Submitted:
10 July 2025
Posted:
11 July 2025
Read the latest preprint version here
Abstract
Keywords:
1. Overview
-
Elementary arithmetic
- -
-
Operations on integers, determination and properties of primes.(Basic operations, congruence, gcd, lcm, ………..).
- -
-
Decomposition of integers into products or sums of primes(Fundamental theorem of arithmetic, decomposition of large numbers, cryptography and Goldbach's conjecture, see Filhoa,Jaimea,de Oliveira Gouveaa,Keller Füchter, [16]).
-
Analytical number theory
- -
- Distribution of primes: Prime Number Theorem, the Riemann hypothesis, (see Hadamard [18], De la Vallée-Poussin [45], Littlewood [29] and Erdos [14],,.....).
- -
- Gaps between consecutive primes (Bombieri,Davenport [3], Cramer [9], Baker,Harmann,Iwaniec, Pintz [4,5,24], Granville [17], Maynard [31], Tao [43], Shanks [40], Tchebychev [44] and Zhang [49]).
-
Algebraic, probabilistic, combinatorial and algorithmic number theories
- -
- Modular arithmetic.
- -
- Diophantine approximations and equations.
- -
- Arithmetic and algebraic functions.
- -
- Diophantine and number geometry.
- -
- Computational number theory.
2. Definitions Notations and Background
3. Introduction
- Remark.
- Chen conjecture: For any integer K ≥ 1 there are infinitely many pairs of primes with a difference equal to 2K.
- De Polignac conjecture: Same as Chen, but with consecutive pairs of primes.
- What we know:
- Either
- Either
4. Theorem (Chen’s Weak or Goldbach(-) Conjecture)
5. Corollary
6. Lemma (Goldbach’s Fundamental Lemma)
7. Principle of proof
- If (2n -) is a prime
- Otherwise, if (2n -)is a composite number
- Remark. Using the same method as in Theorem 4, we can the following equivalent property by strong recurrence: For any integer n greater than 48
8. Theorem (Goldbach conjecture)
- If (2(n + 1) - ) is a prime
- Otherwise, if (2(n+1) -) is a composite number
- If (2n -) is a prime
- Otherwise, if (2n -is a composite number
9. Lemma
- If (2(n + 1) -is a prime
- Otherwise, if (2(n + 1) - ) is a composite number
- Remark. A more precise estimate can be obtained using the Cipolla or Axler frames [2,8].
10. Theorem
11. Lemma
- If 2n = 6m then (p; q) = (6r + 5; 6(m - r - 1) + 1) or (6r+1; 6(m - 1 - r) + 5)
- If 2n = 6m + 2 then (p; q) = (6r + 1; 6(m - r) + 1)
- If 2n = 6m + 4 then (p; q) = (6r + 5; 6(m- 1 - r) + 5)
| p+ q mod 6 | 1 | 5 |
| 1 | 2 | 0 |
| 5 | 0 | 4 |
| + mod 30 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 |
| 1 | 2 | 8 | 12 | 14 | 18 | 20 | 24 | 0 |
| 7 | 8 | 20 | 24 | 26 | 0 | 6 | ||
| 11 | 12 | 18 | 22 | 24 | 28 | 0 | 4 | 10 |
| 13 | 14 | 20 | 24 | 26 | 0 | 2 | 6 | 12 |
| 17 | 18 | 24 | 28 | 0 | 4 | 6 | 10 | 16 |
| 19 | 20 | 26 | 0 | 2 | 6 | 8 | 12 | 18 |
| 23 | 24 | 0 | 4 | 6 | 10 | 12 | 16 | 22 |
| 29 | 0 | 6 | 10 | 12 | 16 | 18 | 22 | 28 |
12. Properties
13. Algorithm
13.1. Algorithm written in natural language.
- Inputs:
- Input four integer variables: k, N, n, P
- Input: = 2, = 3, = 5, 7,................., the first N primes.
- Algorithm body:
- A)
- Compute: = Sup(p : p ≤ 2n - 3)
- If = (2n - ) is a prime
- B)
- Ifis a composite number
- Let: k = 1
- End while
- Assign to k the value ()
- Let:
- Assign to n the value n + 1 (nand return to A)
- End:
- Outputs for integers less than
- Outputs for large integers:
13.2. Program written with Maxima software for 2n around
- c: 10**1000; forn:c +40000step 2 thruc +40100do
- (b:2,test: 0, b: next_prime(b),e:n - b,
- if primep(e)
- then print(n -c, b, e - c)
- else whiletest= 0do(e:n -b, if primep(e)
- then test:1, print(n -c, b, e - c)
- else test: 0,b:next-prime(b));
13.3. Program written with Maplesoft Maple for 2n around
- G:= 10^1000:
- V:= [1, 11, 13, 17, 19, 23, 29]:
- A:= G + 500000:
- B:= A + 59:
- b:=2:
- st:= time():
- forq fromA by 6 to B do # Program modulo 30.using the results of Lemma 11
- Possibility of inverting the two loops or defining three similar structures with s:= 0, 1, 2.
- n:= q + s + s:
- (E):│ - │< k (n); this reduces the number of ‘nextprime(●)’ operations which take up the most computing time.
- (If G = : Computingtime is around 10 sec for thirty terms;The algorithm can be refined by exploiting frame (E). Cesàro averages can also be used to determine the initial condition for b).
- t:= 0:
- R:= [[1, 5], [1,5]]: Q:= [[1, 7, 11, 13, 17, 19, 23, 29], [1, 13, 19], [11, 17, 23], [7, 13, 17, 19, 23, 29], [1, 7, 19], [11, 17, 23, 29], [1, 11, 13, 19, 23, 29], [1, 7, 13], [17, 23, 29], [1, 7, 11, 17, 19, 29], [1, 19, 7, 13], [11, 23, 29], [1, 23, 7, 17, 11, 13], [7, 19, 13], [11, 17, 29]]:
| b:= nextprime(b+rand(100..150)) | b:= nextprime(b+100) | b:= nextprime(b+150) |
|---|---|---|
|
n - G b n - G - b 500000, 54133, 445867 500002, 40693, 459309 500004, 422393, 77611 500006, 49157, 450849 500008, 222991, 277017 500010, 259451, 240559 500012, 521981, -21969 500014, 622561, -22547 500016, 342929, 157087 500018, 25097, 474921 500020, 95083, 404937 500022, 201821, 298201 500024, 226337, 273687 500026, 255859, 244167 500028, 8147, 491881 500030, 83833, 416197 500032, 43261, 456771 500034, 162251, 337783 500036, 179203, 320833 500038, 12601, 487437 500040, 608471,-108431 500042, 157103, 342939 500044, 145531, 354513 500046, 440303, 59743 500048, 162577, 337471 500050, 258637, 241413 500052, 111791, 388261 500054, 139661, 360393 500056, 126397, 373659 500058, 40739, 459319 500060, 106121, 393939 ComComputtime:= 179.343 sec |
500000, 139387, 360613 500002, 40693, 459309 500004, 731447, -231443 500006, 54139, 445867 500008, 205651, 294357 500010, 100109, 399901 500012, 40693, 459319 500014, 261823, 238191 500016, 82913, 417103 500018, 300889, 199129 500020, 12583, 487437 500022, 233591, 266431 500024, 159871, 340153 500026, 106087, 393939 500028, 608459, -108431 500030, 30347, 469683 500032, 43261, 456771 500034, 201833, 298201 500036, 186859, 313177 500038, 95101, 404937 500040, 121763, 378277 500042, 9029, 491013 500044, 148663, 351381 500046, 304847, 195199 500048, 157109, 342939 500050, 40459, 459591 500052, 8171, 491881 500054, 223037, 277017 500056, 49207, 450849 500058, 301349, 198709 Computtime:= 188.250 sec |
500000, 361069, 138931 500002, 40693, 459309 500004, 535637, -35633 500006, 277789, 222217 500008, 205651, 294357 500010, 138959, 361051 500012, 40693, 459319 500014, 145501, 354513 500016, 198659, 301357 500018, 26309, 473709 500020, 77347, 422673 500022, 160709, 339313 500024, 162553, 337471 500026, 106087, 393939 500028, 263009, 237019 500030, 151813, 348217 500032, 24049, 475983 500034, 400031, 100003 500036, 145037, 354999 500038, 854257, -354219 500040, 121763, 378277 500042, 8161, 491881 500044, 145987, 354057 500046, 304847, 195199 500048, 12611, 487437 500050, 163729, 336321 500052, 100151, 399901 500054, 155291, 344763 500056, 126397, 373659 500058, 208277, 291781 500060, 67547, 432513 Computime:= 163.828 sec |
| b:= nextprime(b+rand(150..175)) | b:= nextprime(b+rand(140..160)) | |
|---|---|---|
| n-G b n-b-G | n-G b n-b-G | |
| 500000, 139387, 360613 500002, 90481, 409521 500004, 422393, 77611 500006, 145007, 354999 500008, 604339, -104331 500010, 138959, 361051 500012, 221021, 278991 500014, 334843, 165171 500016, 297779, 202237 500018, 167267, 332751 500020, 54577, 445443 500022, 139409, 360613 500024, 336491, 163533 500026, 12589, 487437 500028, 263009, 237019 500030, 145517, 354513 500032, 334861, 165171 500034, 163697, 336337 500036, 318979, 181057 500038, 221047, 278991 500040, 761591, -261551 500042, 178691, 321351 500044, 54601, 445443 500046, 174989, 325057 500048, 84229, 415819 500050, 163729, 336321 500052, 159899, 340153 500054, 155291, 344763 500056, 166183, 333873 500058, 151841, 348217 Computtime:= 174.438 sec |
500000, 112429,-387571 500002, 40693, 459309 500004, 277787, 222217 500006, 82903, 417103 500008, 148627, 351381 500010, 139397, 360613 500012, 40693, 459319 500014, 145501, 354513 500016, 388313, 111703 500018, 258329, 241689 500020, 77347, 422673 500022, 453683, 46339 500024, 67511, 432513 500026, 221197, 278829 500028, 263009, 237019 500030, 112459, 387571 500032, 178681, 321351 500034, 208253, 291781 500036, 274019, 226017 500038, 14071, 485967 500040, 162257, 337783 500042, 361111, 138931 500044, 52903, 447141 500046, 582299, -82253 500048, 8167, 491881 500050, 67537, 432513 500052, 111791, 388261 500054, 126641, 373413 500056, 126397, 373659 500058, 40739, 459319 Computtime:= 138.578 sec |
Record: 116 sec; see in researchgate files PDFGOLDBACHTEST4,10 (For n from G+5000000 to 5000058 by 2), [37]. |
- 500000, 9473, 490527
- 500002, 24019, 475983
- 500004, 8123, 491881
- 500006, 9479, 490527
- 500008, 25087, 474921
- 500010, 57917, 442093
- 500012, 8999, 491013
- 500014, 9001, 491013
- 500016, 40697, 459319
- 500018, 9491, 490527
- 500020, 9007, 491013
- 500022, 139409, 360613
- 500024, 9011, 491013
- 500026, 9013, 491013
- 500028, 8147, 491881
- 500030, 26321, 473709
- 500032, 24049, 475983
- 500034, 54167, 445867
- 500036, 57943, 442093
- 500038, 9511, 490527
- 500040, 57947, 442093
- 500042, 8161, 491881
- 500044, 24061, 475983
- 500046, 162263, 337783
- 500048, 8167, 491881
- 500050, 12613, 487437
- 500052, 8171, 491881
- 500054, 9041, 491013
- 500056, 9043, 491013
- 500058, 40739, 459319
- Computingtime: 343.453 s
| n – G | n - b - G | b | n - G | b | n - b – |
| 40000, | 39957, | 43 | 40050, | 86117, | -46067 |
| 40002, | 39091, | 911 | 40052, | 503, | 39549 |
| 40004, | 39957, | 47 | 40054, | 97, | 39957 |
| 40006, | 39549, | 457 | 40056, | 89393, | -49337 |
| 40008, | 25369, | 14639 | 40058, | 101, | 39957 |
| 40010, | 39957, | 53 | 40060, | 103, | 39957 |
| 40012, | 39549, | 463 | 40062, | 971, | 39091 |
| 40014, | 17737, | 22277 | 40064, | 107, | 39957 |
| 40016, | 39957, | 59 | 40066, | 109, | 39957 |
| 40018, | 39957, | 61 | 40068, | 977, | 39091 |
| 40020, | 39091, | 929 | 40070, | 113, | 39957 |
| 40022, | 39141, | 881 | 40072, | 523, | 39549 |
| 40024, | 39957, | 67 | 40074, | 983, | 39091 |
| 40026, | 35443, | 4583 | 40076, | 16937, | 23139 |
| 40028, | 39957, | 71 | 40078, | 937, | 39141 |
| 40030, | 39957, | 73 | 40080, | 4637, | 35443 |
| 40032, | 39091, | 941 | 40082, | 941, | 39141 |
| 40034, | 35443, | 4591 | 40084, | 127, | 39957 |
| 40036, | 39957, | 79 | 40086, | 4643, | 35443 |
| 40038, | 39091, | 947 | 40088, | 131, | 39957 |
| 40040, | 39957, | 83 | 40090, | 541, | 39549 |
| 40042, | 23139, | 16903 | 40092, | 4649, | 35443 |
| 40044, | 39091, | 953 | 40094, | 137, | 39957 |
| 40046, | 39957, | 89 | 40096, | 139, | 39957 |
| 40048, | 39549, | 499 | 40098, | 31991, | 8107 |
| 40100, | 1009, | 39091 |
| n– G | b | n - b- G |
| 100000, | 36529, | 63471 |
| 100002, | 77069, | 22933 |
| 100004, | 22717, | 77287 |
| 100006, | 181873, | -81867 |
| 100008, | 12239, | 87769 |
| 100010, | 4547, | 95463 |
| 100012, | 4549, | 95463 |
| 100014, | 22727, | 77287 |
| 100016, | 59497, | 40519 |
| 100018, | 24847, | 75171 |
| 100020, | 12251, | 87769 |
| 100022, | 12253, | 87769 |
| 100024, | 4561, | 95463 |
| 100026, | 22739, | 77287 |
| 100028, | 22741, | 77287 |
| 100030, | 4567, | 95463 |
| 100032, | 12263, | 87769 |
| 100034, | 36563, | 63471 |
| 100036, | 42649, | 57387 |
| 100038, | 12269, | 87769 |
| 100040, | 23143, | 76897 |
| 100042, | 36571, | 63471 |
| 100044, | 43973, | 56071 |
| 100046, | 4583, | 95463 |
| 100048, | 24877, | 75171 |
| 100050, | 12281, | 87769 |
| n- G | b | n - b- G | n- G | b | n - b- G | n- G | b | n - b- G |
| 100000, | 31147, | 68853 | 100050, | 12611, | 87439 | 100100, | 31247, | 68853 |
| 100002, | 309371, | -209369 | 100052, | 12613, | 87439 | 100102, | 31249, | 68853 |
| 100104, | 105071, | -4967 | ||||||
| 100106, | 13649, | 86457 | ||||||
| 100004, | 31151, | 68853 | 100054, | 13597, | 86457 | 100108, | 640669, | -540561 |
| 100006, | 31153, | 68853 | 100056, | 105023, | -4967 | 100110, | 12671, | 87439 |
| 100008, | 12569, | 87439 | 100058, | 12619, | 87439 | 100112, | 31259, | 68853 |
| 100114, | 87991, | 12123 | ||||||
| 100116, | 122033, | -21917 | ||||||
| 100118, | 18379, | 81739 | ||||||
| 100010, | 13553, | 86457 | 100060, | 54151, | 45909 | |||
| 100012, | 31159, | 68853 | 100062, | 108971, | -8909 | |||
| 100014, | 108923, | -8909 | 100064, | 103091, | -3027 | |||
| 100016, | 12577, | 87439 | 100066, | 87943, | 12123 | |||
| 100018, | 592237, | -492219 | 100068, | 18329, | 81739 | |||
| 100020, | 104987, | -4967 | 100070, | 13613, | 86457 | |||
| 100022, | 12583, | 87439 | 100072, | 31219, | 68853 | |||
| 100024, | 13567, | 86457 | 100074, | 264881, | - | |||
| 100026, | 18287, | 81739 | 100076, | 12637, | 87439 | |||
| 100028, | 12589, | 87439 | 100078, | 107971, | -7893 | |||
| 100030, | 31177, | 68853 | 100080, | 12641, | 87439 | |||
| 100032, | 61871, | 38161 | 100082, | 76913, | 23169 | |||
| 100034, | 13577, | 86457 | 100084, | 13627, | 86457 | |||
| 100036, | 31183, | 68853 | 100086, | 12647, | 87439 | |||
| 100038, | 108947, | -8909 | 10038, | 108947, | -8909 | 100088, | 61927, | 38161 |
| 100040, | 12601, | 87439 | 100090, | 13633, | 86457 | |||
| 100042, | 31189, | 68853 | 100092, | 12653, | 87439 | |||
| 100044, | 457091, | -357047 | 100094, | 61933, | 38161 | |||
| 100046, | 18307, | 81739 | 100096, | 87973, | 12123 | |||
| 100048, | 13591, | 86457 | 100098, | 12659, | 87439 | |||
| 100120, | 31267, | 68853 | ||||||
| 100122, | 61961, | 38161 | ||||||
| 100124, | 31271, | 68853 | ||||||
| 100126, | 13669, | 86457 | ||||||
| 100128, | 12689, | 87439 | ||||||
| 100130, | 31277, | 68853 | ||||||
| 100132, | 76963, | 23169 | ||||||
| 100134, | 122051, | -21917 | ||||||
| 100136, | 12697, | 87439 | ||||||
| 100138, | 13681, | 86457 | ||||||
| 100140, | 18401, | 81739 | ||||||
| 100142, | 12703, | 87439 | ||||||
| 100144, | 13687, | 86457 | ||||||
| 100146, | 152993, | -52847 | ||||||
| 100148, | 13691, | 86457 | ||||||
| 100150, | 13693, | 86457 | ||||||
| 1000000, | 35509, | 964491 | ||||||
| 1000002, | 113, | 999889 | ||||||
| 1000004, | 69193, | 930811 | ||||||
| 1000006, | 95233, | 904773 | ||||||
| 1000008, | 69197, | 930811 | ||||||
| 1000010, | 31873, | 968137 | ||||||
| 1000012, | 35521, | 964491 | ||||||
| 1000014, | 69203, | 930811 | ||||||
| 1000016, | 127, | 999889 | ||||||
| 1000018, | 35527, | 964491 | ||||||
| 1000020, | 131, | 999889 |
14. Appendix
| 2n | 2n - 3 | =2n - | |||
| 4 | 1 | X | X | 2 | 2 |
| 6 | 3 | 3 | 3 | 3 | 3 |
| 8 | 5 | 5 | 3 | 5 | 3 |
| 10 | 7 | 7 | 3 | 7 | 3 |
| 112 | 9 | 7 | 5 | 7 | 5 |
| 14 | 11 | 11 | 3 | 11 | 3 |
| 16 | 13 | 13 | 3 | 13 | 3 |
| 18 | 15 | 13 | 5 | 13 | 5 |
| 20 | 17 | 17 | 3 | 17 | 3 |
| 22 | 19 | 19 | 3 | 19 | 3 |
| 24 | 21 | 19 | 5 | 19 | 5 |
| 26 | 23 | 23 | 3 | 23 | 3 |
| 28 | 25 | 23 | 5 | 23 | 5 |
| 30 | 27 | 23 | 7 | 23 | 7 |
| 32 | 29 | 29 | 3 | 29 | 3 |
| 34 | 31 | 31 | 3 | 31 | 3 |
| 36 | 33 | 31 | 5 | 31 | 5 |
| 38 | 35 | 31 | 7 | 31 | 7 |
| 40 | 37 | 37 | 3 | 37 | 3 |
| 80 | 77 | 73 | 7 | 73 | 7 |
| 82 | 79 | 79 | 3 | 79 | 3 |
| 84 | 81 | 79 | 5 | 79 | 5 |
| 86 | 83 | 83 | 3 | 83 | 3 |
| 88 | 85 | 83 | 5 | 83 | 5 |
| 90 | 87 | 83 | 7 | 83 | 7 |
| 92 | 89 | 89 | 3 | 89 | 3 |
| 94 | 91 | 89 | 5 | 89 | 5 |
| 96 | 93 | 89 | 7 | 89 | 7 |
| **98 | 95 | 89 | 9 | 79 | 19 |
| 100 | 97 | 97 | 3 | 97 | 3 |
| 120 | 117 | 113 | 7 | 113 | 7 |
| **122 | 119 | 113 | 9 | 109 | 13 |
| 124 | 121 | 113 | 11 | 113 | 11 |
| 126 | 123 | 113 | 13 | 113 | 13 |
| **128 | 125 | 113 | 15 | 109 | 19 |
| 130 | 127 | 127 | 3 | 127 | 3 |
| 132 | 129 | 127 | 5 | 127 | 5 |
| 134 | 131 | 131 | 3 | 131 | 3 |
| 136 | 133 | 131 | 5 | 131 | 5 |
| 138 | 135 | 131 | 7 | 131 | 7 |
| 140 | 137 | 137 | 3 | 137 | 3 |
| **500 | 497 | 491 | 9 | 487 | 13 |
| 502 | 499 | 499 | 3 | 499 | 3 |
| 504 | 501 | 499 | 5 | 499 | 5 |
| 506 | 503 | 503 | 3 | 503 | 3 |
| 508 | 505 | 503 | 5 | 503 | 5 |
| 510 | 507 | 503 | 7 | 503 | 7 |
| 1000 | 997 | 997 | 3 | 997 | 3 |
| 1002 | 999 | 997 | 5 | 997 | 5 |
| 1004 | 1001 | 997 | 7 | 997 | 7 |
| **1006 | 1003 | 997 | 9 | 983 | 23 |
| 1008 | 1005 | 997 | 11 | 997 | 11 |
| 1010 | 1007 | 997 | 13 | 997 | 13 |
| 1012 | 1009 | 1009 | 3 | 1009 | 3 |
| 1014 | 1011 | 1009 | 5 | 1009 | 5 |
| 1016 | 1013 | 1013 | 3 | 1013 | 3 |
| 1018 | 1015 | 1013 | 5 | 1013 | 5 |
| 10002 | 9999 | 9973 | 29 | 9973 | 29 |
| 10004 | 10001 | 9973 | 31 | 9973 | 31 |
| **10006 | 10003 | 9973 | 33 | 9923 | 83 |
| **10008 | 10005 | 9973 | 35 | 9967 | 41 |
| 10010 | 10007 | 10007 | 3 | 10007 | 3 |
| 10012 | 10009 | 10009 | 3 | 10009 | 3 |
| 10014 | 10011 | 10009 | 5 | 10009 | 5 |
| 10016 | 10013 | 10009 | 7 | 10009 | 7 |
| **10018 | 10015 | 10009 | 9 | 10007 | 11 |
| 10020 | 10017 | 10009 | 11 | 10009 | 11 |
| 2n - M | (2n - 3) - M | - M | = 2n - | - M | |
| +1000 | +997 | +993 | 7 | +993 | 7 |
| **+1002 | +999 | +993 | 9 | +931 | 71 |
| +1004 | +1001 | +993 | 11 | +993 | 11 |
| +1006 | +1003 | +993 | 13 | +993 | 13 |
| **+1008 | +1005 | +993 | 15 | +919 | 89 |
| +1010 | +1007 | +993 | 17 | +993 | 17 |
| +1012 | +1009 | +993 | 19 | +993 | 19 |
| +1014 | +1011 | +1011 | 3 | +1011 | 3 |
| +1016 | +1013 | +1011 | 5 | +1011 | 5 |
| +1018 | +1015 | +1011 | 7 | +1011 | 7 |
| **+1020 | +1017 | +1011 | 9 | +931 | 89 |
| 2n - R | (2n - 3) - R | - R | = 2n - | - R | |
| **+1000 | +997 | +979 | 21 | +903 | 97 |
| +1002 | +999 | +979 | 23 | +979 | 23 |
| **+1004 | +1001 | +979 | 25 | +951 | 53 |
| **+1006 | +1003 | +979 | 27 | +903 | 103 |
| +1008 | +1005 | +979 | 29 | +979 | 29 |
| +1010 | +1007 | +979 | 31 | +979 | 31 |
| **+1012 | +1009 | +979 | 33 | +951 | 61 |
| **+1014 | +1011 | +979 | 35 | + 781 | 233 |
| +1016 | +1013 | +979 | 37 | +979 | 37 |
| **+1018 | +1015 | +979 | 39 | +951 | 67 |
| +1020 | +1017 | +1017 | 3 | +1017 | 3 |
| 2n - G | (2n - 3) - G | - G | = 2n - | - G | |
| **+10000 | +9997 | +9631 | 369 | +7443 | 2557 |
| **+10002 | +9999 | +9631 | 371 | +9259 | 743 |
| +10004 | +10001 | +9631 | 373 | +9631 | 373 |
| **+10006 | +10003 | +9631 | 375 | +8583 | 1423 |
| **+10008 | + 10005 | +9631 | 377 | +6637 | 3371 |
| +10010 | +10007 | +9631 | 379 | +9631 | 379 |
| **+10012 | +10009 | +9631 | 381 | +8583 | 1429 |
| +10014 | +10011 | +9631 | 383 | +9631 | 383 |
| **+10016 | +10013 | +9631 | 385 | +9259 | 757 |
| **+10018 | +10015 | +9631 | 387 | +4491 | 5527 |
| +10020 | +10017 | +9631 | 389 | +9631 | 389 |
| 2n-S | (2n-3)-S | - S | = 2n - | - S | |
| **+20000 | +19997 | +18031 | 1969 | +17409 | 2591 |
| **+20002 | +19999 | +18031 | 1971 | + 17409 | 2593 |
| +20004 | +20001 | +18031 | 1973 | +18031 | 1973 |
| **+20006 | +20003 | +18031 | 1975 | +16663 | 3343 |
| **+20008 | +20005 | +18031 | 1977 | +16941 | 3067 |
| +20010 | +20007 | +18031 | 1979 | +18031 | 1979 |
| **+20012 | +20009 | +18031 | 1981 | +5671 | 14341 |
| **+20014 | +20011 | +18031 | 1983 | +4101 | 15913 |
| **+20016 | +20013 | +18031 | 1985 | +3229 | 16787 |
| +20018 | +20015 | +18031 | 1987 | +18031 | 1987 |
| **+20020 | +20017 | +18031 | 1989 | +16941 | 3079 |
| 2n-T | (2n-3)-T | -T | = 2n - | ||
| **+40000 | +39997 | +29737 | 10263 | +21567 | 18433 |
| **+40002 | +39999 | +29737 | 10265 | + 22273 | 17729 |
| +40004 | +40001 | +29737 | 10267 | +29737 | 10267 |
| **+40006 | +40003 | +29737 | 10269 | +21567 | 18439 |
| +40008 | +40005 | +29737 | 10271 | +29737 | 10271 |
| +40010 | + 40007 | +29737 | 10273 | +29737 | 10273 |
| **+40012 | +40009 | +29737 | 10275 | +10401 | 29611 |
| **+40014 | +40011 | +29737 | 10277 | -56003 | 96017 |
| **+40016 | +40013 | +29737 | 10279 | +27057 | 12959 |
| **+40018 | +40015 | +29737 | 10281 | +25947 | 14071 |
| **+40020 | +40017 | +29737 | 10283 | +24493 | 15527 |
15. Appendix
| 7-3=4 | 11-5=6 | 11-3=8 | 13-3=10 | 17-5=12 | 17-3=14 | 19-3=16 | 23-5=18 |
| 23-3=20 | 29-7=22 | 29-5=24 | 29-3=26 | 31-3=28 | 37-7=30 | 37-5=32 | 37-3=34 |
| 41-5=36 | 41-3=38 | 43-3=40 | 47-5=42 | 47-3=44 | 53-7=46 | 53-5=48 | 53-3=50 |
| 59-7=52 | 59-5=54 | 59-3=56 | 61-3=58 | 67-7=60 | 67-5=62 | 67-3=64 | 71-5=66 |
| 71-3=68 | 73-3=70 | 79-7=72 | 79-5=74 | 79-3=76 | 83-5=78 | 83-3=80 | 89-7=82 |
| 89-5=84 | 89-3=86 | 101-13=88 | 97-7=90 | 97-5=92 | 97-3=94 | 101-5=96 | 101-3=98 |
| 103-3=100 | 107-5=102 | 107-3=104 | 109-3=106 | 113-5=108 | 113-3=110 | 131-19=112 | 127-13=114 |
| 127-11=116 | 131-13=118 | 127-7=120 | 127-5=122 | 127-3=124 | 131-5=126 | 131-3=128 | 137-7=130 |
| 137-5=132 | 137-3=134 | 139-3=136 | 149-11=138 | 151-11=140 | 149-7=142 | 149-5=144 | 149-3=146 |
| 151-3=148 | 157-7=150 | 157-5=152 | 157-3=154 | 163-7=156 | 163-5=158 | 163-3=160 | 167-5=162 |
| 167-3=164 | 173-7=166 | 173-5=168 | 173-3=170 | 179-7=172 | 179-5=174 | 179-3=176 | 181-3=178 |
| 191-11=180 | 193-11=182 | 191-7=184 | 191-5=186 | 191-3=188 | 193-3=190 | 197-5=192 | 197-3=194 |
| 199-3=196 | 211-13=198 | 211-11=200 | 233-31=202 | 211-7=204 | 211-5=206 | 211-3=208 | 223-13=210 |
| 229-17=212 | 227-13=214 | 223-7=216 | 223-5=218 | 223-3=220 | 227-5=222 | 227-3=224 | 229-3=226 |
| 233-5=228 | 233-3=230 | 239-7=232 | 239-5=234 | 239-3=236 | 241-3=238 | 251-11=240 | 271-29=242 |
| 251-7=244 | 251-5=246 |
16. Appendix
| = 3 | = 5 | = 7 | = 11 | = 13 | = 17 | = 19 | = 23 | = 29 | = 31 | =37 | |
| 2K = 2 | 5 | 7 | 13 | 19 | 31 | ||||||
| 2K = 4 | 7 | 11 | 17 | 23 | 41 | ||||||
| 2K = 6 | 11 | 13 | 17 | 19 | 23 | 29 | 37 | 43 | |||
| 2K = 8 | 11 | 13 | 19 | 31 | 37 | ||||||
| 2K = 10 | 13 | 23 | 29 | 41 | 47 | ||||||
| 2K = 12 | 17 | 19 | 23 | 29 | 31 | 41 | 43 | ||||
| 2K =14 | 17 | 19 | 31 | 37 | 43 | ||||||
| 2K = 16 | 19 | 23 | 29 | 47 | 59 | ||||||
| 2K = 18 | 23 | 29 | 31 | 37 | 41 | 47 | 61 | ||||
| 2K =20 | 23 | 31 | 37 | 43 | 67 | ||||||
| 2K=22 | 29 | 41 | 53 | ||||||||
| 2K=24 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 71 | |||
| 2K=26 | 29 | 31 | 37 | 43 | 73 | ||||||
| 2K=28 | 31 | 41 | 47 | 59 | |||||||
| 2K=30 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | ||||
| 2K=32 | 37 | 43 | 61 | 79 | |||||||
| 2K=34 | 37 | 41 | 47 | 53 | |||||||
| 2K=36 | 41 | 43 | 47 | 53 | 59 | 67 | 83 | ||||
| 2K=38 | 41 | 43 | 61 | 67 | |||||||
| 2K=40 | 43 | 47 | 53 | 59 | 71 | ||||||
| 2K=42 | 47 | 53 | 59 | 61 | 71 | 73 | 89 | ||||
| 2K=44 | 47 | 61 | 67 | 73 | |||||||
| 2K=46 | 53 | 59 | |||||||||
| 2K=48 | 53 | 59 | 61 | 67 | 71 | 79 | |||||
| 2K=50 | 53 | 61 | 67 | 73 | 79 | 97 | |||||
| 2K=52 | 59 | 71 | 83 | ||||||||
| 2K=54 | 59 | 61 | 67 | 71 | 73 | 83 | |||||
| 2K=56 | 59 | 61 | 67 | 73 | 79 | ||||||
| 2K=58 | 61 | 71 | 89 | ||||||||
| 2K=60 | 67 | 71 | 73 | 79 | 83 | 89 |
17. Perspectives and generalizations
- f is strictly increasing on the interval I
- f (3) = 3 and = +
- f: xa x + 3 - 3a (a: 0 < a
- g: x[ 49 ] ([x] is the integer part of the real x)
- h: x + 3
- If= (2n + 1 - 2 is a prime
- If is a composite number
- Let K and Q be two odd integers prime to each other:
- Let K and Q be two integers of different parity prime to each other:
18. Conclusion
References
- L. Adleman, K. L. Adleman, K. Mc Curley, " Open Problems in Number Theoretic Complexity ", " II. Algorithmic number theory" (Ithaca, NY,1994), 291–322, Lecture Notes in Comput. Sci., 877, Springer, Berlin, (1994).
- C. Axler, “ New Estimates for the nth Prime ” 19.4.2 2 Journal of Integer Sequences, Vol. 22, 30 p. 2019.
- E. Bombieri, Davenport, " Small differences between prime numbers ", Proc. Roy. Soc. Ser. A293, pp. 1-18, (1966). [CrossRef]
- R. C. Baker, Harman, G. " The difference between consecutive primes". Proc. London Math. Soc. (3) 72, 2 (1996), 261–280. [CrossRef]
- R. C. Baker, Harman, G., and Pintz, J. " The difference between consecutive primes ". II. Proc. London Math. Soc. (3) 83, 3 (2001), 532–562. [CrossRef]
- J. Brillhart, D. H. J. Brillhart, D. H. Lehmer & J. L. Selfridge, " New primality criteria and factorizations of Math. Comp., vol. 29, no 130, 1975, p. 620-647 (read online [archive]), Th. 4.
- J. R. Chen, " On the representation of a large even integer as the sum of a prime and the product of at most two primes ". Kexue Tongbao 17 (1966), pp. 385-386 (Chinese). [CrossRef]
- M. Cipolla, " La determinazione assintotica dell n imo numero primo ", Rend. Acad. Sci. Fis. Mat. Napoli 8(3) (1902).
- H. Cramer, "On the order of magnitude of the difference between consecutive prime numbers", Acta Arithmetica vol. 2, (1986), p.23-46.
- N. Dawar, “Lemoine's Conjecture: A Limited Solution Using Computers”, TechRxiv [ Archive online ] (2023).
- Deshouillers, J.-M.; te Riele, H. J. J.; and Saouter, Y. "New Experimental Results Concerning The Goldbach Conjecture." In Algorithmic Number Theory: Proceedings of the 3rd International Symposium (ANTS-III) held at Reed College, Portland, OR, -25, 1998 (Ed. J. P. Buhler). Berlin: Springer-Verlag, pp. 204-215, 1998. Modélisation, analyse et simulation (MAS), Rapport MAS-R9804, 31 mars 1998. [CrossRef]
- P. Dusart, ”About the prime counting function π ”, PhD Thesis, . University of Limoges, France.
- P. Dusart, ’’HDR: Estimations explicites en théorie des nombres’’, HDR, University of Limoges, France, (2022).
- P. Erdos, "On a new method in elementary number theory which leads to an elementary proof of the prime number theorem", Proc. Natl. Acad. Sci. USA 36, pp. 374-384 (1949). [CrossRef]
- Euclid, (trans. Bernard Vitrac), "Les éléments d'Euclide", Ed. PUF Paris, vol.2, p. 444-446 and p. 339-341, (1994).
- G. G. Filhoa, G.D.G. G. G. Filhoa, G.D.G. Jaimea, F.M.de Oliveira Gouveaa, S. Keller Füchter, "Bridging Mathematics and AI: A novel approach to Goldbach’s Conjecture", Contents lists available at ScienceDirect: Measurement: Sensors journal homepage: www.sciencedirect. [CrossRef]
- A. Granville, "Harald Cramér and the distribution of prime numbers", Scandinavian Actuarial Journal, 1: 12–28,(1995). [CrossRef]
- J. Hadamard, "On the zeros of the function ζ(s) of Riemann". C. R. 122, p.1470-1473 (1896), and "On the distribution of zeros of the function ζ'(s) and its arithmetical consequences". S. M. F. Bull. 24, pp. 199-220 (1896).
- J. Härdig, "Goldbach’s conjecture", Examensarbete i matematik, 15 hp U.U.D.M. Project Report 20:37, UPPSALA UNIVERSITET. 20 August.
- G. H. Hardy, Wright, "An introduction to the Theory of numbers", Oxford: Oxford University Press 621 p. (2008).
- G. H. Hardy, J. E. Littlewood, "Some problems of 'partitio numerorum’"; III: «On the expression of a number as a sum of primes« (Acta Math. Vol. 44: pp. 1 – 70, (1922). [CrossRef]
- H. Helfgott, Platt, "The ternary Goldbach conjecture", Gaz. Math. Soc. Math. Fr. 140, pp. 5-18 (2014). "The weak Goldbach conjecture", Gac. R. Soc. Mat. Esp. 16, no. 4, 709-726 (2013). "Numerical verification of the ternary Goldbach conjecture up to 8.875", Exp. Math. 22, n° 4, 406-409 (2013).(arXiv1312.7748, 2013), (to appear in Ann. Math.).
- L. Hodges, "A lesser-known Goldbach conjecture", Math. Mag., 66 (1993): 45–47.
- H. Iwaniec, Pintz, "Primes in short intervals". Monatsh. Math. 98, pp. 115-143 (1984).
- J. O. Kiltinen and P. B. Young, "Goldbach, Lemoine, and a Know/Don't Know Problem", Mathematics Magazine, 58(4) (Sep., 1985), p. 195–203. [CrossRef]
- E. Landau, "Handbuch der Lehre von der Verteiligung der Primzahlen", vol. 1 and vol. 2 (1909), published by Chelsea Publishing Company (1953).
- E. Lemoine, “L’intermédiaire de mathématiciens”, vol. 1, 1894, p. 179, vol. 3, 1896, p.
- H. Levy, “On Goldbach’s conjecture”, Math. Gaz." 47 (1963): 274.
- J. Littlewood, "Sur la distribution des nombres premiers", CRAS Paris, vol. 158, (1914), p. 1869-1875.
- H. Maier, ”Primes in short intervals”. Michigan Math. J., 32(2):221–225, 1985.
- J. Maynard, "Small gaps between primes", Annals of Mathematics, vol. 181, 2015, p. 383–413 (arXiv 1311.4600), [Submitted on 19 Nov 2013 (v1), last revised 28 Oct 2019 (this version, v3)].
- T. R. Nicely, "New maximal prime gaps and first occurrences", Mathematics of Computation, 68 (227): 1311–1315, (1999).
- D. Parrochia, "Sur les conjectures de Goldbach forte et faible (quelques remarques historico-épistémologiques)". Preprint submitted on 15 Dec 2023,. HAL Id: hal-04346907, https://hal. 0434.
- H. C. De Pocklington, " The determination of the prime or composite nature of large numbers by Fermat's theorem ", Proc. Cambridge Philos. Soc., vol. 18, 1914-1916, p. 29-30.
- Ramaré, Saouter, "Short effective intervals containing primes", J. Number theory, 98, No. 1, p..10-33, (2003). [CrossRef]
- P. Ribenboim," The New Book of Prime Number Records ", Springer, 1996, 3e éd. (read online [archive]), p.
- Ph. Sainty, "Primes frames", "Primality tests", "Goldbach decomponents: E.D.G. File S Around 2n = for S = 1, 2, 3,............., 1000", htpps://www.researchgate.net, Internet Archive archive.org and (OEIS) The On-Line Encyclopedia of Integer Sequences, https://oeis.org (to appear).
- Ph. Sainty, "About the strong EULER-GOLDBACH conjecture", Matematicheskie Zametki /Mathematical Notes, In press., hal-03838423, HAL Id:hal-03838423, https://cnrs.hal.science/hal-03838423v1,Submitted on 3 Nov 2022.
- L. Schnirelmann, "Schnirelmann density", Wikipedia, (on line, internet) and "A proof of the fundamental theorem on the density of sums of sets of positive integers", Annals of Math, 2nd series, vol. 43, no. 3, (1942), pp. 523-527.
- D. Shanks, "On Maximal Gaps between Successive Primes", Mathematics of Computation, American Mathematical Society, 18 (88): 646–651, (1964).
- T. O. e Silva, Herzog, Pardi, "Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4''. Math. Comput. 83, no. 288, pp. 2033-2060 (2014).
- Z-W. Sun, "On sums of primes and triangular numbers" » [archive], arXiv, 2008 (arXiv 0803.3737).
- T. Tao, "Every odd number greater than 1 is the sum of at most five primes", Math. Comput. 83, no. 286, p.997-1038(2014).
- P. Tchebychev, "Mémoire sur les nombres premiers" J. math. pures et appliquées, 1ère série, t.17, p. 366-390 et p. 381-382, (1852).
- C.- J. de La Vallée-Poussin, "Recherches analytiques sur la théorie des nombres premiers", Brux. S. sc. 21 B, pp. 183-256, 281-362, 363-397, vol.21 B, pp. 351-368, (1896).
- A. Vinogradov, "Representation of an odd number as a sum of three primes". Dokl. Akad.Nauk. SSR, 15:291-294, (1937). [CrossRef]
- E.W. Weisstein, "Levy's Conjecture" » [archive], sur MathWorld, CRC Concise Encyclopédie de mathématiques (CRC Press,), 733-4, (1999).
- M. S. Chin Woon, "On Partitions of Goldbach’s Conjecture" DPMMS, arXiv: math/ 0010027v2 [math.GM 4 Oct 2000].
- Y. Zhang, "Bounded gaps between primes", Ann. Math. (2) 179, no. 3, pp.1121-1174 (2014).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).