Preprint
Communication

This version is not peer-reviewed.

Proof of the Binary Goldbach Conjecture

Submitted:

22 August 2025

Posted:

28 August 2025

Read the latest preprint version here

Abstract
In this article the proof of the binary Goldbach conjecture is established (any integer greater than one is the mean arithmetic of two positive primes) . To this end, Chen’s weak conjecture is proved (any even integer greater than one is the difference of two positive primes) and a "localised" algorithm is developed for the construction of two recurrent sequences of extreme Goldbach decomponents (U2n) and (V2n), ((U2n) dependent of (V2n)) verifying : for any integer n ≥2 (U2n) and (V2n) are positive primes and U2n + V2n = 2n. To form them, a third sequence of primes (W2n) is defined for any integer n ≥3 by W2n = Sup (pP : p ≤ 2n - 3) , P denoting the set of positive primes. The Goldbach conjecture has been proved for all even integers 2n between 4 and 4.1018 and in the neighbourhood of 10100 , 10200 and 10300 for intervals of amplitude 109 . The table of extreme Goldbach decomponents, compiled using the programs in Appendix 15 and written with the Maxima and Maple scientific computing software, as well as files from ResearchGate, Internet Archive, and the OEIS, reaches values of the order of 2n = 105000. Algorithms for locating Goldbach's decomponentss for very large values of 2n are also proposed. In addition, a global proof by strong recurrence "finite ascent and descent method" on all the Goldbach decomponents is provided by using sequences of primes (W2n) defined by : W2n = Sup (pP : p ≤ 2n - q) for any odd positive prime q , and a further proof by Euclidean divisions of 2n by its two assumed extreme Goldbach decomponents is announced by identifying uniqueness, coincidence and consistency of the two operations. Next, a majorization of U2n by n0.525, 0.7 ln2.2(n) with probability one and 5 ln1.3(n) on average for any integer n large enough is justified. Finally, the Lagrange-Lemoine-Levy (3L) conjecture and its generalization called "Bachet-Bézout-Goldbach"(BBG) conjecture are proven by the same type of method. In Aditional notes, we provide heuristic estimates for Goldbach's comet and presented a graphical synthesis using a reversible Goldbach tree (parallel algorithm).
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  

1. Overview

Number theory, "the queen of mathematics" studies the structures and properties defined on integers and primes (Euclid [15], Hadamard [18], Hardy, Wright [20], Landau [26], Tchebychev [44]). Many problems and conjectures have been formulated simply, but they remain very difficult to prove. These main components include :
Elementary arithmetic.
 ˽ Operations on integers, determination and properties of primes.
(Basic operations, congruence, gcd, lcm, ………..).
 Decomposition of integers into products or sums of primes
(Fundamental theorem of arithmetic, decomposition of large integers, cryptography and Goldbach’s conjecture, see Filhoa, Jaimea, de Oliveira Gouveaa, Keller-Füchter, [16]).
● Analytical number theory .
 Distribution of primes : Prime Number Theorem, the Riemann hypothesis, (see Hadamard [18], De la Vallée-Poussin [45], Littlewood [29] and Erdos [14], ,.....).
 Gaps between consecutive primes (Bombieri,Davenport [3], Cramer [9], Baker,Harmann,Iwaniec, Pintz [4,5,24], Granville [17], Maynard [31], Tao [43],
Shanks [40], Tchebychev [44] and Zhang [50]).
● Algebraic, probabilistic, combinatorial and algorithmic number theories .
 Modular arithmetic.
 Diophantine approximations and equations.
 Arithmetic and algebraic functions.
 Diophantine and number geometry.
 Computational number theory.

2. Definitions Notations and Background

The integers h, m, M, n, N, k, K ,p, q, Q, r,..…used in this article are always positive.  (2.1)
The symbol "/" means : such as or knowing that.      (2.2)
Let P   be the infinite set of positive primes p k   (called simply primes)        (2.3)
( p 1  = 2 ; p 2  = 3 ; p 3   = 5 ; p 4   = 7 ; p 5  = 11 ; p 6  = 13 ; .........)
For any non-zero integer K      P K  = { p P   : p ≤ 2K } (2.4) 
Writing the large numbers calculated in Appendix 14 is simplified by defining the following constants:    
M = 10 9  ; R = 4. 10 8  ; G = 10 100  ; S = 10 500  ; T = 10 1000         (2.5)
p k # = 1 k p j  is the primoriale of p k  .     (2.6)
ln(x) denotes the neperian logarithm of the real x > 0      (2.7)
exp(x) denotes the exponential of the real number x .      (2.8)      
Lambert’s function is defined as the solution to the complex-valued functional equation
in " w(z)" :
z = w exp(w)       (2.9)
where z is a given complex number and w is the unknown complex-valued function .
Since functional solutions of (2.9) are not injective, the Lambert’s function is multivalued (multibranch).
Main branch : LambertW(0 , x) is the inverse function of f defined on [-1 ; +   [ by: 
f (x) = x.exp(x)       (2.10)
Secondary branch : LambertW(-1 , x) . This branch is defined for values of  x less than - 1 e  It corresponds to values of  x that are generally negative and is used where the main branch does not apply.
Remark. Analytical extensions are defined by entire series.  
Let (   W 2 n )  be the sequence of primes defined by          
  ∀ n ℕ + 3       W 2 n   = Sup (p P   : p ≤ 2n - 3) (2.11) 
For any odd prime q , let (   W q 2 n )  be the sequence of primes defined by   
∀ n ∈ ℕ n ≥ ( q + 3 ) 2    W q 2 n  = Sup (p ∈ P  : p ≤ 2n - q)         (2.12)
Any sequence denoted by (   G 2 n )  = (   U 2 n   ; V 2 n   ) verifying (2.11) is called a Goldbach sequence.  
∀ n ∈ ℕ + 2         U 2 n  , V 2 n  ∈ P   and  U 2 n  + V 2 n  = 2n       (2.13)
  U 2 n  and V 2 n  are also known as "Goldbach partitions or Goldbach decomponents".        
Iwaniec,Pintz [24] have shown that for a sufficiently large integer n there is always a prime between n − n 23 / 42    and n . Baker and Harman [4,5] concluded that there is a prime in the interval [ n ; n + o ( n 0.525 ) ]   .  Thus this results provides an increase of the gap between two consecutive primes p k   and p k + 1     of the form
  ε  > 0   k ε  ∈   N * │ ∀ k ∈ ℕ    k ≥ k ε     p k + 1 - p k < ε . p k 0.525 (2.14)
The results obtained on the Cramer-Granville-Maier-Nicely conjecture [1,3,9,17,30,32] imply the following majorization.
For any real c > 2 and for any integer k ≥ 500
p k + 1 - p k ≤ 0.7 l n c ( p k )   (with probability one) (2.15)
and
p k + 1 - p k ≤ 20.ln( p k ) (on average) (2.16)
The following abbreviations have been adopted :
● Lagrange-Lemoine-Levy conjecture    (3L) conjecture   (2.17)
● Bachet-Bézout-Goldbach conjecture    (BBG) conjecture    (2.18)
● (Extreme) Goldbach decomponents    (E).G.D.    (2.19)

3. Introduction

Chen [7], Hardy, Littlewood [21], Hegfollt, Platt [22], Ramaré, Saouter [35], Tao [43],
Tchebychev [44] and Vinogradov [47] have taken important steps and obtained promising results on the Goldbach conjecture (any integer n ≥ 2 is the mean arithmetic of two primes). Indeed, Helfgott, Platt [22] proved the ternary Goldbach conjecture in 2013.
Silva, Herzog, Pardi [41] held the record for calculating the terms of Goldbach sequences after determining pairs of primes ( U 2 n   ;   V 2 n ) verifying
n ∈ ℕ │ 4 ≤ 2n ≤ 4.1018    U 2 n + V 2 n = 2n    (3.1)
Goldbach’s conjecture has also been verified for all even integers 2n satisfying
10 5 k ≤ 2n ≤ 10 5 k +  10 8   :     k = 3, 4, 5, 6,........,20
and
10 10 k ≤ 2n ≤  10 10 k + 10 9 :     k = 20, 21, 22, 23, 24,.......,30
by Deshouillers, te Riele, Saouter [11].
In previous research work there is no explicit construction of recurrent Goldbach sequences.
In this article, for any integer n greater than two the E.G.D. U 2 n and V 2 n are computed iteratively using a simple and efficient "localised" algorithm.
Using Maxima and Maple scientific computing software on a personal computer Silva’s record is broken and many E.G.D. are calculated up to the neighbourhood of
2n = 10500 , 101000, 105000 and G.D. around 10 10000 (see Sainty [37]
"In Researchgate, Internet Archive, and OEIS, E.G.D. files are supplied : E.G.D. File S around 2n = 10 S for S = 1, 2, 3,............., 10000").
The binary Goldbach conjecture can be proved globally by strong recurrence on all G.D. using ( W q 2 n ) sequences of primes in the same way via Goldbach(-) conjecture (any even integer greater than one is the difference of two primes) demonstrated in Teorem 4.
Remark.
1. Chen conjecture: For any integer K ≥ 1 there are infinitely many pairs of primes with a difference equal to 2K.
2. De Polignac conjecture: Same as Chen, but with consecutive pairs of primes.
3. What we know: April 2013, Yitang Zhang [50] demonstrates that the smallest even integer 2K verifying the conjecture is greater than 70 million.
In 2014 James Maynard [31] then Terence Tao [43] lowered this limit to 246.
We validate Chen’s weak conjecture by verifying directly in the primes tables that all even gaps from 2 to 246 are possible (see Appendix 16).
In addition, the (3L) conjectures [10,23,25,28,48] and its generalization called
(BBG) conjecture are validated.
Using case disjunction reasoning we construct two recurrent E.G.D. sequences of primes (   V 2 n   ) and (   U 2 n   ) according to the sequence ( W 2 n ) by the following process
Firstly,
U 4 = 2 and V 4   = 2   (3.2)
 For any integer n greater than two
Either
(2n - W 2 n   ) is a prime
then V 2 n and U 2 n are defined directly in terms of W 2 n .
Either
(2n - W 2 n ) is a composite number
then V 2 n and U 2 n are determined from the previous terms of the sequence (   G 2 n ) .
(This process can be reversed by first determining the increasing sequence of primes less than Inf (2n - W 2 k P : k ∈ ℕ) , which saves a lot of computing time when programming).

4. Theorem (Chen’s Weak or Goldbach(-) Conjecture)

∀ K ∈ ℕ* p , q ∈ P   p - q = 2K      (4.1)
If K ≥ 2     3 ≤ q ≤ 2K   and   3 + 2K ≤ p ≤ 4K
Practical method on some examples:
First of all (5 - 3 = 2), then we begin the process at (7 - 3 = 4); we will select the smallest primes for which the difference is precisely 6 (11 - 5 = 6), then 8 (11 - 3 = 8), then 10
(13 - 3 = 10),......... , then 2K (demonstration established by strong recurrence, by the asurd and feedback). All pairs of Goldbach(-) partitions obtained by this method for K between 2 and 123 are listed in Appendix 16 to validate it using Tao results.
Proof. An other proof can also be established by strong recurrence on the integer K ≥ 2. Let P C h e n (K) be the following property
" ∀ K ∈ ℕ* p, q ∈ P p - q = 2K   3 ≤ q ≤ 2K and 2K + 3 ≤ p ≤ 4K " (4.2)
P C h e n (2) is true : 7 - 3 = 4   q = 3 ≤ 4 and p = 7 ≤ 4 x 2 = 8
Let’s show
M ∈ ℕ 2 ≤ MK    then    P C h e n (M)    P C h e n (K + 1)
We reason through the absurd
Let p , q P K   pq
P , Q P   PQ    h, m ∈ ℕ
P = p + 2h and Q = q + 2m
we assume that
P - Q = p + 2h - q - 2m ≠ 2(K + 1)      (4.3)
Therefore
p - q ≠ 2(K + 1 - h + m) (4.4)
You can always choose     hm   and    h - mK + 1 .
The set {2(K + 1 - h + m) ; 2h and 2m are any gaps between primes} contains all even integers between 2 and 2K (according to the recurrence hypothesis on P C h e n (K)).
However the strong recurrence hypothesis asserts that
M ∈ ℕ  MK p, q P    │    p - q = 2M    (4.5)
By choosing : M = K + 1 - h + m
t h i s c o n t r a d i c t s (4.4).
So
h, m ∈ ℕ │       P - Q = p + 2h - q - 2m = 2(K + 1)       (4.6)
knowing
p, p + 2h, q, q + 2m P      hm and h - mK + 1
Thus validating the heredity of property P C h e n (K).
The property P C h e n (K) is therefore true. As a result Goldbach(-) conjecture is validated.

5. Corollary

Let ( R 2 K ) and ( Q 2 K ) be two sequences of primes determined by
    R 2 K = Inf (p ∈ P : p - 2K ∈ P ) and Q2K = Inf (p ∈ P : 2K + p ∈ P ) = R 2 K - 2K (5.1)
They are defined for any integer K N *       (5.2)
and satisfy
lim R 2 K = +       (5.3)
K N * R 2 K , Q2K P    and    R 2 K - Q 2 K = 2K       (5.4)
K     N *   │ 2 ≤ K ≤ 16     3 ≤ Q2K ≤ 2K   and   2K + 3 ≤ R 2 K ≤ 4K     (5.5)
For any integer K large enough
3 ≤ Q2K ( 2 K ) 0.525   and   2K + 3 ≤ R 2 K ≤ 2K + ( 2 K ) 0.525     (5.6)
Proof.
(5.1) ; (5.2) : According to the previous Theorem 4, the sequences ( R 2 K   ) and (Q2K) are defined by strong recurrence (finite descent).
(5.3) :    R 2 K ≥ 2K lim R 2 K = +
(5.4) : By construction, these sequences thus verify :    R 2 K - Q 2 K = 2K
(5.5) :  The property can be verified directly term-to-term by examining the sequence proposed above.
(5.6) : This property is verified up to 2K = 246 by calculations on the previous list.
We prove this result by recurrence
First of all, we order the Goldbach(-) decomponents at a fixed prime q , so as to obtain the estimate (5.6) more easily.
Let q r be the (r + 1)th prime :
We examine the sequences of primes ( T r (K) ) K N satisfying :
T 1 (K) = 2K + 3
( T 1 (K) ; 2K) → (5;2) ; (7 4) ; (11;8) ; (13;10) ; (17;14) ; (19;16) ; (23;20) ; (29;26) ; (29;28);..
T 2 (K) = 2K + 5
( T 2 (K) ; 2K) → (7;2) ; (11;6) ; (13;8) ; (17;12) ; (19;14) ; (23;18) ; (29;24) ; (31;26) ; (37;32)................................
T 3 (K) = 2K + 7
( T 3 (K) ; 2K) → (11;4) ; (13;6) ; (17;10) ; (19;12) ; (23;16) ; (29;22) ; (31;24) ; (37;30)...........
T 4 (K) = 2K + 11
(T11(K) ; 2K) → (13;2) ; (17;6) ; (19;8) ; (23;12) ; (29;18) ; (31;20) ; (37;26) ; (41;30) ; (43;34).........................
(T13(K) ; 2K) → (17;4) ; (19;6) ; (23;10) ;(29;16) ; (31;18) ; (37;24) ; (41;28) ; (43;30 ; (47;34)..........................
......................................
T r (K) = 2K + q r (K N * : T r (K) and q r are primes)    (see Appendix 16)
For any integer K satisfying ( 2 K ) 0.525 > q r the property holds for T r (K).
Therefore it is generally validated for all K > K 0 , since we obtain all possible cases of
Chen’s weak conjecture starting with T 1 (K), then T 2 (K), then T 3 (K) .... for ( 2 K ) 0.525 q r .
(can be proved by strong recurrence using the same method as in Theorem 4 by "finite descent").
Let a = 40 21 and P a (r) be the following property
"For any integer M │ 2M < ( q r ) a there exists at least a prime q < q r │ 2 M + q P  
P a ( K 0 ) is true (see Appendix 16).
▶ Let’s show :   P a (r)   P a (r + 1)
q r + 1 q r + q r 0.525    (5.6)
It is assumed that M
T r + 1 (K) - q r + 1 ≠ 2M knowing 2M < ( q r + 1 ) c p
T m (R), q m P h, s ∈ ℕ │ T r + 1 (K) = T m (R) + 2h and q r + 1 = q m + 2s (5.7)
then
  T m (R) - q m ≠ 2(M + s - h)     (5.8)
 which is impossible according to the hypothesis of strong recurrence since
2(M + s - h) is less than Sup ( q m ) a   and that all primes T m (R) , q m satisfy the recurrence hypothesis.
We deduce that :      P c p (r) P c p (r + 1)
Thus the property (5.6) is true.

6. Lemma (Goldbach’s Fundamental Lemma)

Let q be an odd prime; then
there exists integers  n 0 , n q
For any integer n ≥ n q  there exists an integer s
2n - W q 2 s P     (6.1)
Let ( Z q 2 n ) be the sequence of primes defined by
n ∈ ℕ n n q     Z q 2 n = Inf (2n - W q 2 k P : k ∈ ℕ)     (6.2)
All G.D. are contains in the set {(2n - Z q 2 n ; Z q 2 n ) : n ∈ ℕ + 3}
For any integer n n 0      Z q 2 n ( 2 n q ) 0.525    (6.3)
Z q 2 n ≤ o ( 2 n ) 0.525     (6.4)
Proof. The proofs of propositions (6.1), (6.2) and (6.3) are established following the same principle of strong recurrence as in Theorem 4 and Corollary 5 by "return, absurd and finite descent"
(6.1) : For any integer n > 3 and for any odd primes r, q │ 3 ≤ r < q,
there exists an integer M r
2n - W q 2 k = 2n - 2 M r - W r 2 k = 2(n - M r ) - W r 2 k
or
2(n + 1) - W q 2 k = 2(n + 1 - M r ) - W r 2 k
then by recurrence and the absurd the property is validated.
If there were no integer k such that 2(n +1- M r ) - W r 2 k P , then there would be no integer k such that 2(n +1- M r ) - W r 2 k P , contradicting the recurrence hypothesis.
(6.2) : By strong recurrence If
2(n + 1) - W q 2 ( n + 1 ) P the proof is validated else
  2(n + 1) - W q 2 k = 2(n + 1 - M r ) - W r 2 k = Z p 2 ( n + 1 M r )
Then, the property is validated following the recurrence hypothesis
(Proof to develop).
Remark. A better estimate of the following form can be obtained by the same method with probability one or on average using the results of Bombieri [3], Cramer [9], Granville [17] ,
Nicely [32] and Maier [30] :
  m 0 ∈ ℕ │  n ∈ ℕ : n m ;
For any real c > 2      U 2 n < 1.7 l n ( n ) c      (with probability one) (6.5)
and
  K 3.5     U 2 n < K’. l n 1.3 (n)      (on average) (6.6)

7. Principle of Proof

To determine the E.G.D. three sequences of primes ( W 2 n ) , ( V 2 n ), ( U 2 n ) are defined and they verify the following properties
lim V 2 n = + .     (7.1)
n ∈ ℕ + 2 V 2 n   is defined as a function of W 2 n = Sup (pƤ : p ≤ 2n - 3)     (7.2)
( W 2 n ) is an increasing sequence of primes that contains all of them except p 1 = 2     (7.3)
lim W 2 n = +     (7.4)
(   U 2 n   ) is a complementary sequence to ( W 2 n ) of negligible primes with respect to 2n (7.5)     For any integer n 3
● If (2n - W 2 n ) is a prime
then V 2 n and U 2 n are defined by
V 2 n = W 2 n and U 2 n = 2n - W 2 n      (7.6)
● Otherwise, if (2n - W 2 n ) is a composite number
we search for two previous terms of the sequence (   G 2 n   ), U 2 ( n k ) ) and V 2 ( n k ) satisfying the following conditions
U 2 ( n k ) , V 2 ( n k ) , [ U 2 ( n k ) + 2k ] ∈ P      (7.7)     U 2 n k + V 2 n k = 2(n - k)
which is always possible (see Theorem 4 and "Goldbach’s fundamental Lemma 6")
So by setting
V 2 n = V 2 ( n k ) and U 2 n = U 2 ( n k ) + 2k      (7.8)
two new primes V 2 n and U 2 n satisfying (4.10) are generated │
U 2 n + V 2 n = 2n     (7.9)
This process is then repeated incrementing n by one unit (n ← n + 1).
Remark. Using the same method as in Theorem 4, we can the following equivalent property by strong recurrence : For any integer n greater than 48
P r e t (n) : " There exists an integer K such that 2K + U 2 ( n k ) P "     (7.10)
To this end, .
P r e t (49) is true.
▶ The heredity of the property P r e t (n) : P r e t (n) P r e t (n + 1)
can be proved by the absurd and returning to the previous terms by noting that
For any integer r : rn , there is at least one integer M r
U 2 ( n + 1 k ) = 2 M r + U 2 ( r + 1 k )
then
2K + U 2 ( n + 1 k ) = 2(K + M r ) + U 2 ( r + 1 k )
  = 2P + U 2 ( r + 1 + M r P )      (7.11)
By posing :     P = K + M r   and   r + 1 + M r ≤ n
Now, according to the recurrence hypothesis on P r e t (n) there exists an integer P │
2P + U 2 ( r + 1 + M r P ) P      (7.12)
then there exists an integer K
2K + U 2 ( n + 1 k ) P    (7.13)
In summary, the property P r e t (n) is hereditary and, as a result, verifiable.
We apply the same type of reasoning using Theorem 4 to the general case with the sequence ( W q 2 n ), showing :
For any integer n > 2 there exists an integer K
2K + q 2 n P

8. Theorem (Goldbach Conjecture)

(i)
There exists at least a recurrent sequence ( G 2 n ) = ( U 2 n   ;   V 2 n )  of primes satisfying the following conditions.
For any integer n ≥ 2
U 2 n , V 2 n ϵ P   and   U 2 n + V 2 n = 2n    (8.1)
(Any integer n ≥ 2 is the mean arithmetic of two primes)
(ii)
An algorithm can be used to explicitly compute any E.G.D.    U 2 n and V 2 n     (8.2)
Proof.
▄ GLOBAL STRONG RECURRENCE :
The proof can be made using the following strong recurrence principle.
Let P G (n) be the property defined for any integer n ≥ 2 by
P G (n) : " For any integer p satisfying 2 ≤ pn there exists two primes U 2 p and V 2 p such their sum is equal to 2p ".
(∀ p ∈ ℕ │ 2 ≤ p ≤ n    U 2 p , V 2 p P   and   U 2 p + V 2 p = 2p)
Let’s show by strong recurrence that P G (n) is true for any integer n ≥ 2
P G (2) is true : it suffices to choose              U 4 = V 4 = 2 .
▶ Let’s show that the property P G (n) is hereditary : P G (n) P G (n + 1)
Assume property P G (n) is true.
● If (2(n + 1) - W 2 ( n + 1 ) ) is a prime
then V 2 ( n + 1 )   and U 2 ( n + 1 )   are defined by
V 2 ( n + 1 ) = W 2 ( n + 1 ) and U 2 ( n + 1 ) = 2(n+1) - W 2 ( n + 1 )    (8.3)
● Otherwise, if (2(n+1) - W 2 ( n + 1 ) ) is a composite number
there exists an integer k to obtain two terms U 2 ( n + 1 k ) ) and V 2 ( n + 1 k ) satisfying the following conditions
U 2 ( n + 1 k ) , V 2 ( n + 1 k ) and U 2 ( n + 1 k ) + 2k ∈ Ƥ     (8.4)     U 2 n + 1 k + V 2 n + 1 k = 2(n +1- k)
we use the previous terms of the sequence ( G 2 n   ).
For any integer q │ 1 ≤ qn - 3 we have
3 ≤ U 2 ( n q ) ≤ n .
Then there exists an integer k   1 ≤ kn - 3 │
R 2 n = U 2 ( n k ) + 2k ∈ Ƥ (8.5)
following the Bertrand principle and Theorem 4 since all primes smaller than ( 2 n ) 0.525   are in the set {   U 2 k : kn }
(If there were no such primes, we would have a contradiction with the Theorem 4 or with Goldbach’s fundamental Lemma 6) . In fact, in an equivalent way (see the previous remark) we can copy the proof of Teorem 4 by performing a similar strong recurrence "finite descent feedback and absurd" directly on the set { U 2 k : kn }
R 2 n = U 2 ( n k ) + 2k ∈ Ƥ     (8.6)
The smallest integer k R 2 n   Ƥ is denoted by k n .
So by setting
U 2 n = U 2 n k n + 2 k n and V 2 n = V 2 n k n ∈ Ƥ     (8.7)
(These two terms are primes)
In the previous steps two primes   U 2 n k n and V 2 n k n  whose sum is equal to 2(n - k n ) were
determined.
U 2 n k n + V 2 n k n = 2(n - k n )    (8.8)
By adding the term 2 k n to each member of the equality (8.6) it follows
U 2 n k n + 2 k n + V 2 n k n = 2(n - k n ) + 2 k n (8.9)
[ U 2 n k n + 2 k n ] + V 2 n k n = 2n (8.10)
  U 2 n + V 2 n = 2n     (8.11)
Two new primes V 2 ( n + 1 ) and U 2 ( n + 1 ) satisfying (   U 2 ( n + 1 ) + V 2 ( n + 1 ) = 2(n + 1)) are generated.
It follows that P G (n + 1) is true. Then the property P G (n) is hereditary :
P G (n) P G (n + 1).
Therefore for any integer n ≥ 2 the property P G (n) is true.
It follows
 n ∈ ℕ + 2 there are two primes U 2 n and V 2 n and such their sum is 2n : U 2 n + V 2 n = 2n
ALGORITHM :
For any integer n 3
● If (2n - W 2 n ) is a prime
then V 2 n   and U 2 n are defined by
V 2 n = W 2 n and U 2 n = 2n - W 2 n (8.12)
● Otherwise, if (2n - W 2 n ) is a composite number
we use the previous terms of the sequence ( G 2 n   ).
For any integer q │ 1 ≤ qn - 3 we have
3 ≤ U 2 ( n q ) ≤ n .
Then there exists an integer k 1 ≤ kn - 3 │
R 2 n = U 2 ( n k ) + 2k ∈ Ƥ   (8.13)
following Theorem 4 since all primes smaller than ( 2 n ) 0.525   are in the set {   U 2 k : kn }
(If there were no such primes, we would have a contradiction with the Theorem 4 or with Goldbach’s fundamental Lemma 6) . In fact, in an equivalent way (see the previous remark) we can copy the proof of Teorem 4 by performing a similar strong recurrence "finite descent return and absurd" directly on the set { U 2 k : kn } │
R 2 n = U 2 ( n k ) + 2kƤ     (8.14)
The smallest integer k R 2 n   Ƥ is denoted by k n .
So
U 2 n = U 2 n k n + 2 k n and V 2 n = V 2 n k n ∈ Ƥ     (8.15)
(These two terms are primes)
In the previous steps two primes   U 2 n k n and V 2 n k n whose sum is equal to 2(n - k n ) were
determined.
U 2 n k n + V 2 n k n = 2(n - k n ) (8.16)
By adding the term 2 k n to each member of the equality (8.16) it follows
U 2 n k n + 2 k n + V 2 n k n = 2(n - k n ) + 2 k n      (8.17)
[ U 2 n k n + 2 k n ] + V 2 n k n = 2n (8.18)
       U 2 n + V 2 n = 2n    (8.19)
Finally, for any integer n ≥ 3 this algorithm determines two sequences of primes ( U 2 n )
and ( V 2 n ) verifying Goldbach’s conjecture.

9. Lemma

The sequence ( U 2 n ) verifies the following majorization
For any integer n ≥ 65
U 2 n ≤ (2 n ) 0.525    (9.1)
and
U 2 n = o ((2 n ) 0.525 )      (9.2)
Proof. According to the programm 12.2 and Appendix 14 the majorization (9.1) is verified
for any integer n │ 65 ≤ n ≤ 2000 .
For any integer n > 2000 the proof is established by recurrence. For this purpose let P b h i p (n) be the following property
              P b h i p (n) : " U 2 n ( 2 n ) 0.525 " .      (9.3)
P b h i p (2000) is true according to program 13.2 and the table in appendix 14.
▶ For any integer n ≥ 2000 let’s show that P b h i p (n) is hereditary :
P b h i p (n) . P b h i p (n + 1)
Assume that P b h i p (n) is true : then
● If (2(n + 1) - W 2 ( n + 1 ) ) is a prime
then V 2 ( n + 1 ) and U 2 ( n + 1 ) are defined by
V 2 ( n + 1 ) = W 2 ( n + 1 ) and U 2 ( n + 1 )   = 2(n + 1) - W 2 ( n + 1 ) (9.4)
According to the results in [4,5,24] (see Lemma 9) there is a constant K > 0 such that
2(n + 1) - K . [ 2 ( n + 1 ) ] 0.525 < W 2 ( n + 1 ) < 2(n + 1)
    U 2 ( n + 1 ) = 2(n + 1) - W 2 ( n + 1 ) < K . [ 2 ( n + 1 ) ] 0.525
    U 2 ( n + 1 ) ≤ K . [ 2 ( n + 1 ) ] 0.525
● Otherwise, if (2(n + 1) - W 2 ( n + 1 ) ) is a composite number
  p ∈ N * U 2 ( n + 1 ) = U 2 ( n + 1 p ) + 2p (9.5)
According to [4,5,24]
U 2 ( n + 1 ) = 2p + U 2 ( n + 1 p ) = 2p + 2(n + 1 - p) - W 2 ( n + 1 p ) = 2(n + 1) - W 2 ( n + 1 p )    (9.6)
Via " Goldbach’s fundamental Lemma 6 " it follows that
U 2 ( n + 1 ) < K . [ 2 ( n + 1 ) ] 0.525    (9.7)
P b h i p (n + 1) is true then P b h i p (n) is hereditary.
So for any integer n ≥ 2000 the property P b h i p (n) is true.
Finally U 2 ( n + 1 ) [ 2 ( n + 1 ) ] 0.525
Remark. A more precise estimate can be obtained using the Cipolla or Axler frames [8,2].

10. Propositions

A) 
Link between Goldbach conjecture and the fundamental theorem of arithmetic.
A log-exp correspondence is established by linking the sum and product of primes via Goldbach’s conjecture and the fundamental theorem of arithmetic, since if G.D. of 2n are p’ and q’, and if 2n decomposes into factors P " and Q " │
(p’, q’ ∈ Ƥ │ p’ q’ and P " Q ") ; then,
   2n = P ".Q " = p’ + q’ and p’ - q’ = 2K
     ln(P ".Q ") = ln(P ") + ln(Q ")
   = ln(p’ + q’) = ln(p’(1 + q p ))
≈ ln(p’) + q p
By choosing p’ = next or prevprime(P ") (P " = p’ +/- a) we obtain a q’ localization of the form
q’ ≈ [ p’.ln(Q ")] ≈ [ p’.ln( 2 n P   ) ] ≈ [ p’.ln( 2 n p ) ]
.then
2n ≈ p’(1 + ln( 2 n p ))
2n ≈ p’(1 + ln( 2 n P   )) ≈ p’(1 + ln( 2 n p   + / -   a ))
2n ≈ p’(1 + ln(2n / (p’(1 +/-   a p )))
2n ≈ p’(1 + ln(( 2 n p ).(1 / (1 +/-   a p ))))
2n ≈ p’(1 + ln( 2 n p ) + ln(1/(1 +/-   a p )))
2n ≈ p’(1 + ln( 2 n p )) -/+ a
You can solve equations like these using the scientific software Maple via the command,
solve(2n +/- a = x.(1 + ln( 2 n x )), x)
to locate p’ and proceed by successive next or prevprime to determine two G.D. of 2n,
(programming possible in Algorithm 14). This procedure appears to generalise Pocklington’s theorem, and we observe that the G.D. and their number G(E) are related to the number of prime factors in the decomposition of 2n .
Examples :
● evalf(solve([90 = x*(1 + ln(96/x)), x < 96], x)); {x = 64.12418697} ; p’ = 67 q’ = 29
● evalf(solve([1000 = x*(1 + ln(1100/x)), x < 1100], x));    { x = 665.6361412}
prevprime(665);     661
isprime(1100 - 661);     true ; p’ = 661     q’ = 439
● evalf(solve([9700 = x*(1 + ln(10000/x)), x < 10000], x));    { x = 7652.697929}
prevprime(7652);     7649
isprime(10000 - 7649);     true ; p’ = 7649    q’ = 4351
● evalf(solve([99950 = x*(1 + ln(100000/x)), x < 100000], x));    { x = 96854.43333}
a := prevprime(96799);      a := 96797   # obtained after 3 or 4 iterations of the command prevprime()
isprime(100000 - a);      true ; p’ = 96799    q’ = 3201
Solutions are :
x 0 = Re(- (2n +/- a) / LambertW(-1,- (2n +/- a) / (2n.e)))
and
x 1 = Re(- (2n +/- a) / LambertW(- (2n +/- a) / (2n.e)))
Remarks. For any composite number n greater than three,
● gcd(n, p’)= gcd(n ,2n - p’) = gcd(n ,q’) = gcd(n ,K)= gcd(n,p’.q’) = gcd(n,n² - K²) = 1
● gcd(K,p’) = gcd(K,q’) = gcd(n.K, p’) = gcd(n.K, q’) = 1
● The smallest E.G.D. of 2n is less than the square of its greatest prime factor.
● For any non-zero integer R, the smallest of G.D.’s of R. p k # is greater than p k .
B) 
Method of locating G.D. products (Difference in squares: - or decentered dichotomy by geometric mean (see code RSA , [37]).
Locally (around 2n), there exists a sub-sequence ( p s , q s ,) of G.D. of 2s such that the product sequence M s = p s . q s = s² - k² is almost increasing (the variations of the geometric mean almost follow those of the arithmetic mean; indeed, if
p m + 1 p m , p m + 1 p m   q m , q m + 1 and q m + 1 q m
then
p m + 1 . q m + 1 - p m . q m = ( p m + 1 - p m ). q m + 1 + p m ( q m + 1 - q m ) ≥ 0).
If we choose : q m =   q m + 1 , we minimize and better controls the deviation M s + 1 - M s
Thus, it is possible to determine Goldbach decomponents of 2n by the following algorithm, choosing a neighborhood of 2n of amplitude c.ln²(n) in agreement with the estimates made on the G(E) distribution function associated with the Goldbach comet.
Another possible method.
By off-center dichotomy using geometric means, similar to that used to crack RSA codes (see Sainty [37]).
>
n2:= 1000;
# To determine two G.D.s of 2n = 1000, we choose two decomponents of a lower integer, m2 and two decomponents of a higher integer, r2 to 2n; we easily calculate m2 < 2n = n2 < r2 and their differences km2 and kr2; then we examine their products which are assumed to preserve order, (if the initial decomponents are well chosen :
p 1   p 2 , p 1   p 2   q 1 , q 2 and q 2 q 1 ,(p’. q’ = n² - k²); we then define admissible bounds for k from a = p 1 . q 1 and b = . p 2 . q 2 min2 = trunc(evalf(sqrt(n² - b),Digits)) and max2 = trunc(evalf(sqrt(n² - a),Digits)); decomponents of 2n are deduced by iterating the nextprime() command from n + min2 , (choose a gap of the order of c.ln²(n) between m2 and r2.
pinf := prevprime(735);    pinf := 733
qinf := nextprime(17);    qinf := 19
psup := nextprime(1050);    psup := 1051
qsup := nextprime(29);    qsup := 31
m2 := pinf + qinf;    m2 := 752
r2 := psup + qsup;    r2 := 1082
km2 := pinf - qinf;    km2 := 714
kr2 := psup - qsup;    kr2 := 1020
a := m2*m2 - km2*km2;    a := 55708   # a := pinf.qinf
b := r2*r2 - kr2*kr2;    b := 130324   # b := psup.qsup
min2 := trunc(evalf(sqrt(0.25*n2*n2 - b),digits);     min2 := 466
max2 := trunc(evalf(sqrt(0.25*n2*n2 - a),digits);     max2 := 485
n:= trunc(0.5*n2);
em := nextprime(n + min2 - 1);   em := 967
nextprime(em);     971
em2 := 0.5*n2 + max2;    em2 := 985.0
q := n2 - 971;    q := 29
isprime(q);    true
C) 
Euclidean divisions of 2n by its presumed Goldbach decomponents
To determine two Goldbach decomponents of 2n , the following parameters can be used :
If p’ + q’ = 2n , (p’ , q’ ∈ Ƥ │ p’ q’) then we perform the Euclidean division of p’ by q’ under the following conditions :
p’ = m.q’ + r   0 < r < q’   r q’ = 1   r m = 1
We deduce that q’ = ( 2 n   -   r ) ( m + 1 ) or 2n = (m+1).q’ + r   (dual view point).
which leads to the algorithm.
(To develop)
Implementation:
We perform the Euclidean division of 2n by odd primes in ascending order.
3,5,7,11,.....
20 = 3 x 6 + 2 = (3 x 5 + 2) + 3 = 17 + 3
22 = 3 x 7 + 1 = (3 x 6 + 1) + 3 = 19 + 3
24 = 3 x 8 = 5 x 4 + 4 = (5 x 3 + 4) + 5 = 19 + 5
26 = 3 x 8 + 2 = (3 x 7 + 2) + 3 = 23 + 3
28 = 3 x 9 + 1 = (3 x 8 + 1) + 3 = 5 x 5 + 3 = (5 x 4 + 3) + 5 = 23 + 5
30 = 3 x 10 = 5 x 6 = 7 x 4 + 2 = (7 x 3 + 2) + 7 = 23 + 7
32 = 3 x 10 + 2 = (3 x 9 + 2) + 3 = 29 + 3
34 = 3 x 10 + 4 = (3 x 9 + 4) + 3 = 31 + 3
36 = 3 x 12 = 5 x 7 + 1 = (5 x 6 + 1) + 5 = 31 + 5
38 = 3 x 12 + 2 = (3 x 11 + 2) + 3 = 35 + 3 = 5 x 7 + 3 = (5 x 6 + 3) + 5 = 33 + 5
= 7 x 5 + 3 = (7 x 4 + 3) + 7 = 31 + 7
................................................................................................
500 = 3 x 166 + 2 = (3 x 165 + 2) + 3 = 497 + 3 = 5 x 100 = 7 x 71 + 3 = (7 x 70 + 3) + 7 = 493 + 7 = 11 x 45 + 5 = (11 x 44 + 5) + 11 = 489 + 11 = 13 x 38 + 6 = (13 x 37 + 6) + 13 = 487 + 13
For large integers, we will begin Euclidean division with a prime divisor of the order of nextprime(trunc(c.ln(n)).
Remark. This point of view allows us to give another proof of the Binary Goldbach Conjecture equivalent but more explicit by identifying uniqueness, coincidence and consistency using euclidean division of 2n by p k  ∈ Ƥ p k > n : 2n = p k + R k and
 2n by q r  ∈ Ƥ p k       q r which gives
2n = m. q r + t r , hence 2n = ((m-1). q r + t r ) + q r = D r   + q r ;
  p k   , q r are increasing sequences, R k and D r   = (m-1). q r + t r are decreasing sequences. By uniqueness of Euclidean division and since D r       q r and p k       q r , R k ,
[ 2 n q ] = m = 1 + [ p q ] , ( D r   is the result of the euclidean division of 2n by q r ), we deduce that there exists integers k0 and r0 such that :
  p k 0 = D r 0   and R k 0 = q r 0 .

11. Theorem

For any integer n 3 it is easy to check
( W 2 n ) is a positive increasing sequence of primes     (11.1)
{ W 2 n : n IN + 3 } {   2   } = P     (11.2)
lim W 2 n = +     (11.3)
( U 2 n ) and (   V 2 n   ) are sequences of primes and the set { U 2 k : kn }     (11.4)
contains all primes less than ln(n)
 n   V 2 n W 2 n    (11.5)
3 2 n W 2 n U 2 n   n    (11.6)
  lim V 2 n = +oo     (11.7)
 
Proof.
(11.1) : For any integer n ≥ 2 P n     P n + 1 .Therefore,  W 2 n W 2 ( n + 1 ) . So the sequence (   W 2 n   ) is increasing.
(11.2) : Any prime except p 1 = 2 is odd, hence the result.
(11.3) : lim W 2 n = lim p k = +oo
(11.4) : By definition V 2 n = W 2 n or there exits an integer kn - 2 │ V 2 n = V 2 ( n k ) .
So the terms of the sequence ( V 2 n ) ) are primes.
(11.5) : According to Lemma 9, for any integer n ≥ 65
   U 2 n < ( 2 n ) 0.525
     therefore
    U 2 n < ( 2 n ) 0.55  < n
and
    V 2 n = 2n - U 2 n > 2n - n > n
For any integer n │ 3 ≤ n ≤ 65 verification is carried out according to the computer program in paragraph 13.2 and the table in appendix 14.
We can also see that by construction V 2 n U 2 n because if we assume the opposite then V 2 n is not the largest prime number verifying
  1 2 ( U 2 n + V 2 n ) = n .
So
V 2 n n
According to (11.5)    n   V 2 n       U 2 n = 2n - V 2 n ≤ 2n - nn     (11.6)
    V 2 n W 2 n   2n - W 2 n ≤ 2n - V 2 n = U 2 n (11.7)
By (11.5) for any integer n ≥ 2 :    n   V 2 n
  lim V 2 n = +oo .

12. Lemma

We dissociate the following cases mod 6 for any even integer 2n : n ≥ 3 │ p + q = 2n p, qƤ
1. If 2n = 6m    then    (p ; q) = (6r + 5 ; 6(m - r - 1) + 1) or (6r+1 ; 6(m - 1 - r) + 5)
2. If 2n = 6m + 2    then    (p ; q) = (6r + 1 ; 6(m - r) + 1)
3. If 2n = 6m + 4    then    (p ; q) = (6r + 5 ; 6(m- 1 - r) + 5)
  
Table. Sum of integers 1, 5 mod 6 (in Z /6 Z ).
p+ q mod 6 1 5
1 2 0
5 0 4
  
(To adapt with 2n = 30m + k)
  
Table. Sum of integers 1, 7, 11, 13, 17, 19, 23, 29 mod 30 (in Z /30 Z ).
+ mod 30 1 7 11 13 17 19 23 29
1 2 8 12 14 18 20 24 0
7 8 14 18 20 24 26 0 6
11 12 18 22 24 28 0 4 10
13 14 20 24 26 0 2 6 12
17 18 24 28 0 4 6 10 16
19 20 26 0 2 6 8 12 18
  23 24 0 4 6 10 12 16 22
29 0 6 10 12 16 18 22 28
Proof.

13. Properties

For any integer k ≥ 2 there are infinitely many integers n U 2 n = p k     (13.1)     V 2 n    ~ 2n   (n + )      (13.2)
For any integer n ≥ 5000
  U 2 n   V 2 n   and    lim ( U 2 n V 2 n ) = 0      (13.3)
The smallest integer n U 2 n   2n - W 2 n   is obtained for n = 49 and G 98   = (79 ; 19)    (13.4)
(This type of terms increases in the Goldbach sequence ( G 2 n )  as n increases in the sense of the Schnirelmann density and there are an infinite number of them; their proportion per interval can be computed using the results given in [39]).
The sequence ( G 2 n ) is "extremal" in the sense that for any integer n  2     (13.5)
V 2 n and U 2 n  are the largest and smallest possible primes │    U 2 n + V 2 n = 2n.
The Cramer-Granville-Maier-Nicely conjecture [9,17,30,32] is verified with probability one. It leads to the following majorization
For any integer p ≥ 500
U 2 p ≤ 0.7 [ l n ( 2 p ) ] ( 2.2     1 p )    (with probability one) (13.6)
The proof is similar to that of Lemma 9 and is validated by the studying functions of the type
 f : x a .g (x) + b [ l n ( g ( x ) ) ] c (a,b > 0 ; c > 2) with
g : x 0.7 [l n ( x ) ] ( c     1 x ) and h : x 0.7 [ l n ( x ) ] ( 2.2     1 x )  by using Maple software.
A better estimate can be obtained via [29,31,30] .
According to Bombieri [3] and using the same method as in the proof of Lemma 9, we obtain the following estimate of   U 2 n
  ε > 0 U 2 n = O ( l n 1.3 + ε ( n ))      (on average)    (13.7)

14. Algorithm

14.1. Algorithm Written in Natural Language

Inputs :
Input four integer variables : k, N, n, P
Input : p 1   = 2 , p 2   = 3 , p 3 = 5 , p 4 = 7 , ................., p N the first N primes.
: n ← 3
   : P = M, R, G, S or T as indicated in paragraph 2
Algorithm body :
A) Compute : W 2 n = Sup(p    P : p ≤ 2n - 3)
If T 2 n = (2n - W 2 n ) is a prime
    U 2 n    T 2 n and V 2 n      W 2 n         (14.1.1)
otherwise
B) If T 2 n is a composite number
Let : k = 1
B.1) While  U 2 n k + 2k is a composite number
  assign to k the value k + 1 (k  k + 1).
  return to B1)
End while
Assign to k the value k n ( k n k )
Let :
       U 2 n = U 2 n k n + 2 k n and V 2 n = V 2 n k n     (14.1.2)
  Assign to n the value n + 1 (n     n + 1   and return to A)
End :
Outputs for integers less than 10 4 : :
  Print (2n = ● ; 2n - 3 = ● ; W 2 n = ● ; T 2 n = ● ; V 2 n = ● ; U 2 n = ●)
Outputs for large integers :
Print (2n - P = ● ; 2n - 3 - P = ● ; W 2 n - P = ● ; T 2 n = ● ; V 2 n P =   ; U 2 n = ●)

14.2. Program Written with Maxima Software for 2n Around 101000

c: 10**1000 ; for n :c + 40000 step 2 thru c + 40100 do
(b:2,test : 0 , b : next_prime(b) ,e :n - b ,
if primep(e)
then print(n-c, b , e - c)
else while test = 0 do (e :n -b , if primep(e)
then test:1 , print(n-c, b , e - c)
else test : 0 ,b:next-prime(b));

14.3. Program Written with Maplesoft Maple for 2n Around 10 1000

G := 10^1000:
V := [1, 11, 13, 17, 19, 23, 29]:
A := G + 500000:
B := A + 59:
b:=2:
st := time():
for q from A by 6 to B do # Program modulo 30 .using the results of Lemma 11
     Possibility of inverting the two loops or defining three similar structures with s := 0, 1, 2.
 for s  from 0 to 2 do
 n := q + s + s :
 b := trunc(0.59b - 20); # Improving computation time: the idea is to recognise that for any integer n large enough there exists a Goldbach decomponent p n and a successor p n + 1   such that
(E):│ p n + 1   - p n < k. l n 2 (n) ; this reduces the number of ‘nextprime(●)’ operations which take up the most computing time.
   (If G = 10 500 : Computingtime is around 10 sec for thirty terms;The algorithm can be refined by exploiting frame (E). Cesàro averages can also be used to determine the initial condition for b).
t:= 0:
 R := [[1, 5], [1], [5]]: Q := [[1, 7, 11, 13, 17, 19, 23, 29], [1, 13, 19], [11, 17, 23], [7, 13, 17, 19, 23, 29], [1, 7, 19], [11, 17, 23, 29], [1, 11, 13, 19, 23, 29], [1, 7, 13], [17, 23, 29], [1, 7, 11, 17, 19, 29], [1, 19, 7, 13], [11, 23, 29], [1, 23, 7, 17, 11, 13], [7, 19, 13], [11, 17, 29]]:
 while t = 0 do .
b := nextprime(b + 100); # Additional test possible by improving Lemma 11. (with V mod 30).
# Possibility of replacing nextprime with a faster procedure (see Sainty [37]).(the computation time is greatly reduced by replacing with b:=nextprime(b + k(b,G)), k(b,G) constant around 150 for G= 10 1000 , k(b,G) chosen randomly with the rand procedure or very slowly increasing as a function of b and G), but in general we don’t obtain the E.G.D. but any Goldbach decomponents.
 e := n - b;
K := e mod 6;
 if K in R[s+1] then
if isprime(e)
Then t := 1;
 print(n - G, b, e - G);
end if;
 end if;
end do:
 end do:
end do:
Computingtime:= time() - st;
 
Comments: Possible test with igcd(n , b) = 1 and igcd(n , 2n - b) = 1
(or igcd(n,b.(n-b)) = 1) then isprime(b) and isprime(2n - b) may be faster than nextprime(), if we can improve the gcd algorithm.
 
RESULTS :
 
 
     G = 10 1000
 
 
b:      b:= nextprime(b+rand(100..150)) b:= nextprime(b+100)     b:= nextprime(b+150)
 
n - G  b n - G - b
500000, 54133, 445867
500002, 40693, 459309
500004, 422393, 77611
500006, 49157, 450849
500008, 222991, 277017
500010, 259451, 240559
500012, 521981, -21969
500014, 622561, -22547
500016, 342929, 157087
500018, 25097, 474921
500020, 95083, 404937
500022, 201821, 298201
500024, 226337, 273687
500026, 255859, 244167
500028, 8147, 491881
500030, 83833, 416197
500032, 43261, 456771
500034, 162251, 337783
500036, 179203, 320833
500038, 12601, 487437
500040, 608471,-108431
500042, 157103, 342939
500044, 145531, 354513
500046, 440303, 59743
500048, 162577, 337471
500050, 258637, 241413
500052, 111791, 388261
500054, 139661, 360393
500056, 126397, 373659
500058, 40739, 459319
500060, 106121, 393939

ComComputtime:= 179.343 sec

500000, 139387, 360613
500002, 40693, 459309
500004, 731447, -231443
500006, 54139, 445867
500008, 205651, 294357
500010, 100109, 399901
500012, 40693, 459319
500014, 261823, 238191
500016, 82913, 417103
500018, 300889, 199129
500020, 12583, 487437
500022, 233591, 266431
500024, 159871, 340153
500026, 106087, 393939
500028, 608459, -108431
500030, 30347, 469683
500032, 43261, 456771
500034, 201833, 298201
500036, 186859, 313177
500038, 95101, 404937
500040, 121763, 378277
500042, 9029, 491013
500044, 148663, 351381
500046, 304847, 195199
500048, 157109, 342939
500050, 40459, 459591
500052, 8171, 491881
500054, 223037, 277017
500056, 49207, 450849
500058, 301349, 198709


Computtime:= 188.250 sec

 500000, 361069, 138931
 500002, 40693, 459309
 500004, 535637, -35633
 500006, 277789, 222217
 500008, 205651, 294357
 500010, 138959, 361051
 500012, 40693, 459319
 500014, 145501, 354513
 500016, 198659, 301357
 500018, 26309, 473709
 500020, 77347, 422673
 500022, 160709, 339313
 500024, 162553, 337471
 500026, 106087, 393939
 500028, 263009, 237019
 500030, 151813, 348217
 500032, 24049, 475983
 500034, 400031, 100003
 500036, 145037, 354999
 500038, 854257, -354219
 500040, 121763, 378277
 500042, 8161, 491881
 500044, 145987, 354057
 500046, 304847, 195199
 500048, 12611, 487437
 500050, 163729, 336321
 500052, 100151, 399901
 500054, 155291, 344763
 500056, 126397, 373659
 500058, 208277, 291781
 500060, 67547, 432513

Computime:= 163.828 sec
b:= nextprime(b+rand(150..175)) b:= nextprime(b+rand(140..160))
n-G b n-b-G n-G  b n-b-G
500000, 139387, 360613
500002, 90481, 409521
500004, 422393, 77611
500006, 145007, 354999
500008, 604339, -104331
500010, 138959, 361051
500012, 221021, 278991
500014, 334843, 165171
500016, 297779, 202237
500018, 167267, 332751
500020, 54577, 445443
500022, 139409, 360613
500024, 336491, 163533
500026, 12589, 487437
500028, 263009, 237019
500030, 145517, 354513
500032, 334861, 165171
500034, 163697, 336337
500036, 318979, 181057
500038, 221047, 278991
500040, 761591, -261551
500042, 178691, 321351
500044, 54601, 445443
500046, 174989, 325057
500048, 84229, 415819
500050, 163729, 336321
500052, 159899, 340153
500054, 155291, 344763
500056, 166183, 333873
500058, 151841, 348217

Computtime:= 174.438 sec
500000, 112429,-387571
500002, 40693, 459309
500004, 277787, 222217
500006, 82903, 417103
500008, 148627, 351381
500010, 139397, 360613
500012, 40693, 459319
500014, 145501, 354513
500016, 388313, 111703
500018, 258329, 241689
500020, 77347, 422673
500022, 453683, 46339
500024, 67511, 432513
500026, 221197, 278829
500028, 263009, 237019
500030, 112459, 387571
500032, 178681, 321351
500034, 208253, 291781
500036, 274019, 226017
500038, 14071, 485967
500040, 162257, 337783
500042, 361111, 138931
500044, 52903, 447141
500046, 582299, -82253
500048, 8167, 491881
500050, 67537, 432513
500052, 111791, 388261
500054, 126641, 373413
500056, 126397, 373659
500058, 40739, 459319

Computtime:= 138.578 sec
Record : 116 sec; see in researchgate files PDFGOLDBACHTEST4,10
(For n from G+5000000 to 5000058 by 2), [37].
   500000, 9473, 490527
   500002, 24019, 475983
   500004, 8123, 491881
   500006, 9479, 490527
   500008, 25087, 474921
   500010, 57917, 442093
   500012, 8999, 491013
   500014, 9001, 491013
   500016, 40697, 459319
   500018, 9491, 490527
   500020, 9007, 491013
   500022, 139409, 360613
   500024, 9011, 491013
   500026, 9013, 491013
   500028, 8147, 491881
   500030, 26321, 473709
   500032, 24049, 475983
   500034, 54167, 445867
   500036, 57943, 442093
   500038, 9511, 490527
   500040, 57947, 442093
   500042, 8161, 491881
   500044, 24061, 475983
   500046, 162263, 337783
   500048, 8167, 491881
   500050, 12613, 487437
   500052, 8171, 491881
   500054, 9041, 491013
   500056, 9043, 491013
   500058, 40739, 459319
 
   Computingtime : 343.453 sec
 
 
 
G = 10 2000
 
 
 
   n - G n - b - G b   n - G  b n - b - G
  
   40000, 39957,  43     40050, 86117, -46067
   40002, 39091, 911     40052, 503, 39549
       40004, 39957, 47     40054, 97, 39957
   40006, 39549, 457     40056, 89393, -49337
   40008, 25369, 14639     40058, 101, 39957
   40010, 39957, 53     40060, 103, 39957
   40012, 39549, 463     40062, 971, 39091
   40014, 17737, 22277     40064, 107, 39957
   40016, 39957, 59     40066, 109, 39957
   40018, 39957, 61     40068, 977, 39091
   40020, 39091, 929     40070, 113, 39957
   40022, 39141, 881     40072, 523, 39549
   40024, 39957,  67     40074, 983, 39091
   40026, 35443, 4583     40076, 16937, 23139
   40028, 39957,  71     40078, 937, 39141
   40030, 39957,  73     40080, 4637, 35443
   40032, 39091, 941     40082, 941, 39141
   40034, 35443, 4591     40084, 127, 39957
   40036, 39957,  79     40086, 4643, 35443
   40038, 39091, 947     40088, 131, 39957
   40040, 39957,  83     40090, 541, 39549
   40042, 23139, 16903     40092, 4649, 35443
   40044, 39091, 953     40094, 137, 39957
   40046, 39957,  89     40096, 139, 39957
   40048, 39549, 499     40098, 31991, 8107
40100, 1009, 39091
  
  
  
G = 10 3000
  
  
    n - G b n - b - G
  
   100000, 36529, 63471
   100002, 77069, 22933
   100004, 22717, 77287
   100006, 181873, -81867
   100008, 12239, 87769
   100010, 4547, 95463
   100012, 4549, 95463
   100014, 22727, 77287
   100016, 59497, 40519
   100018, 24847, 75171
   100020, 12251, 87769
   100022, 12253, 87769
   100024, 4561, 95463
   100026, 22739, 77287
   100028, 22741, 77287
   100030, 4567, 95463
   100032, 12263, 87769
   100034, 36563, 63471
   100036, 42649, 57387
   100038, 12269, 87769
   100040, 23143, 76897
   100042, 36571, 63471
   100044, 43973, 56071
   100046, 4583, 95463
   100048, 24877, 75171
   100050, 12281, 87769
  
  
  
  G = 10 5000
  
  
  
n - G b n - b - G  n - G b n - b - G   n - G b n - b - G
  
  100000, 31147, 68853    100050, 12611, 87439     100100, 31247, 68853
  100002, 309371, -209369    100052, 12613, 87439     100102, 31249, 68853
  100104, 105071, -4967
  100106, 13649, 86457
100004, 31151, 68853     100054, 13597, 86457     100108, 640669, -540561    
  100006, 31153, 68853     100056, 105023, -4967     100110, 12671, 87439
  100008, 12569, 87439     100058, 12619, 87439     100112, 31259, 68853
  100114, 87991, 12123
  100116, 122033, -21917
  100118, 18379, 81739
  
  100010, 13553, 86457     100060, 54151, 45909
  100012, 31159, 68853     100062, 108971, -8909
  100014, 108923, -8909     100064, 103091, -3027
  100016, 12577, 87439     100066, 87943, 12123
  100018, 592237, -492219    100068, 18329, 81739
  100020, 104987, -4967     100070, 13613, 86457
  100022, 12583, 87439     100072, 31219, 68853
  100024, 13567, 86457     100074, 264881, -
  100026, 18287, 81739     100076, 12637, 87439
  100028, 12589, 87439     100078, 107971, -7893
  100030, 31177, 68853     100080, 12641, 87439
  100032, 61871, 38161     100082, 76913, 23169
  100034, 13577, 86457     100084, 13627, 86457
  100036, 31183, 68853     100086, 12647, 87439     100038, 108947, -8909   10038, 108947, -8909     100088, 61927, 38161
  100040, 12601, 87439     100090, 13633, 86457
  100042, 31189, 68853     100092, 12653, 87439
  100044, 457091, -357047    100094, 61933, 38161
  100046, 18307, 81739     100096, 87973, 12123
  100048, 13591, 86457     100098, 12659, 87439
  
  
  
  
  
  
   100120, 31267, 68853
   100122, 61961, 38161
  
  
  100124, 31271, 68853
   100126, 13669, 86457
   100128, 12689, 87439
   100130, 31277, 68853
   100132, 76963, 23169
   100134, 122051, -21917
   100136, 12697, 87439
   100138, 13681, 86457
   100140, 18401, 81739
   100142, 12703, 87439
   100144, 13687, 86457
   100146, 152993, -52847
   100148, 13691, 86457
   100150, 13693, 86457
  
  
  
   1000000, 35509, 964491
   1000002, 113, 999889
   1000004, 69193, 930811
   1000006, 95233, 904773
   1000008, 69197, 930811
   1000010, 31873, 968137
   1000012, 35521, 964491
   1000014, 69203, 930811
   1000016, 127, 999889
   1000018, 35527, 964491
   1000020, 131, 999889
  
  
  
Maple program corrected and improved, (see Sainty [37]).
  
  
  

Appendix A

Application of Algorithm14 : Table of extreme Goldbach partitions U 2 n and V 2 n computed from program 14.2 (2 ≤ 2n 10 1000 + 4020).
The ** sign in the table below indicates the results given by the algorithm 14 in case B) of return to the previous terms of the sequence ( G 2 n ) .
WATCH OUT !
To simplify the display of large numbers n (2n >   10 9 ) the results are entered as follows :
2n - P , (2n - 3) - P , W 2 n - P , T 2 n , V 2 n - P and U 2 n
with
P = M, R, G, S, or T constants defined in (2.3)
2n    2n - 3 W 2 n T 2 n =2n - W 2 n V 2 n U 2 n
4 1 X X 2 2
6 3 3 3 3 3
8 5 5 3 5 3
1 10 7 7 3 7 3
112 9 7 5 7 5
14 11 11 3 11 3
16 13 13 3 13 3
18 15 13 5 13 5
20 17 17 3 17 3
22 19 19 3 19 3
24 21 19 5 19 5
26 23 23 3 23 3
28 25 23 5 23 5
30 27 23 7 23 7
32 29 29 3 29 3
34 31 31 3 31 3
36 33 31 5 31 5
38 35 31 7 31 7
40 37 37 3 37 3
80     77 73 7 73 7
82     79 79 3 79 3
84     81 79 5 79 5
86     83 83 3 83 3
88     85 83 5 83 5
90     87 83 7 83 7
92     89 89 3 89 3
94     91 89 5 89 5
96     93 89 7 89 7
**98     95 89 9 79 19
100     97 97 3 97 3
120     117 113 7 113 7
**122     119 113 9 109 13
124     121 113 11 113 11
126     123 113 13 113 13
**128    125 113 15 109 19
130     127 127 3 127 3
132     129 127 5 127 5
134     131 131 3 131 3
136     133 131 5 131 5
138     135 131 7 131 7
140     137 137 3 137 3
**500    497 491 9 487 13
502     499 499 3 499 3
504     501 499 5 499 5
506     503 503 3 503 3
508     505 503 5 503 5
510     507 503 7 503 7
1000    997 997 3 997 3
1002     999 997 5 997 5
1004     1001 997 7 997 7
**1006    1003 997 9 983 23
1008     1005 997 11 997 11
1010     1007 997 13 997 13
1012     1009 1009 3 1009 3
1014     1011 1009 5 1009 5
1016     1013 1013 3 1013 3
1018     1015 1013 5 1013 5
10002     9999 9973 29 9973 29
10004    10001 9973 31 9973 31
**10006     10003 9973 33 9923 83
**10008     10005 9973 35 9967 41
10010    10007 10007  3 10007 3
10012    10009 10009  3 10009 3
10014    10011 10009  5 10009 5
10016    10013 10009  7 10009 7
**10018     10015 10009  9 10007 11
10020    10017 10009 11 10009 11
2n - M (2n - 3) - M W 2 n - M T 2 n = 2n - W 2 n V 2 n - M U 2 n
+1000     +997 +993 7 +993 7
**+1002     +999 +993 9 +931 71
+1004    +1001 +993 11 +993 11
+1006     +1003 +993 13 +993 13
**+1008     +1005 +993 15 +919 89
+1010     +1007 +993 17 +993 17
+1012     +1009 +993 19 +993 19
+1014     +1011 +1011 3 +1011 3
+1016     +1013 +1011 5 +1011 5
+1018     +1015 +1011 7 +1011 7
**+1020     +1017 +1011 9 +931 89
2n - R (2n - 3) - R W 2 n - R T 2 n = 2n - W 2 n V 2 n - R U 2 n
**+1000     +997 +979 21 +903 97
+1002     +999 +979 23 +979 23
**+1004     +1001 +979 25 +951 53
**+1006     +1003 +979 27 +903 103
+1008     +1005 +979 29 +979 29
+1010     +1007 +979 31 +979 31
**+1012    +1009 +979 33 +951 61
**+1014    +1011 +979 35 + 781 233
+1016    +1013 +979 37 +979 37
**+1018    +1015 +979 39 +951 67
+1020     +1017 +1017 3 +1017 3
2n - G (2n - 3) - G W 2 n - G T 2 n = 2n - W 2 n V 2 n - G U 2 n
**+10000    +9997 +9631 369 +7443 2557
**+10002    +9999 +9631 371 +9259 743
+10004     +10001 +9631 373 +9631 373
**+10006    +10003 +9631 375 +8583 1423
**+10008    + 10005 +9631 377 +6637 3371
+10010     +10007 +9631 379 +9631 379
**+10012    +10009 +9631 381 +8583 1429
+10014     +10011 +9631 383 +9631 383
**+10016    +10013 +9631 385 +9259 757
**+10018    +10015 +9631 387 +4491 5527
+10020     +10017 +9631 389 +9631 389
2n-S    (2n-3)-S W 2 n - S T 2 n = 2n - W 2 n V 2 n - S U 2 n
**+20000     +19997 +18031 1969 +17409 2591
**+20002     +19999 +18031 1971 + 17409 2593
+20004    +20001 +18031 1973 +18031 1973
**+20006     +20003 +18031 1975 +16663 3343
**+20008     +20005 +18031 1977 +16941 3067
+20010    +20007 +18031 1979 +18031 1979
**+20012     +20009 +18031 1981 +5671 14341
**+20014     +20011 +18031 1983 +4101 15913
**+20016     +20013 +18031 1985 +3229 16787
+20018 +20015 +18031 1987 +18031 1987
**+20020     +20017 +18031 1989 +16941 3079
2n-T     (2n-3)-T W 2 n -T T 2 n = 2n - W 2 n V 2 n T U 2 n
**+40000     +39997 +29737 10263 +21567 18433
**+40002     +39999 +29737 10265 + 22273 17729
+40004     +40001 +29737 10267 +29737 10267
**+40006     +40003 +29737 10269 +21567 18439
+40008     +40005 +29737 10271 +29737 10271
+40010     + 40007 +29737 10273 +29737 10273
**+40012     +40009 +29737 10275 +10401 29611
**+40014     +40011 +29737 10277 -56003 96017
**+40016     +40013 +29737 10279 +27057 12959
**+40018     +40015 +29737 10281 +25947 14071
**+40020     +40017 +29737 10283 +24493 15527

Appendix B

7-3=4 11-5=6 11-3=8 13-3=10 17-5=12 17-3=14 19-3=16 23-5=18
23-3=20 29-7=22 29-5=24 29-3=26 31-3=28 37-7=30 37-5=32 37-3=34
41-5=36 41-3=38 43-3=40 47-5=42 47-3=44 53-7=46 53-5=48 53-3=50
59-7=52 59-5=54 59-3=56 61-3=58 67-7=60 67-5=62 67-3=64 71-5=66
71-3=68 73-3=70 79-7=72 79-5=74 79-3=76 83-5=78 83-3=80 89-7=82
89-5=84 89-3=86 101-13=88 97-7=90 97-5=92 97-3=94 101-5=96 101-3=98
103-3=100 107-5=102 107-3=104 109-3=106 113-5=108 113-3=110 131-19=112 127-13=114
127-11=116 131-13=118 127-7=120 127-5=122 127-3=124 131-5=126 131-3=128 137-7=130
137-5=132 137-3=134 139-3=136 149-11=138 151-11=140 149-7=142 149-5=144 149-3=146
151-3=148 157-7=150 157-5=152 157-3=154 163-7=156 163-5=158 163-3=160 167-5=162
167-3=164 173-7=166 173-5=168 173-3=170 179-7=172 179-5=174 179-3=176 181-3=178
191-11=180 193-11=182 191-7=184 191-5=186 191-3=188 193-3=190 197-5=192 197-3=194
199-3=196 211-13=198 211-11=200 233-31=202 211-7=204 211-5=206 211-3=208 223-13=210
229-17=212 227-13=214 223-7=216 223-5=218 223-3=220 227-5=222 227-3=224 229-3=226
233-5=228 233-3=230 239-7=232 239-5=234 239-3=236 241-3=238 251-11=240 271-29=242
251-7=244 251-5=246

Appendix C

T r (K)
q 1  = 3 q 2 = 5 q 3  = 7 q 4 = 11 q 5 = 13 q 6  = 17 q 7 = 19 q 8  = 23 q 9  = 29 q 10 = 31 q 11 = 37
2K = 2 5 7 13 19 31
2K = 4 7 11 17 23 41
2K = 6 11 13 17 19 23 29 37 43
2K = 8 11 13 19 31 37
2K = 10 13 23 29 41 47
2K = 12 17 19 23 29 31 41 43
2K =14 17 19 31 37 43
2K = 16 19 23 29 47 59
2K = 18 23 29 31 37 41 47 61
2K =20 23 31 37 43 67
2K=22 29 41 53
2K=24 29 31 37 41 43 47 53 71
2K=26 29 31 37 43 73
2K=28 31 41 47 59
2K=30 37 41 43 47 53 59 61
2K=32 37 43 61 79
2K=34 37 41 47 53
2K=36 41 43 47 53 59 67 83
2K=38 41 43 61 67
2K=40 43 47 53 59 71
2K=42 47 53 59 61 71 73 89
2K=44 47 61 67 73
2K=46 53 59
2K=48 53 59 61 67 71 79
2K=50 53 61 67 73 79 97
2K=52 59 71 83
2K=54 59 61 67 71 73 83
2K=56 59 61 67 73 79
2K=58 61 71 89
2K=60 67 71 73 79 83 89

18. Perspectives and Generalizations

18.1 
Other Goldbach sequences ( G 2 n ) independent of G 2 n may be studied using the increasing sequences of primes ( W 2 n ) defined by
  • For any integer n 3
                  W 2 n = Sup (p   ϵ P :   p f (n))     (18.1.1)
  •  f is a function defined on the interval J = [3 ; + [ and satisfying the following conditions
f is strictly increasing on the interval J
f (3) = 3 and lim x + f ( x ) = +
  x   ϵ   I     f x 2 x 3
  • For example, one of the following functions defined on J can be selected.
f : x   a x + 3 - 3a      (a R : 0 < a   2 )
g : x     [ 4 3 x 9 ]    ([x] is the integer part of the real x)
h : x 6   l n   x 3   + 3
18.2 
Using this method it would be interesting to study the Schnirelmann density [39] of primes 3 , 5 , 7, 11 ,........ ... in the sequence ( U 2 n   ) on variable intervals and the Caesaro sums of U 2 n E.D.G.’s with a view to more efficient programming for their calculation.
18.3 
It is possible to exceed the values shown in the table of 2n = 10 1000   (many E.G.D have been calculated for values of 2n in the order of 10 2000   , 10 5000 (and G.D. in the order of 10 10000 Sainty [37]) by perfecting this algorithm, exploiting the fact that one of Goldbach’s decomponents can be chosen equal to 4p + 3, (G.D. are primes of the form
6m +
1 or 6m + 5 and can be expressed more precisely using primes of the form 30m + r :
r
[1,7,11,13,17,19,23,29] (see Table mod 30, Lemma 11), by using De Pocklington Theorem [6,34,36] , Primality tests [37], Cipolla-Axler-Dusart type functions and improvment of primes frames [2,8,12,13,37] via a new Prime number Theorem to better identify the terms of (   G 2 n   ) ,  supercomputers and more efficients software as C++, or Assembleur compilation.
18.4 
Any Goldbach decomponent of order 2n = 10 10000 can be determined more quickly by replacing the instruction b:=2 by b:=trunc(c.b + d) and b := nextprime(b) with
b :=
nextprime(b + k(b, G)), where k(b, G) is a constant of around 150 for G = 10¹⁰⁰⁰ and is chosen randomly using the rand procedure or increases very slowly as a function of b and G. An increasing sequence of primes, b k , can also be determined in stages by replacing the initial value b:=2 by b:= trunc( k 0 . b - k 1 . l n s (n) - k 2 ) and by setting c := trunc(a. l n d (b)),
1 ≤
d,  s ≤ 2 and b := b + c for each stage, followed by b := nextprime(b) until the next stage, (see Sainty [37]); Note that for any even integer 2n large enough there exists G.D. p n , p n + 1 , q n , q n + 1     p n + q n = 2n and p n + 1 + q n + 1 = 2(n + 1) with
p n + 1  
- p n and q n + 1 - q n < k. l n 2 (n)). It is therefore advisable to develop adaptive algorithms based on this model using A.I., as a function of the program’s G parameter.
18.5 
Diophantine equations and conjectures of the same nature ((3L) conjecture [9,21,23,26,27,44]) can be processed using similar reasoning and algorithms.
To validate the (3L) conjecture we study the following sequences of primes (W l 2 n ), (   V l 2 n )   a n d   ( U l 2 n )   d e f i n e d   b y
  • F o r   a n y   i n t e g e r   n 3                   W l 2 n = Sup (p ϵ P   :   p n 1 )     (18.5.1)
If T l 2 n   = (2n + 1 - 2 W l 2 n ) is a prime
  •   then let
  •        V l 2 n = W l 2 n and   U l 2 n = T l 2 n      (18.5.2)
If T l 2 n is a composite number
  • then there exists an integer k    1 k n 3  
    U l 2 n k + 2k P    (18.5.3)
  then let
        V l 2 n = V l 2 n k and U l 2 n =   U l 2 n k + 2k        (18.5.4)
Using the same type of reasoning a generalization, the (BBG) conjecture of the following form can be validated
Let K and Q be two odd integers prime to each other :
  • For any integer n │ 2n   3 (K + Q) there exist two primes U b 2 n and V b 2 n verifying
  • K . U b 2 n + Q. V b 2 n = 2n   (18.5.5)
Let K and Q be two integers of different parity prime to each other :
  • For any integer n │ 2n 3 (K + Q) there are two primes U b 2 n and   V b 2 n verifying
  • K . U b 2 n + Q . V b 2 n = 2n + 1      (18.5.6)
18.6 
Remark.
GOLDBACH (-) :
  • R 2 K = Inf (p P : p - 2K P ) and Q2K = Inf (p P   : 2K + p P ) = R 2 K - 2K
GOLDBACH (+) :
  • V 2 K = Sup (p P   : 2K - p P ) and Q2K = Inf (p P : 2K - p P ) = 2K - V 2 K
    (It is possible to envisage symmetries in the Goldbach triangle).
For any integer n greater than one, there exists two integers K M i n and K M a x such that the G.D. of 2n are n - K and n + K K M i n K K M a x .
18.7 
The sequences ( W q 2 n ) generate all the G.D. and may enable us to better estimate the values of distribution function G of the Goldbach’s Comet, probably of type:
0.57. E l n 2 ( E ) < G(E) < 3.62. E l n 2 ( E ) , (Vella-Chemla [46], Woon [49]) .
Average value of G(E) ≈ 1.62. E l n 2 ( E )

19. Conclusion

19.1 A recurrent and explicit Goldbach sequence ( G 2 n ) = (   U 2 n   ; V 2 n ) verifying
n N + 2     U 2 n  ,  V 2 n P   a n d   U 2 n +   V 2 n = 2n
has been developed using an simple and efficient "localised" algorithm. The Goldbach conjecture has been proved by strong recurrence (absurd and finite descent), and a reversible Goldbach tree uniquely associated with each even integer 2n : 2n ≥ 8 allows a better understanding of this conjecture). A relation (Proposition 10) is established between the fundamental theorem of arithmetic and the Goldbach conjecture (sum and product of primes), allowing fast computation of G.D. of very large even integers via a "localisation" of G.D.’s using a generalized Pocklington-type algorithm and further proof of Goldbach’s binary conjecture via Euclidean divisions of 2n by primes and consistent increasing and decreasing sequences.
19.2 The records of Silva [41] and Deshouillers, te Riele, Saouter [11] are beaten on a personal computer. Hundreds E.G.D. U 2 n and V 2 n   are obtained for values around
2n = 101000, twenty-six around 2n = 102000, seventy-five around 2n = 105000 and G.D. around 2n = 1010000 for a computation time of less than three hours (see Sainty [37]).
19.3 For a given integer n ≥ 49 the evaluation of the terms U 2 n and V 2 n does not require the computing of all previous terms U 2 k and V 2 k │ 1   k < n - 1 . we will only consider those that verify :
    U 2 k   5. l n 1.3 ( 2 n ) and 2n - 5. l n 1.3 (2n) ≤ V 2 k   ≤ 2n     (on average)  (19.3.1)
This property allows any E.G.D U 2 n and V 2 n to be calculated quite quickly, the upper limit being defined by the scientific software and the computer’s ability to determine the largest prime preceding 2n - 2 (next or prevprime(2n - 2) function).
19.4 Therefore the (BBG), the (3L) and the binary Goldbach(- /+) conjectures “Any even integer greater than three is the sum and difference of two primes” are true.
In fact these two conjectures are intertwined.
Framing and mean value of the Goldbach comet by functions of the type
 f : x -> a.x / l n 2 (x) , (via AI CLAUDE : to be specified).
Preprints 173579 i001
Preprints 173579 i002
Preprints 173579 i003
Preprints 173579 i004
Preprints 173579 i005
Preprints 173579 i006
Preprints 173579 i007
Preprints 173579 i008
Comments :
The majority of mathematicians believe Goldbach’s conjecture to be true, mainly,, based on statistical reasoning centred on the distribution of primes. The larger the number, the more ways there are to decompose it into a sum of two or three other primes. A crude heuristic approach to this argument (for the Binary Goldbach Conjecture) is to consider the prime number theorem, this states that a randomly chosen integer m has a probability of being prime equal to 1/ln(m).
Therefore, if n is a large even integer and m is a number between 3 and n, the probability that both m and (n - m) are primes is approximately 1/(ln(n).ln(n - m)). Although this heuristic argument is imperfect for several reasons, such as the lack of consideration of correlations between the probabilities of m and (nm) being primes, it nevertheless indicates that the total number of ways of writing a large even integer n as the sum of two odd primes is approximately proportional to n /  l n 2 (n).
GRAPHICAL SYNTHESIS
For every even integer 2n ≥ 8 (in parallel with the divisor tree developed from the Fundamental Theorem of Arithmetic), we uniquely associate a reversible Goldbach tree (algorithm). This allows us to visualise the proof of the Goldbach conjecture and provides the unique extreme decomponents of 2n according to all possible even sums of primes. The tree always ends with
2 + 2 + 2 + ... + 2 = 2n. This technique can be used to create new number bases based on primes. Other variations of this tree can be created by adding or subtracting odd integers (other than +1 or -1) to the E.G.D. determined at each level.
Example: (Draft for 2n = 42).
Goldbach’s extreme decomponents tree (parallel algorithm) in even sums of primes.
Construction rules and properties:
● The tree consists of n levels of k integers 2 ≤ kn .
● If a level consists of even integers, the next level consists of primes.
● Each line (level) of the tree consists of an ascending sequence of even integers or primes whose sum is 2n.
● The number of 2 for each level is increasing
● The range of the first level is V 2 n - U 2 n .
● The ranges of primes levels decrease from V 2 n - U 2 n . to 0.
● The range of the last level is 0.
● The range of each level is maximal.
● The integer of the level following a 2 is a 2 .
●   The integer of the level following an extreme Goldbach decomponent of maximum
p’ is p’ + 1 .
  ●   The integer of the level following an extreme Goldbach decomponent of minimum
  q’ is q’ - 1.
●   To determine the inverse tree (inverse algorithm), additional rules must be specified in accordance with Goldbach trees of order n less than 2p pn .
Preprints 173579 i009
To continue.................................................................
End of tree : 2 + 2 + 2 +....................................+2 = 2 x 21 = 42 = 2n

References

  1. L. Adleman, K. Mc Curley, " Open Problems in Number Theoretic Complexity " , " II. Algorithmic number theory" (Ithaca, NY,1994), 291–322, Lecture Notes in Comput. Sci., 877, Springer, Berlin, (1994).
  2. Axler, C. New Estimates for the nth Prime. 19.4.2 2. Journal of Integer Sequences 2019, 22, 30. [Google Scholar]
  3. Bombieri, E.; Davenport. Small differences between prime numbers. Proc. Roy. Soc. Ser. A 1966, 293, 1–18. [Google Scholar]
  4. Baker, R.C.; Harman, G.; Pintz, J. The difference between consecutive primes. Proc. London Math. Soc. 1996, 72, 261–280. [Google Scholar]
  5. Baker, R.C.; Harman, G.; Pintz, J. The difference between consecutive primes. II. Proc. London Math. Soc. 2001, 83, 532–562. [Google Scholar] [CrossRef]
  6. J. Brillhart, D. H. Lehmer & J. L. Selfridge, " New primality criteria and factorizations of 2m ± 1" , Math. Comp., vol. 29, no 130, 1975, p. 620-647 (read online [archive]), Th. 4.
  7. Chen, J.R. On the representation of a large even integer as the sum of a prime and the product of at most two primes. Kexue Tongbao 1966, 17, 385–386. [Google Scholar]
  8. Cipolla, M. La determinazione assintotica dell n imo numero primo. Rend. Acad. Sci. Fis. Mat. Napoli 1902, 8. [Google Scholar]
  9. Cramer, H. On the order of magnitude of the difference between consecutive prime numbers. Acta Arithmetica 1986, 2, 23–46. [Google Scholar] [CrossRef]
  10. N. Dawar. Lemoine’s Conjecture: A Limited Solution Using Computers”, TechRxiv [ Archive online ] (2023).
  11. Deshouillers, J.-M.; te Riele, H. J. J.; and Saouter, Y. "New Experimental Results Concerning The Goldbach Conjecture." In Algorithmic Number Theory: Proceedings of the 3rd International Symposium (ANTS-III) held at Reed College, Portland, OR, June 21-25, 1998 (Ed. J. P. Buhler). Berlin: Springer-Verlag, pp. 204-215, 1998. Modélisation, analyse et simulation (MAS), Rapport MAS-R9804, 31 mars 1998.
  12. P. Dusart. About the prime counting function π ” , PhD Thesis. University of Limoges, France, (1998).
  13. P. Dusart, ’’HDR : Estimations explicites en théorie des nombres’’, HDR, University of Limoges, France, (2022).
  14. Erdos, P. On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Natl. Acad. Sci. USA 1949, 36, 374–384. [Google Scholar] [CrossRef]
  15. Euclid, (trans. Bernard Vitrac). Les éléments d’Euclide. Ed. PUF Paris, vol.2, p. 444-446 and p. 339-341, (1994).
  16. G. G. Filhoa, G.D.G. Jaimea, F.M.de Oliveira Gouveaa, S. Keller Füchter. Bridging Mathematics and AI: A novel approach to Goldbach’s Conjecture. Contents lists available at ScienceDirect : Measurement: Sensors journal homepage : www.sciencedirect.com/journal.
  17. Granville, A. Harald Cramér and the distribution of prime numbers. Scandinavian Actuarial Journal 1995, 1, 12–28. [Google Scholar] [CrossRef]
  18. J. Hadamard. On the zeros of the function ζ(s) of Riemann. C. R. 122, p.1470-1473 (1896), and "On the distribution of zeros of the function ζ’(s) and its arithmetical consequences". S. M. F. Bull. 24, pp. 199-220 (1896).
  19. J. Härdig. Goldbach’s conjecture. Examensarbete i matematik, 15 hp U.U.D.M. Project Report 20:37, UPPSALA UNIVERSITET.
  20. G. H. Hardy, Wright. An introduction to the Theory of numbers. Oxford : Oxford University Press 621 p. (2008).
  21. G. H. Hardy, J. E. Littlewood. Some problems of ’partitio numerorum’" ; III: «On the expression of a number as a sum of primes« (Acta Math. Vol. 44: pp. 1 – 70, (1922).
  22. H. Helfgott, Platt. The ternary Goldbach conjecture. Gaz. Math. Soc. Math. Fr. 140, pp. 5-18 (2014). “The weak Goldbach conjecture”, Gac. R. Soc. Mat. Esp. 16, no. 4, 709-726 (2013). “Numerical verification of the ternary Goldbach conjecture up to 8.875.1030”, Exp. Math. 22, n° 4, 406-409 (2013).(arXiv1312.7748, 2013), (to appear in Ann. Math.).
  23. Hodges, L. A lesser-known Goldbach conjecture. Math. Mag. 1993, 66, 45–47. [Google Scholar] [CrossRef]
  24. Iwaniec, H.; Pintz. Primes in short intervals. Monatsh. Math. 1984, 98, 115–143. [Google Scholar] [CrossRef]
  25. Kiltinen, J.O.; Young, P.B. Goldbach, Lemoine, and a Know/Don’t Know Problem. Mathematics Magazine 1985, 58, 195–203. [Google Scholar] [CrossRef]
  26. E. Landau. Handbuch der Lehre von der Verteiligung der Primzahlen. vol. 1 and vol. 2 (1909), published by Chelsea Publishing Company (1953).
  27. E. Lemoine. L’intermédiaire de mathématiciens. vol. 1, 1894, p. 179, vol. 3, 1896, p.
  28. Levy, H. On Goldbach’s conjecture. Math. Gaz. 1963, 47, 274. [Google Scholar]
  29. Littlewood, J. Sur la distribution des nombres premiers. CRAS Paris 1914, 158, 1869–1875. [Google Scholar]
  30. Maier, H. Primes in short intervals. Michigan Math. J. 1985, 32, 221–225. [Google Scholar] [CrossRef]
  31. J. Maynard. Small gaps between primes. Annals of Mathematics, vol. 181, 2015, p. 383–413 (arXiv 1311.4600), [Submitted on 19 Nov 2013 (v1), last revised 28 Oct 2019 (this version, v3)].
  32. Nicely, T.R. New maximal prime gaps and first occurrences. Mathematics of Computation 1999, 68, 1311–1315. [Google Scholar] [CrossRef]
  33. D. Parrochia. Sur les conjectures de Goldbach forte et faible (quelques remarques historico-épistémologiques). Preprint submitted on 15 Dec 2023,. HAL Id: hal-04346907 , https://hal.science/hal-04346907v1.
  34. De Pocklington, H.C. The determination of the prime or composite nature of large numbers by Fermat’s theorem. Proc. Cambridge Philos. Soc. 1914-1916, 18, 29–30. [Google Scholar]
  35. Ramaré, O.; Saouter. Short effective intervals containing primes. J. Number Theory 2003, 98, 10–33. [Google Scholar] [CrossRef]
  36. P. Ribenboim,"The New Book of Prime Number Records", Springer, 1996, 3e éd. (read online [archive]), p.
  37. Ph. Sainty, "Primes frames", "Primality tests", "Goldbach decomponents : E.D.G. File S Around 2n = 10S for S = 1, 2, 3,............., 1000", htpps://www.researchgate.net, Internet Archive archive.org and (OEIS) The On-Line Encyclopedia of Integer Sequences, https://oeis.org (to appear).
  38. Ph. Sainty, "About the strong EULER-GOLDBACH conjecture", Matematicheskie Zametki /Mathematical Notes, In press., hal-03838423, HAL Id:hal-03838423, https://cnrs.hal.science/hal-03838423v1,Submitted on 3 Nov 2022.
  39. L. Schnirelmann, "Schnirelmann density", Wikipedia, (on line, internet) and "A proof of the fundamental theorem on the density of sums of sets of positive integers", Annals of Math, 2nd series, vol. 43, no. 3, (1942), pp. 523-527.
  40. Shanks, D. On Maximal Gaps between Successive Primes. Mathematics of Computation, American Mathematical Society 1964, 18, 646–651. [Google Scholar] [CrossRef]
  41. Silva, T.O.E.; Herzog; Pardi. Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4.1018. Math. Comput. 2014, 83, 2033–2060. [Google Scholar] [CrossRef]
  42. Z-W. Sun, "On sums of primes and triangular numbers" » [archive], arXiv, 2008 (arXiv 0803.3737).
  43. Tao, T. Every odd number greater than 1 is the sum of at most five primes. Math. Comput. 2014, 83, 997–1038. [Google Scholar] [CrossRef]
  44. P. Tchebychev, "Mémoire sur les nombres premiers" J. math. pures et appliquées, 1ère série, t.17, p. 366-390 et p. 381-382, (1852).
  45. C.- J. de La Vallée-Poussin, "Recherches analytiques sur la théorie des nombres premiers", Brux. S. sc. 21 B, pp. 183-256, 281-362, 363-397, vol.21 B, pp. 351-368, (1896).
  46. D. Vella-Chemla, "Calculs au sujet de la conjecture de Goldbach à l’aide du logiciel gb-tools", 31.8.2020, 123dok FR,https://123dok.net › document, "Conjecture de Goldbach: La tete dans les nombres", Freehttp://denise.vella.chemla.free.fr notesnp.
  47. Vinogradov, A. Representation of an odd number as a sum of three primes. Dokl. Akad. Nauk. SSR 1937, 15, 291–294. [Google Scholar]
  48. E.W. Weisstein, "Levy’s Conjecture" » [archive], sur MathWorld, CRC Concise Encyclopédie de mathématiques (CRC Press,), 733-4, (1999).
  49. M. S. Chin Woon, "On Partitions of Goldbach’s Conjecture" DPMMS, arXiv : math/ 0010027v2 [math.GM 4 Oct 2000].
  50. Zhang, Y. Bounded gaps between primes. Ann. Math. 2014, 179, 1121–1174. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated