato, D.G.; de Bairros, A.V. Meldonium: Pharmacological, toxicological, and analytical aspects. Toxicology Research and Application, 2020; 4. [Google Scholar]
- Ivanitskaya, N.F. Methods of obtaining different stages of hemic hypoxia in rats by sodium nitrite administration. Pathol. Physiol. Exp. Ther. 1976, 3, 69–71. [Google Scholar]
- Evidence on Developmental and Reproductive Toxicity of Sodium Nitrite. Reproductive and Cancer Hazard Assessment Section (RCHAS) Office of Environmental Health Hazard Assessment (OEHHA) California Environmental Protection Agency (CAL/EPA) DRAFT. USA. 3 March 2000. Available online. (accessed on 27 October 2023).
- Popazova, O.O.; Belenichev, I.F.; Abramov, A.V.; Bukhtiyarova, N.V.; Chereshniuk, I.L.; Skoryna, D.Y. Indicators of Bioelectrical Activity of the Rat Heart after Prenatal Hypoxia and Pharmacological Correction. Innov. Biosyst. Bioeng. 2022, 6, 148–160. [Google Scholar] [CrossRef]
- Aengwanich, W.; Wandee, J. The effect of increased ambient temperature on Hsp70, superoxide dismutase, nitric oxide, malondialdehyde, and caspase activity in relation to the intrinsic and extrinsic apoptosis pathway of broiler blood cells. J Therm Biol. 2022; 105, 103211. [Google Scholar]
- Bochenek,M. L.; Gogiraju, R.; Großmann, S.; Krug, J.; Orth, J.; Reyda, S.; Georgiadis, G.S.; Spronk, H.M.; Konstantinides, S.; Münzel, T.; Griffin, J.H.; Wild, P.; Espinola-Klein, C.; Ruf, W.; Schäfer, K. EPCR-PAR1 biased signaling regulates perfusion recovery and neovascularization in peripheral ischemia. JCI Insight. 2022, 7, e157701. [Google Scholar]
- Ireland, H.; Konstantoulas, C.J.; Cooper, J.A.; Hawe, E.; Humphries, S.E.; Mather, H.; Goodall, A.H.; Hogwood, J.; Juhan-Vague, I.; Yudkin, J.S.; di Minno, G.; Margaglione, M.; Hamsten, A.; Miller, G.J.; Bauer, K.A.; Kim, Y.T.; Stearns-Kurosawa, D.J.; Kurosawa, S. EPCR Ser219Gly: elevated sEPCR, prothrombin F1+2, risk for coronary heart disease, and increased sEPCR shedding in vitro. Atherosclerosis. 2005, 183, 283–92. [Google Scholar] [CrossRef]
- Saposnik, B.; Peynaud-Debayle, E.; Stepanian, A.; Baron, G.; Simansour, M.; Mandelbrot, L.; de Prost, D.; Gandrille, S. Elevated soluble endothelial cell protein C receptor (sEPCR) levels in women with preeclampsia: a marker of endothelial activation/damage? Thromb Res. 2012, 129, 152–7. [Google Scholar] [CrossRef]
- Schmaier, A.A.; Pajares Hurtado, G.M.; Manickas-Hill, Z.J.; et al. Tie2 activation protects against prothrombotic endothelial dysfunction in COVID-19. JCI Insight. 2021, 6, e151527. [Google Scholar] [CrossRef]
- Jongman, R.M.; Zwiers, P.J.; van de Sluis, B.; et al. Partial Deletion of Tie2 Affects Microvascular Endothelial Responses to Critical Illness in A Vascular Bed and Organ-Specific Way. Shock. 2019, 51, 757–769. [Google Scholar] [CrossRef]
- Kappou, D.; Sifakis, S.; Konstantinidou, A.; Papantoniou, N.; Spandidos, D.A. Role of the angiopoietin/Tie system in pregnancy (Review). Exp Ther Med. 2015, 9, 1091–1096. [Google Scholar] [CrossRef]
- Li, X.; Lee, C.; Tang, Z.; Zhang, F.; Arjunan, P.; Li, Y.; Hou, X.; Kumar, A.; Dong, L. VEGF-B: a survival, or an angiogenic factor? Cell Adh Migr. 2009, 3, 322–7. [Google Scholar] [CrossRef]
- Mallick, R.; Ylä-Herttuala, S. Therapeutic Potential of VEGF-B in Coronary Heart Disease and Heart Failure: Dream or Vision? Cells. 2022, 11, 4134. [Google Scholar] [CrossRef]
- Sultan, I.; Ramste, M.; Peletier, P.; Hemanthakumar, K.A.; Ramanujam, D.; Tirronen, A.; von Wright, Y.; Antila, S.; Saharinen, P.; Eklund, L.; Mervaala, E.; Ylä-Herttuala, S.; Engelhardt, S.; Kivelä, R.; Alitalo, K. Contribution of VEGF-B-Induced Endocardial Endothelial Cell Lineage in Physiological Versus Pathological Cardiac Hypertrophy. Circ Res. 2024, 134, 1465–1482. [Google Scholar] [CrossRef]
- Waller, J.P.; Howell, J.A.; Peterson, H.; George, E.M.; Bidwell, G.L. 3rd. Elastin-Like Polypeptide: VEGF-B Fusion Protein for Treatment of Preeclampsia. Hypertension. 2021, 78, 1888–1901. [Google Scholar] [CrossRef] [PubMed]
- Giussani, D.A.; Camm, E.J.; Niu, Y.; Richter, H.G.; Blanco, C.E.; Gottschalk, R.; Blake, E.Z.; Horder, K.A.; Thakor, A.S.; Hansell, J.A.; Kane, A.D.; Wooding, F.B.; Cross, C.M.; Herrera, E.A. Developmental programming of cardiovascular dysfunction by prenatal hypoxia and oxidative stress. PLoS One. 2012, 7, e31017. [Google Scholar] [CrossRef] [PubMed]
- Arai, M.; Imai, H.; Koumura, T.; Yoshida, M.; Emoto, K.; Umeda, M.; Chiba, N.; Nakagawa, Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells. J Biol Chem. 1999, 274, 4924–33. [Google Scholar] [CrossRef] [PubMed]
- Roveri, A.; Casasco, A.; Maiorino, M.; Dalan, P.; Calligaro, A.; Ursini, F. Phospholipid hydroperoxide glutathione peroxidase of rat testis. Gonadotropin dependence and immunocytochemical identification. J Biol Chem. 1992, Mar 25;267, 6142-6.
- Oh, S.J.; Ikeda, M.; Ide, T.; Hur, K.Y.; Lee, M. S. Mitochondrial event as an ultimate step in ferroptosis. Cell Death Discov. 2022, 8, 414. [Google Scholar] [CrossRef]
- Tian, P.; Xu, Z.; Guo, J.; Zhao, J.; Chen, W.; Huang, W.; Wang, M.; Mi, C.; Zhang, Y.; Yang, Y.; Zhang, H. Hypoxia causes trophoblast cell ferroptosis to induce miscarriage through lnc-HZ06/HIF1α-SUMO/NCOA4 axis. Redox Biol. 2024; 70, 103073. [Google Scholar]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011, 15, 1957–97. [Google Scholar] [CrossRef]
- Forgione, M.A.; Weiss, N.; Heydrick, S.; Cap, A.; Klings, E.S.; Bierl, C.; Eberhardt, R.T.; Farber, H.W.; Loscalzo, J. Cellular glutathione peroxidase deficiency and endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2002, 282, H1255–61. [Google Scholar] [CrossRef]
- Kong, X.; Qiao, D.; Zhao, X.; Wang, L.; Zhang, J.; Liu, D.; Zhang, H. The molecular characterizations of Cu/ZnSOD and MnSOD and its responses of mRNA expression and enzyme activity to Aeromonas hydrophila or lipopolysaccharide challenge in Qihe crucian carp Carassius auratus. Fish Shellfish Immunol. 2017; 67:429-440. [Google Scholar]
- Giles, B.L.; Suliman, H.; Mamo, L.B.; Piantadosi, C.A.; Oury, T.D.; Nozik-Grayck, E. Prenatal hypoxia decreases lung extracellular superoxide dismutase expression and activity. Am J Physiol Lung Cell Mol Physiol. 2002, 283, L549–54. [Google Scholar] [CrossRef]
- Sherlock, L.G.; Trumpie, A.; Hernandez-Lagunas, L.; McKenna, S.; Fisher, S.; Bowler, R.; Wright, C.J.; Delaney, C.; Nozik-Grayck, E. Redistribution of Extracellular Superoxide Dismutase Causes Neonatal Pulmonary Vascular Remodeling and PH but Protects Against Experimental Bronchopulmonary Dysplasia. Antioxidants (Basel). 2018, 7, 42. [Google Scholar] [CrossRef]
- Grzeszczak, K.; Łanocha-Arendarczyk, N.; Malinowski, W.; Ziętek, P.; Kosik-Bogacka, D. Oxidative Stress in Pregnancy. Biomolecules. 2023, 13, 1768. [Google Scholar] [CrossRef]
- Boughaleb, H.; Lobysheva, I.; Dei Zotti, F.; Balligand, J.L.; Montiel, V. Biological Assessment of the NO-Dependent Endothelial Function. Molecules. 2022, 27, 7921. [Google Scholar] [CrossRef]
- Belenichev, I.F.; Mazur, I.A.; Abramov, A.V.; et al. The endothelium-protective effect of 3-methyl-1,2,4-triazolyl-5-thioacetate (S)-2,6-diaminohexanic acid (lysinium): Effects on the expression of vascular endothelial growth factor (VEGF) and the characteristics of the endotheliocytes of the cerebral vessels of animals with cerebral ischemia. Neurochem. J. 2013, 7, 296–302. [Google Scholar]
- Hood, J.D.; Meininger, C.J.; Ziche, M.; Granger, H.J. VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol. 1998, 274, H1054–8. [Google Scholar] [CrossRef] [PubMed]
- Belenichev, I.F.; Shah, F.; Chekman, I.S.; Nagornaya, E.A.; Gorbacheva, S.V.; Gorchakova, N.A. Thiol-Disulfide System: Role in Endogenous Cyto-and Organoprotection, Pathways of Pharmacological Modulation; LLC “Vydavnytstvo” Yuston: Kyiv, Ukraine, 2020. [Google Scholar]
- Belenichev, I.F.; Bak, P.G.; Popazova, O.O.; Bukhtiyarova, N.V.; Yadlovsky, O.E. Nitric o xide-dependent mechanism of endothelial dysfunction formation is a promising target link for pharmacological management. Biopolym. Cell. 2022, 38, 145–157. [Google Scholar] [CrossRef]
- Belenichev, I.F.; Cherniy, V.I.; Nagornaya, E.A.; Bukhtiyarova, N.V.; Kucherenko, V.I. Neuroprotection and neuroplasticity. Kiev: Logos, 2015; 510. [Google Scholar]
- Kucherenko, L.I.; Khromylova, O.V.; Mazur, I.A.; Moriak, Z.B. Optimization of L-arginine and thiotriazoline compound analysis by high-performance liquid chromatography method. Zap Med J [Internet]. 2018, 6.
- Vilskersts, R.; Kigitovica, D.; Korzh, S.; Videja, M.; Vilks, K.; Cirule, H.; Skride, A.; Makrecka-Kuka, M.; Liepinsh, E.; Dambrova, M. Protective Effects of Meldonium in Experimental Models of Cardiovascular Complications with a Potential Application in COVID-19. Int J Mol Sci. 2021, 23, 45. [Google Scholar] [CrossRef]
- Gureev, A.P.; Sadovnikova, I.S.; Shaforostova, E.A.; Starkov, A.A.; Popov, V.N. Mildronate protects heart mtDNA from oxidative stress toxicity induced by exhaustive physical exercise. Arch Biochem Biophys. 2021; 705, 108892. [Google Scholar]
- Hsu, C.N.; Tain, Y.L. Impact of Arginine Nutrition and Metabolism during Pregnancy on Offspring Outcomes. Nutrients. 2019, 11, 1452. [Google Scholar] [CrossRef]
- Suvorava, T.; Nagy, N.; Pick, S.; Lieven, O.; Rüther, U.; Dao, V.T.; Fischer, J.W.; Weber, M.; Kojda, G. Impact of eNOS-Dependent Oxidative Stress on Endothelial Function and Neointima Formation. Antioxid Redox Signal. 2015, 23, 711–23. [Google Scholar] [CrossRef]
- Kamyshna, I.I.; Pavlovych, L.B.; Maslyanko, V.A.; Kamyshnyi, A.M. Analysis of the transcriptional activity of genes of neuropeptides and their receptors in the blood of patients with thyroid pathology. J. Med. Life 2021, 14, 243–249. [Google Scholar] [CrossRef]
- Topol, I.; Kamyshny, A. Study of expression of TLR2, TLR4 and transckription factor NF-kB structures of galt of rats in the conditions of the chronic social stress and modulation of structure of intestinal microflora. Georgian Med. News 2013, 225, 115–122. [Google Scholar]
- Repchuk, Y.; Sydorchuk, L.P.; Sydorchuk, A.R.; Fedonyuk, L.Y.; Kamyshnyi, O.; Korovenkova, O.; Plehutsa, I.M.; Dzhuryak, V.S.; Myshkovskii, Y.M.; Iftoda, O.M.; et al. Linkage of blood pressure, obesity and diabetes mellitus with angiotensinogen gene (AGT 704T>C/rs699) polymorphism in hypertensive patients. Bratisl. Lek. Listy 2021, 122, 715–720. [Google Scholar] [CrossRef]
| Experimental Groups | сEPCR, pg/ml |
Tie-2, pg/ml |
VEGF-B, pg/ml |
Cu/ZnSOD, pg/ml |
GPX1, pg/ml |
GPX4, pg/ml |
|---|---|---|---|---|---|---|
| Intact (Rats born from rats with normal pregnancies) (n = 10) | 22.5 ± 0.411 |
17.7 ± 0.348 |
44.7 ± 1.012 |
87.7 ± 1.802 |
43.3 ± 1.044 |
67.8 ± 1.676 |
| PH (Rats with prenatal hypoxia) (control) (n = 10) | 43.2 ± 1.3601 |
10.2 ± 0.2751 |
32.1 ± 1.0121 |
63.5 ± 1.3601 |
21.1 ± 0.5381 |
34.2 ± 0.5371 |
| PH +L-arginine (n = 10) | 38.0 ± 0.8541* |
14.2 ± 0.3481* |
34.7 ± 1.4861 |
62.7 ± 1.7391 |
22.8 ± 0.6961 |
38.3 ± 1.3281* |
| PH + Thiotriazoline (n = 10) | 33.5 ± 1.0121* |
12.7 ± 0.3161* |
36.8 ± 1.1701* |
77.8 ± 1.9611* |
38.8 ± 0.6961* |
57.7 ± 0.9491* |
| PH + Angiolin (n = 10) | 28.2 ± 0.5381* |
16.4 ± 0.3801* |
47.8 ± 0.8851*1 |
79.7 ± 1.6761* |
40.7 ± 1.012* |
62.8 ± 1.803* |
| PH + Meldonium (n = 10) | 40.5 ± 2.1191 |
11.0 ± 0.2311* |
31.1 ± 1.1701 |
65.2 ± 1.9611 |
22.7 ± 0.3481 |
37.3 ± 0.6011* |
| Experimental Groups | сEPCR, pg/ml |
Tie-2, pg/ml |
VEGF-B, pg/ml |
Cu/ZnSOD, pg/ml |
GPX1, pg/ml |
GPX4, pg/ml |
|---|---|---|---|---|---|---|
| Intact (Rats born from rats with normal pregnancies) (n = 10) | 21.2 ± 0.348 |
18.2 ± 0.253 |
48.8 ± 1.012 |
91.9 ± 2.308 |
46.4 ± 0.664 |
72.4 ± 1.676 |
| PH (Rats with prenatal hypoxia) (control) (n = 10) | 45.4 ± 0.7271 |
11.3 ± 0.2211 |
31.6 ± 0.6961 |
62.8 ± 1.5811 |
21.2 ± 0.9491 |
37.8 ± 0.5691 |
| PH +L-arginine (n = 10) | 35.2 ± 0.5371* |
15.2 ± 0.3481* |
32.7 ± 0.8541 |
66.7 ± 1.3281 |
24.3 ± 0.5691* |
39.4 ± 0.4431 |
| PH + Thiotriazoline (n = 10) | 32.2 ± 0.5691* |
15.7 ± 0.2431* |
37.8 ± 1.0751* |
78.7 ± 1.9921* |
42.6 ± 0.7911* |
68.7 ± 1.3601* |
| PH + Angiolin (n = 10) | 21.2 ± 0.632* |
18.4 ± 0.379* |
52.8 ± 1.202*1 |
88.7 ± 2.625* |
48.8 ± 1.075* |
77.8 ± 1.8341* |
| PH + Meldonium (n = 10) | 44.9 ± 1.6761 |
10.4 ± 0.1271* |
34.7 ± 0.6011* |
64.4 ± 1.3911 |
27.4 ± 0.6011* |
42.5 ± 1.5181* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
