Submitted:
09 October 2024
Posted:
09 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Issues Associated with Defining Heparin Resistance
3. Incidence of Heparin Resistance
4. Origins of Heparin Resistance
4.1. Heparin, Antithrombin, and Heparin Cofactor II
4.2. Material of ECMO Linings
4.3. Plasma Components and Oxygenator
5. Coagulation and Inflammation on ECMO
5.1. ECMO and Fibrinogen Adsorption
5.2. Coagulation Factors
5.3. Tissue Factor
5.4. Von Willebrand Factor
5.5. Complement System
5.6. Neutrophils, Monocytes, and Cytokines on ECMO
5.7. Platelets
5.8. Summary of Coagulation and Inflammation
- We examined the changes in hemostasis and innate immunity and found that the following changes contribute to coagulopathy and inflammation after ECMO initiation.
- Upon contact with the negative charge of extracorporeal circuits, the activation system triggers an intrinsic coagulation cascade, contributing to thrombogenesis.
- Contact of blood with ECMO linings and the oxygenator induces fibrinogen adsorption and further protein layer formation.
- Activation of the complement system propagates inflammation.
- Activation of leukocytes results in increased expression of tF on the surface of neutrophils and monocytes, release of pro-inflammatory cytokines, and overall inflammation.
- Platelets become activated, and thus are prone to adhere to the fibrinogen protein layer. Shedding of the glycoprotein receptor on the surface of platelets due to mechanical stress leads to ineffective binding to vWF multimers and enhanced clearance. In addition, the contribution to thrombogenesis leads to thrombocytopenia.
- Shear stress and fragmentation of vWF multimers by ADAMTS-13 metalloprotease and the inadequate recruitment of platelets to the site of injury lead to the development of acquired von Willebrand disease, which predisposes patients to bleeding.
6. Management of Heparin Resistance
7. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Gu, K.; Zhang, Y.; Gao, B.; Chang, Y.; Zeng, Y. Hemodynamic Differences Between Central ECMO and Peripheral ECMO: A Primary CFD Study. Med. Sci. Monit. 2016, 22, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Pauls, J.P.; Bartnikowski, N.; Haymet, A.B.; Chan, C.H.H.; Suen, J.Y.; Schneider, B.; Ki, K.K.; Whittaker, A.K.; Dargusch, M.S.; et al. Anti-thrombogenic Surface Coatings for Extracorporeal Membrane Oxygenation: A Narrative Review. ACS Biomater Sci Eng. 2021, 7, 4402–4419. [Google Scholar] [CrossRef] [PubMed]
- Vuylsteke, A.; Brodie, D.; Combes, A.; Fowles, J.A.; Peek, G. The ECMO circuit. In ECMO in the Adult Patient; Cambridge University Press: Cambridge, UK, 2017; pp. 25–57. [Google Scholar]
- Meyer, A.D.; Rishmawi, A.R.; Kamucheka, R.; Lafleur, C.; Batchinsky, A.I.; Mackman, N.; Cap, A.P. Effect of blood flow on platelets, leukocytes, and extracellular vesicles in thrombosis of simulated neonatal extracorporeal circulation. J. Thromb. Haemost. 2020, 18, 399–410. [Google Scholar] [CrossRef]
- Steiger, T.; Foltan, M.; Philipp, A.; Mueller, T.; Gruber, M.; Bredthauer, A.; Krenkel, L.; Birkenmaier, C.; Lehle, K. Accumulations of von Willebrand factor within ECMO oxygenators: Potential indicator of coagulation abnormalities in critically ill patients? Artif. Organs 2019, 43, 1065–1076. [Google Scholar] [CrossRef]
- Wilm, J.; Philipp, A.; Müller, T.; Bredthauer, A.; Gleich, O.; Schmid, C.; Lehle, K. Leukocyte Adhesion as an Indicator of Oxygenator Thrombosis During Extracorporeal Membrane Oxygenation Therapy? ASAIO J. 2018, 64, 24–30. [Google Scholar] [CrossRef]
- Lehle, K.; Philipp, A.; Gleich, O.; Holzamer, A.; Müller, T.; Bein, T.; Schmid, C. Efficiency in Extracorporeal Membrane Oxygenation—Cellular Deposits on Polymethypentene Membranes Increase Resistance to Blood Flow and Reduce Gas Exchange Capacity. ASAIO J. 2008, 54, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Courtney, J.M. Influence on Blood of Plasticized Polyvinyl Chloride: Significance of the Plasticizer. Artif. Organs 1999, 23, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Subin, S. Extracorporeal membrane oxygenation, an anesthesiologist’s perspective: Physiology and principles. Part 1. Ann. Card. Anaesth. 2011, 14, 218. [Google Scholar] [CrossRef]
- Finley, A.; Greenberg, C. Heparin Sensitivity and Resistance. Anesth. Analg. 2013, 116, 1210–1222. [Google Scholar] [CrossRef]
- Levy, J.H.; Connors, J.M. Heparin Resistance—Clinical Perspectives and Management Strategies. N. Engl. J. Med. 2021, 385, 826–832. [Google Scholar] [CrossRef]
- Levy, J.H.; Sniecinski, R.M.; Rocca, B.; Ghadimi, K.; Douketis, J.; Frere, C.; Helms, J.; Iba, T.; Koster, A.; Lech, T.K.; et al. Defining heparin resistance: Communication from the ISTH SSC Subcommittee of Perioperative and Critical Care Thrombosis and Hemostasis. J. Thromb. Haemost. 2023, 21, 3649–3657. [Google Scholar] [CrossRef] [PubMed]
- Nagle, E.L.; Dager, W.E.; Duby, J.J.; Roberts, A.J.; Kenny, L.E.; Murthy, M.S.; Pretzlaff, R.K. Bivalirudin in Pediatric Patients Maintained on Extracorporeal Life Support. Pediatr. Crit. Care Med. 2013, 14, e182–e188. [Google Scholar] [CrossRef] [PubMed]
- Procaccini, D.E.; Roem, J.; Ng, D.K.; Rappold, T.E.; Jung, D.; Gobburu, J.V.S.; Bembea, M.M. Evaluation of acquired antithrombin deficiency in paediatric patients supported on extracorporeal membrane oxygenation. Br. J. Clin. Pharmacol. 2023, 89, 2396–2406. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.H.; Sniecinski, R.M.; Maier, C.L.; Despotis, G.J.; Ghadimi, K.; Helms, J.; Ranucci, M.; Steiner, M.E.; Tanaka, K.A.; Connors, J.M. Finding a common definition of heparin resistance in adult cardiac surgery: Communication from the ISTH SSC subcommittee on perioperative and critical care thrombosis and hemostasis. J. Thromb. Haemost. 2024, 22, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Rajsic, S.; Breitkopf, R.; Jadzic, D.; Popovic Krneta, M.; Tauber, H.; Treml, B. Anticoagulation Strategies during Extracorporeal Membrane Oxygenation: A Narrative Review. J. Clin. Med. 2022, 11, 5147. [Google Scholar] [CrossRef]
- McMichael, A.B.V.; Ryerson, L.M.; Ratano, D.; Fan, E.; Faraoni, D.; Annich, G.M. 2021 ELSO Adult and Pediatric Anticoagulation Guidelines. ASAIO J. 2022, 68, 303–310. [Google Scholar] [CrossRef]
- Levy, J.H.; Frere, C.; Koster, A. Resistance to unfractionated heparin in the ICU: Evaluation and management options. Intensive Care Med. 2023, 49, 1005–1007. [Google Scholar] [CrossRef]
- Downie, I.; Liederman, Z.; Thiyagarajah, K.; Selby, R.; Lin, Y. Pseudo heparin resistance caused by elevated factor VIII in a critically ill patient. Can. J. Anesth. J. Can. D’anesthésie 2019, 66, 995–996. [Google Scholar] [CrossRef]
- Calamaro, J.; Viamonte, H.; Keesari, R.; Davis, J.; Woods, G.; Fundora, M.P. Anticoagulation management for patients with multisystem inflammatory syndrome in children requiring extracorporeal membrane oxygenation. Prog. Pediatr. Cardiol. 2024, 72, 101684. [Google Scholar] [CrossRef]
- Nagler, B.; Staudinger, T.; Schellongowski, P.; Knoebl, P.; Brock, R.; Kornfehl, A.; Schwameis, M.; Herkner, H.; Levy, J.H.; Buchtele, N. Incidence of heparin resistance and heparin failure in patients receiving extracorporeal membrane oxygenation: An exploratory retrospective analysis. J. Thromb. Haemost. 2024, 10, 2773–2783. [Google Scholar]
- Kaushik, S.; Derespina, K.R.; Chandhoke, S.; Shah, D.D.; Cohen, T.; Shlomovich, M.; Medar, S.S.; Peek, G.J. Use of bivalirudin for anticoagulation in pediatric extracorporeal membrane oxygenation (ECMO). Perfusion 2023, 38, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Luo, J.; Li, J.; Ge, T.; Yan, Y.; Cao, W.; Li, X. Critical coronavirus disease 2019 complicated with heparin resistance in 2 patients. Chin. Crit. Care Med. 2022, 34, 509–513. [Google Scholar]
- Raghunathan, V.; Liu, P.; Kohs, T.C.L.; Amirsoltani, R.; Oakes, M.; McCarty, O.J.T.; Olson, S.R.; Zonies, D.; Shatzel, J.J. Heparin Resistance Is Common in Patients Undergoing Extracorporeal Membrane Oxygenation but Is Not Associated with Worse Clinical Outcomes. ASAIO J. 2021, 67, 899–906. [Google Scholar] [CrossRef]
- Schneider, J.; Tilford, B.; Safa, R.; Dentel, J.; Veenstra, M.; Ang, J.; Cashen, K. 60: Extracorporeal Membrane Support for Pediatric Multisystem Inflammatory Syndrome in Children. Crit. Care Med. 2021, 49, 31. [Google Scholar] [CrossRef]
- Streng, A.S.; Delnoij, T.S.R.; Mulder, M.M.G.; Sels, J.W.E.M.; Wetzels, R.J.H.; Verhezen, P.W.M.; Olie, R.H.; Kooman, J.P.; van Kuijk, S.M.J.; Brandts, L.; et al. Monitoring of Unfractionated Heparin in Severe COVID-19: An Observational Study of Patients on CRRT and ECMO. TH Open 2020, 04, e365–e375. [Google Scholar]
- Hamzah, M.; Jarden, A.M.; Ezetendu, C.; Stewart, R. Evaluation of Bivalirudin As an Alternative to Heparin for Systemic Anticoagulation in Pediatric Extracorporeal Membrane Oxygenation. Pediatr. Crit. Care Med. 2020, 21, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Sorial, M.N.; Greene, R.A.; Zullo, A.R.; Berard-Collins, C.; Willis, S. Exogenous supplementation of antithrombin III in adult and pediatric patients receiving extracorporeal membrane oxygenation. Int. J. Artif. Organs 2020, 43, 315–322. [Google Scholar]
- Gurnani, P.; Bak, E.; Michalak, L.; Dobrilovic, N.; March, R. 137: Use of bivalirudin in a patient with heparin resistance during extracorporeal membrane oxygenation. Crit. Care Med. 2019, 47, 51. [Google Scholar] [CrossRef]
- Khazi, F.M.; Elhoufi, A.M.; AbdelAziz, T.A.; Siddiqui, N.R.; Al-Zamkan, B.; Robert, S.B.; Pillai, P.K.; Aljassim, O. Fresh frozen plasma: A solution to heparin resistance during extracorporeal membrane oxygenation (ECMO). Egypt. J. Crit. Care Med. 2018, 6, 79–86. [Google Scholar] [CrossRef]
- Niimi, K.S.; Fanning, J.J. Initial Experience with Recombinant Antithrombin to Treat Antithrombin Deficiency in Patients on Extracorporeal Membrane Oxygenation. J. Extra Corpor. Technol. 2014, 46, 84–90. [Google Scholar] [CrossRef]
- Woods, G.M.; Kim, D.W.; Paden, M.L.; Viamonte, H.K. Thrombolysis in Children: A Case Report and Review of the Literature. Front. Pediatr. 2022, 9, 814033. [Google Scholar]
- Andrew, M.; Paes, B.; Milner, R.; Johnston, M.; Mitchell, L.; Tollefsen, D.; Powers, P. Development of the human coagulation system in the full-term infant. Blood 1987, 70, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Ofosu, F.A.; Modi, G.; Cerskus, A.L.; Hirsh, J.; Blajchman, M.A. Heparin with low affinity to antithrombin III inhibits the activation of prothrombin in normal plasma. Thromb. Res. 1982, 28, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Vatsyayan, R.; Kothari, H.; Mackman, N.; Pendurthi, U.R.; Rao, L.V.M. Inactivation of Factor VIIa by Antithrombin In Vitro, Ex Vivo and In Vivo: Role of Tissue Factor and Endothelial Cell Protein C Receptor. PLoS ONE. 2014, 9, e103505. [Google Scholar]
- Joist, J.H.; Cowan, J.F.; Khan, M. Rapid Loss of Factor XII- and XI-Activity in Ellagic Acid Activated Normal Plasma: Role of Plasma Inhibitors and Implications for Automated Aptt-Recording. J. Lab. Clin. Med. 1977, 90, 1054–1065. [Google Scholar]
- Lam, L.H.; Silbert, J.E.; Rosenberg, R.D. The separation of active and inactive forms of heparin. Biochem. Biophys. Res. Commun. 1976, 69, 570–577. [Google Scholar]
- Andersson, L.O.; Barrowcliffe, T.W.; Holmer, E.; Johnson, E.A.; Sims, G.E.C. Anticoagulant properties of heparin fractionated by affinity chromatography on matrix-bound antithrombin III and by gel filtration. Thromb. Res. 1976, 9, 575–583. [Google Scholar] [CrossRef]
- Marciniak, E.; Gockerman, J.P. Heparin-induced decrease in circulating antithrombin-III. Lancet 1977, 310, 581–584. [Google Scholar] [CrossRef]
- Schlömmer, C.; Brandtner, A.; Bachler, M. Antithrombin and Its Role in Host Defense and Inflammation. Int. J. Mol. Sci. 2021, 22, 4283. [Google Scholar] [CrossRef]
- Horie, S.; Ishii, H.; Kazama, M. Heparin-like glycosaminoglycan is a receptor for Antithrombin III-dependent but not for thrombin-dependent prostacyclin production in human endothelial cells. Thromb. Res. 1990, 59, 895–904. [Google Scholar] [CrossRef]
- Hoffmann, J.N.; Vollmar, B.; Inthorn, D.; Schildberg, F.W.; Menger, M.D. Antithrombin reduces leukocyte adhesion during chronic endotoxemia by modulation of the cyclooxygenase pathway. Am. J. Physiol.-Cell Physiol. 2000, 279, C98–C107. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.R.; Humphries, M.J.; Bass, M.D. Synergistic control of cell adhesion by integrins and syndecans. Nat. Rev. Mol. Cell. Biol. 2007, 8, 957–969. [Google Scholar] [PubMed]
- Gopal, S. Syndecans in Inflammation at a Glance. Front. Immunol. 2020, 11, 227. [Google Scholar] [CrossRef]
- Kaneider, N.C.; Egger, P.; Dunzendorfer, S.; Wiedermann, C.J. Syndecan-4 as Antithrombin Receptor of Human Neutrophils. Biochem. Biophys. Res. Commun. 2001, 287, 42–46. [Google Scholar] [CrossRef]
- Cosmi, B.; Fredenburgh, J.C.; Rischke, J.; Hirsh, J.; Young, E.; Weitz, J.I. Effect of Nonspecific Binding to Plasma Proteins on the Antithrombin Activities of Unfractionated Heparin, Low-Molecular-Weight Heparin, and Dermatan Sulfate. Circulation 1997, 95, 118–124. [Google Scholar] [CrossRef]
- Young, E.; Prins, M.; Levine, M.N.; Hirsh, J. Heparin Binding to Plasma Proteins, an Important Mechanism for Heparin Resistance. Thromb. Haemost. 1992, 67, 639–643. [Google Scholar] [CrossRef]
- Koster, A.; Zittermann, A.; Schirmer, U. Heparin Resistance and Excessive Thrombocytosis. Anesth. Analg. 2013, 117, 1262. [Google Scholar] [CrossRef]
- Sun, W.; Wang, S.; Chen, Z.; Zhang, J.; Li, T.; Arias, K.; Griffith, B.P.; Wu, Z.J. Impact of high mechanical shear stress and oxygenator membrane surface on blood damage relevant to thrombosis and bleeding in a pediatric ECMO circuit. Artif. Organs 2020, 44, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Vuylsteke, A.; Mills, R.J.; Crosbie, A.E.; Burns, T.I.; Latimer, R.D. Increased pre-operative platelet counts are a possible predictor for reduced sensitivity to heparin. Br. J. Anaesth. 2000, 85, 896–898. [Google Scholar] [CrossRef]
- Lim, G.B. Discovery and purification of heparin. Nat. Rev. Cardiol. 2017. [Google Scholar] [CrossRef]
- Lever, R.; Smailbegovic, A.; Riffo-Vasquez, Y.; Gray, E.; Hogwood, J.; Francis, S.M.; Richardson, N.V.; Page, C.P.; Mulloy, B. Biochemical and functional characterization of glycosaminoglycans released from degranulating rat peritoneal mast cells: Insights into the physiological role of endogenous heparin. Pulm. Pharmacol. Ther. 2016, 41, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wang, X.; Li, Z.; He, Z.; Yang, X.; Cheng, X.; Peng, Y.; Xue, Q.; Bai, Y.; Zhang, R.; et al. Heparin prevents caspase-11-dependent septic lethality independent of anticoagulant properties. Immunity 2021, 54, 454–467.e6. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, X. A potential new pathway for heparin treatment of sepsis-induced lung injury: Inhibition of pulmonary endothelial cell pyroptosis by blocking hMGB1-LPS-induced caspase-11 activation. Front. Cell. Infect. Microbiol. 2022, 12, 984835. [Google Scholar]
- Hoppensteadt, D.; Fareed, J.; Klein, A.L.; Jasper, S.E.; Apperson-Hansen, C.; Lieber, E.A.; Katz, W.E.; Malouf, J.F.; Stoddard, M.F.; Pape, L.A.; et al. Comparison of Anticoagulant and Anti-Inflammatory Responses Using Enoxaparin Versus Unfractionated Heparin for Transesophageal Echocardiography-Guided Cardioversion of Atrial Fibrillation††A list of participating clinical sites appears in the Appendix. Am. J. Cardiol. 2008, 102, 842–846. [Google Scholar] [CrossRef]
- Nykänen, A.I.; Selby, R.; McRae, K.M.; Zhao, Y.; Asghar, U.M.; Donahoe, L.; Granton, J.; de Perrot, M. Pseudo Heparin Resistance After Pulmonary Endarterectomy: Role of Thrombus Production of Factor VIII. Semin. Thorac. Cardiovasc. Surg. 2022, 34, 315–323. [Google Scholar] [CrossRef]
- Levy, J.H.; Staudinger, T.; Steiner, M.E. How to manage anticoagulation during extracorporeal membrane oxygenation. Intensive Care Med. 2022, 48, 1076–1079. [Google Scholar] [CrossRef] [PubMed]
- Olczyk, P.; Mencner, Ł.; Komosinska-Vassev, K. Diverse Roles of Heparan Sulfate and Heparin in Wound Repair. Biomed. Res. Int. 2015, 2015, 549417. [Google Scholar] [CrossRef]
- Heit, J.A. Thrombophilia. In Consultative Hemostasis and Thrombosis; Elsevier: Amsterdam, The Netherlands, 2013; pp. 205–239. [Google Scholar]
- Tollefsen, D.M.; Pestka, C.A.; Monafo, W.J. Activation of heparin cofactor II by dermatan sulfate. J. Biol. Chem. 1983, 258, 6713–6716. [Google Scholar] [CrossRef] [PubMed]
- Tollefsen, D.M. Heparin Cofactor II. Adv. Exp. Med. Biol. 1997, 425, 35–44. [Google Scholar]
- Weitz, J.I.; Hudoba, M.; Massel, D.; Maraganore, J.; Hirsh, J. Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J. Clin. Investig. 1990, 86, 385–391. [Google Scholar] [CrossRef]
- Tollefsen, D.; Pestka, C. Heparin cofactor II activity in patients with disseminated intravascular coagulation and hepatic failure. Blood 1985, 66, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Conard, J.; Brosstad, F.; Lie Larsen, M.; Samama, M.; Abildgaard, U. Molar Antithrombin Concentration in Normal Human Plasma. Pathophysiol. Haemost. Thromb. 1983, 13, 363–368. [Google Scholar] [CrossRef]
- Koide, T. Antithrombin and Heparin Cofactor II: Structure and Functions. In Recent Advances in Thrombosis and Hemostasis; Springer: Japan, Tokyo, 2008; pp. 177–189. [Google Scholar]
- Kaestner, F.; Seiler, F.; Rapp, D.; Eckert, E.; Müller, J.; Metz, C.; Bals, R.; Drexler, H.; Lepper, P.M.; Göen, T. Exposure of patients to di(2-ethylhexy)phthalate (DEHP) and its metabolite MEHP during extracorporeal membrane oxygenation (ECMO) therapy. PLoS ONE. 2020, 15, e0224931. [Google Scholar]
- Fernandez-Canal, C.; Pinta, P.G.; Eljezi, T.; Larbre, V.; Kauffmann, S.; Camilleri, L.; Cosserant, B.; Bernard, L.; Pereira, B.; Constantin, J.-M.; et al. Patients’ exposure to PVC plasticizers from ECMO circuits. Expert Rev. Med. Devices 2018, 15, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Testai, E.; Hartemann, P.; Rastogi, S.C.; Bernauer, U.; Piersma, A.; De Jong, W.; Gulliksson, H.; Sharpe, R.; Schubert, D.; Epstein, M.; et al. The safety of medical devices containing DEHP plasticized PVC or other plasticizers on neonates and other groups possibly at risk (2015 update). Regul. Toxicol. Pharmacol. 2016, 76, 209–210. [Google Scholar] [CrossRef]
- Yang, L.; Liu, X.; Peng, Z.; Liu, Z.; Song, P.; Zhou, J.; Ma, K.; Yu, Y.; Dong, Q. Exposure to di-2-ethylhexyl phthalate (DEHP) increases the risk of cancer. BMC Public Health 2024, 24, 430. [Google Scholar] [CrossRef]
- Steinlechner, B.; Kargl, G.; Schlömmer, C.; Holaubek, C.; Scheriau, G.; Eichinger, S.; Gratz, J.; Rössler, B. Can Heparin-Coated ECMO Cannulas Induce Thrombocytopenia in COVID-19 Patients? Case Rep. Immunol 2021, 2021, 6624682. [Google Scholar] [CrossRef] [PubMed]
- Scaravilli, V.; Fumagalli, J.; Rosso, L.; Polli, F.; Panigada, M.; Abbruzzese, C.; Crotti, S.; Lissoni, A.; Nosotti, M.; Pesenti, A.; et al. Heparin-Free Lung Transplantation on Venovenous Extracorporeal Membrane Oxygenation Bridge. ASAIO J. 2021, 67, e191–e197. [Google Scholar] [CrossRef]
- Rodrigues, A.B.; Rodrigues, A.; Correia, C.J.; Jesus, G.N.; Ribeiro, J.M. Anticoagulation Management in V-V ECMO Patients: A Multidisciplinary Pragmatic Protocol. J. Clin. Med. 2024, 13, 719. [Google Scholar] [CrossRef]
- Maul, T.M.; Massicotte, M.P.; Wearden, P.D. ECMO Biocompatibility: Surface Coatings, Anticoagulation, and Coagulation Monitoring. In Extracorporeal Membrane Oxygenation: Advances in Therapy; InTech: London, UK, 2016. [Google Scholar]
- Fukuda, M. Evolutions of extracorporeal membrane oxygenator (ECMO): Perspectives for advanced hollow fiber membrane. J. Artif. Organs 2024, 27, 1–6. [Google Scholar] [CrossRef]
- Shimono, T.; Shomura, Y.; Hioki, I.; Shimamoto, A.; Tenpaku, H.; Maze, Y.; Onoda, K.; Takao, M.; Shimpo, H.; Yada, I. Silicone-Coated Polypropylene Hollow-Fiber Oxygenator: Experimental Evaluation and Preliminary Clinical Use. Ann. Thorac. Surg. 1997, 63, 1730–1736. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, S.; Cai, T.; McCafferty, C.; Van Den Helm, S.; Horton, S.; MacLaren, G.; Monagle, P.; Ignjatovic, V. Adsorption of Blood Components to Extracorporeal Membrane Oxygenation (ECMO) Surfaces in Humans: A Systematic Review. J. Clin. Med. 2020, 9, 3272. [Google Scholar] [CrossRef] [PubMed]
- Niimi, Y.; Yamane, S.; Yamaji, K.; Tayama, E.; Sueoka, A.; Nosea, Y. Protein Adsorption and Platelet Adhesion on the Surface of an Oxygenator Membrane. ASAIO J. 1997, 43, M710. [Google Scholar] [CrossRef]
- Slepička, P.; Trostová, S.; Slepičková Kasálková, N.; Kolská, Z.; Malinský, P.; Macková, A.; Bačáková, L.; Švorčík, V. Nanostructuring of polymethylpentene by plasma and heat treatment for improved biocompatibility. Polym. Degrad. Stab. 2012, 97, 1075–1082. [Google Scholar] [CrossRef]
- Doyle, A.J.; Hunt, B.J. Current Understanding of How Extracorporeal Membrane Oxygenators Activate Haemostasis and Other Blood Components. Front. Med. 2018, 5, 352. [Google Scholar] [CrossRef]
- Vroman, L.; Adams, A.; Fischer, G.; Munoz, P. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 1980, 55, 156–159. [Google Scholar] [CrossRef]
- Turbill, P.; Beugeling, T.; Poot, A.A. Proteins involved in the Vroman effect during exposure of human blood plasma to glass and polyethylene. Biomaterials 1996, 17, 1279–1287. [Google Scholar] [CrossRef]
- Passmore, M.R.; Fung, Y.L.; Simonova, G.; Foley, S.R.; Diab, S.D.; Dunster, K.R.; Spanevello, M.M.; McDonald, C.I.; Tung, J.-P.; Pecheniuk, N.M.; et al. Evidence of altered haemostasis in an ovine model of venovenous extracorporeal membrane oxygenation support. Crit. Care 2017, 21, 191. [Google Scholar] [CrossRef] [PubMed]
- Bednarski Spiwak, A.J.; Horbal, A.; Leatherbury, R.; Hansford, D.J. Extracorporeal Tubing in the Roller Pump Raceway: Physical Changes and Particulate Generation. J. Extra Corpor. Technol. 2008, 40, 188–192. [Google Scholar] [CrossRef]
- Moganasundram, S.; Hunt, B.J.; Sykes, K.; Holton, F.; Parmar, K.; Durward, A.; Murdoch, I.A.; Austin, C.; Anderson, D.; Tibby, S.M. The Relationship Among Thromboelastography, Hemostatic Variables, and Bleeding After Cardiopulmonary Bypass Surgery in Children. Anesth. Analg. 2010, 110, 995–1002. [Google Scholar] [CrossRef]
- Boggio, L.N.; Simpson, M.L. Fibrinogen Replacement Underutilization in ECMO. Blood 2020, 136 (Suppl. 1), 4–5. [Google Scholar] [CrossRef]
- Millar, J.E.; Fanning, J.P.; McDonald, C.I.; McAuley, D.F.; Fraser, J.F. The inflammatory response to extracorporeal membrane oxygenation (ECMO): A review of the pathophysiology. Crit. Care 2016, 20, 387. [Google Scholar]
- De los Santos Pereira, A.; Sheikh, S.; Blaszykowski, C.; Pop-Georgievski, O.; Fedorov, K.; Thompson, M.; Rodriguez-Emmenegger, C. Antifouling Polymer Brushes Displaying Antithrombogenic Surface Properties. Biomacromolecules 2016, 17, 1179–1185. [Google Scholar] [CrossRef]
- Keuren, J.F.W.; Wielders, S.J.H.; Willems, G.M.; Morra, M.; Cahalan, L.; Cahalan, P.; Lindhout, T. Thrombogenicity of polysaccharide-coated surfaces. Biomaterials 2003, 24, 1917–1924. [Google Scholar] [CrossRef] [PubMed]
- Naudin, C.; Burillo, E.; Blankenberg, S.; Butler, L.; Renné, T. Factor XII Contact Activation. Semin. Thromb. Hemost. 2017, 43, 814–826. [Google Scholar] [CrossRef]
- Renné, T.; Pozgajová, M.; Grüner, S.; Schuh, K.; Pauer, H.U.; Burfeind, P.; Gailani, D.; Nieswandt, B. Defective thrombus formation in mice lacking coagulation factor XII. J. Exp. Med. 2005, 202, 271–281. [Google Scholar] [CrossRef]
- Cai, T.Q.; Wu, W.; Shin, M.K.; Xu, Y.; Jochnowitz, N.; Zhou, Y.; Hoos, L.; Bentley, R.; Strapps, W.; Thankappan, A.; et al. Factor XII full and partial null in rat confers robust antithrombotic efficacy with no bleeding. Blood Coagul. Fibrinolysis 2015, 26, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Larsson, M.; Rayzman, V.; Nolte, M.W.; Nickel, K.F.; Björkqvist, J.; Jämsä, A.; Hardy, M.P.; Fries, M.; Schmidbauer, S.; Hedenqvist, P.; et al. A Factor XIIa Inhibitory Antibody Provides Thromboprotection in Extracorporeal Circulation Without Increasing Bleeding Risk. Sci. Transl. Med. 2014, 6, 222ra17. [Google Scholar]
- Kappelmayer, J.; Bernabei, A.; Edmunds, L.H.; Edgington, T.S.; Colman, R.W. Tissue factor is expressed on monocytes during simulated extracorporeal circulation. Circ. Res. 1993, 72, 1075–1081. [Google Scholar] [CrossRef]
- Fischer, M.; Sperling, C.; Tengvall, P.; Werner, C. The ability of surface characteristics of materials to trigger leukocyte tissue factor expression. Biomaterials 2010, 31, 2498–2507. [Google Scholar]
- Mazzeffi, M.; Judd, M.; Rabin, J.; Tabatabai, A.; Menaker, J.; Menne, A.; Chow, J.; Shah, A.; Henderson, R.; Herr, D.; et al. Tissue Factor Pathway Inhibitor Levels During Veno-Arterial Extracorporeal Membrane Oxygenation in Adults. ASAIO J. 2021, 67, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Broze, G.J., Jr. Tissue factor pathway inhibitor: Structure-function. Front. Biosci. 2012, 17, 262. [Google Scholar] [CrossRef] [PubMed]
- Barstad, R.M.; ØVrum, E.; Ringdal, M.A.L.; ØYstese, R.; Hamers, M.J.; Veiby, O.P.; Rolfsen, T.; Stephens, R.W.; Sakariassen, K.S. Induction of monocyte tissue factor procoagulant activity during coronary artery bypass surgery is reduced with heparin-coated extracorporeal circuit. Br. J. Haematol. 1996, 94, 517–525. [Google Scholar] [CrossRef]
- Lenting, P.J.; Christophe, O.D.; Denis, C.V. von Willebrand factor biosynthesis, secretion, and clearance: Connecting the far ends. Blood 2015, 125, 2019–2228. [Google Scholar] [CrossRef]
- Wagner, D.D. Cell Biology of von Willebrand Factor. Annu. Rev. Cell. Biol. 1990, 6, 217–242. [Google Scholar] [CrossRef] [PubMed]
- Schlagenhauf, A.; Kalbhenn, J.; Geisen, U.; Beyersdorf, F.; Zieger, B. Acquired von Willebrand Syndrome and Platelet Function Defects during Extracorporeal Life Support (Mechanical Circulatory Support). Hamostaseologie 2020, 40, 221–225. [Google Scholar] [CrossRef]
- Wang, H.; Li, D.; Chen, Y.; Liu, Z.; Liu, Y.; Meng, X.; Fan, H.; Hou, S. Shear-induced acquired von Willebrand syndrome: An accomplice of bleeding events in adults on extracorporeal membrane oxygenation support. Front. Cardiovasc. Med. 2023, 10, 1159894. [Google Scholar] [CrossRef]
- Kalbhenn, J.; Schmidt, R.; Nakamura, L.; Schelling, J.; Rosenfelder, S.; Zieger, B. Early Diagnosis of Acquired von Willebrand Syndrome (AVWS) is Elementary for Clinical Practice in Patients Treated with ECMO Therapy. J. Atheroscler. Thromb. 2015, 22, 265–271. [Google Scholar] [CrossRef]
- Hayakawa, M.; Takano, K.; Kayashima, M.; Kasahara, K.; Fukushima, H.; Matsumoto, M. Management of a COVID-19 Patient during ECMO: Paying Attention to Acquired von Willebrand Syndrome. J. Atheroscler. Thromb. 2021, 28, 396–401. [Google Scholar] [CrossRef]
- Heubner, L.; Trautmann-Grill, K.; Tiebel, O.; Mirus, M.; Güldner, A.; Rand, A.; Spieth, P.M. Treatment of Acquired von Willebrand Disease due to Extracorporeal Membrane Oxygenation in a Pediatric COVID-19 Patient with Vonicog Alfa: A Case Report and Literature Review. TH Open 2023, 7, e76–e81. [Google Scholar] [CrossRef]
- Frere, C.; Mazzeffi, M.; Maier, C.L.; Helms, J.; Steiner, M.E.; Sullenger, B.A.; Tanaka, K.A.; Connors, J.M.; Levy, J.H.; et al. Acquired von Willebrand syndrome during extracorporeal membrane oxygenation support: A comprehensive review of current evidence: Communication from the ISTH SSC on perioperative and critical care thrombosis and hemostasis. J. Thromb. Haemost. 2024, 22, 2608–2628. [Google Scholar] [PubMed]
- Vallhonrat, H.; Swinford, R.D.; Ingelfinger, J.R.; Williams, W.W.; Ryan, D.P.; Tolkoff-Robin, N.; Cosimi, A.B.; Pascual, M. Rapid Activation of the Alternative Pathway of Complement by Extracorporeal Membrane Oxygenation. ASAIO J. 1999, 45, 113–114. [Google Scholar] [CrossRef] [PubMed]
- Graulich, J.; Sonntag, J.; Marcinkowski, M.; Bauer, K.; Kössel, H.; Bührer, C.; Obladen, M.; Versmold, H.T. Complement activation by in vivo neonatal and in vitro extracorporeal membrane oxygenation. Mediators Inflamm. 2002, 11, 69–73. [Google Scholar] [CrossRef]
- Sarkar, M.; Prabhu, V. Basics of cardiopulmonary bypass. Indian J. Anaesth. 2017, 61, 760. [Google Scholar]
- Bruins, P.; Velthuis, H.T.; Yazdanbakhsh, A.P.; Jansen, P.G.M.; van Hardevelt, F.W.J.; de Beaumont, E.M.F.H.; Wildevuur, C.R.; Eijsman, L.; Trouwborst, A.; Hack, C.E. Activation of the Complement System During and After Cardiopulmonary Bypass Surgery. Circulation 1997, 96, 3542–3548. [Google Scholar] [CrossRef]
- Poppelaars, F.; Gaya da Costa, M.; Faria, B.; Berger, S.P.; Assa, S.; Daha, M.R.; Pestana, J.O.M.; van Son, W.J.; Franssen, C.F.M.; Seelen, M.A. Intradialytic Complement Activation Precedes the Development of Cardiovascular Events in Hemodialysis Patients. Front. Immunol. 2018, 9, 2070. [Google Scholar] [CrossRef] [PubMed]
- Tereshchenko, L.G.; Posnack, N.G. Does plastic chemical exposure contribute to sudden death of patients on dialysis? Heart Rhythm 2019, 16, 312–317. [Google Scholar] [CrossRef]
- Cheung, A.K.; Hohnholt, M.; Gilson, J. Adherence of neutrophils to hemodialysis membranes: Role of complement receptors. Kidney Int. 1991, 40, 1123–1133. [Google Scholar] [CrossRef]
- Martin, U.; Bock, D.; Arseniev, L.; Tornetta, M.A.; Ames, R.S.; Bautsch, W.; Köhl, J.; Ganser, A.; Klos, A. The Human C3a Receptor Is Expressed on Neutrophils and Monocytes, but Not on B or T Lymphocytes. J. Exp. Med. 1997, 186, 199–207. [Google Scholar] [CrossRef]
- Schreiber, A.; Xiao, H.; Jennette, J.C.; Schneider, W.; Luft, F.C.; Kettritz, R. C5a Receptor Mediates Neutrophil Activation and ANCA-Induced Glomerulonephritis. J. Am. Soc. Nephrol. 2009, 20, 289–298. [Google Scholar] [CrossRef]
- Kourtzelis, I.; Markiewski, M.M.; Doumas, M.; Rafail, S.; Kambas, K.; Mitroulis, I.; Panagoutsos, S.; Passadakis, P.; Vargemezis, V.; Magotti, P.; et al. Complement anaphylatoxin C5a contributes to hemodialysis-associated thrombosis. Blood 2010, 116, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Graulich, J.; Walzog, B.; Marcinkowski, M.; Bauer, K.; Kössel, H.; Fuhrmann, G.; Bührer, C.; Gaehtgens, P.; Versmold, H.T. Leukocyte and Endothelial Activation in a Laboratory Model of Extracorporeal Membrane Oxygenation (ECMO). Pediatr. Res. 2000, 48, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Frerou, A.; Lesouhaitier, M.; Gregoire, M.; Uhel, F.; Gacouin, A.; Reizine, F. Venoarterial extracorporeal membrane oxygenation induces early immune alterations. Crit Care 2021, 25, 9. [Google Scholar] [CrossRef]
- Skendros, P.; Mitsios, A.; Chrysanthopoulou, A.; Mastellos, D.C.; Metallidis, S.; Rafailidis, P.; Ntinopoulou, M.; Sertaridou, E.; Tsironidou, V.; Tsigalou, C.; et al. Complement and tissue factor–enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Investig. 2020, 130, 6151–6157. [Google Scholar] [CrossRef]
- Odish, M.F.; Masso-Silva, J.A.; Pollema, T.L.; Owens, R.L.; Alexander, L.E.C.; Meier, A. Initiation of ECMO in patients with COVID-19- related ARDS does not increase blood markers of neutrophil extracellular traps (NETs) or IL-8. J. Cardiothorac. Vasc. Anesth. 2024, 38, 1288–1289. [Google Scholar] [CrossRef]
- Lingel, M.P.; Haus, M.; Paschke, L.; Foltan, M.; Lubnow, M.; Gruber, M.; Krenkel, L.; Lehle, K. Clinical relevance of cell-free DNA during venovenous extracorporeal membrane oxygenation. Artif. Organs 2023, 47, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Peng, R.; Pei, S.; Gao, S.; Sun, Y.; Cheng, G.; Yu, D.; Wang, X.; Gao, Z.; Ji, B.; et al. Neutrophil extracellular traps are increased after extracorporeal membrane oxygenation support initiation and present in thrombus: A preclinical study using sheep as an animal model. Thromb. Res. 2023, 221, 173–182. [Google Scholar] [CrossRef]
- Bendas, G.; Schlesinger, M. The GPIb-IX complex on platelets: Insight into its novel physiological functions affecting immune surveillance, hepatic thrombopoietin generation, platelet clearance and its relevance for cancer development and metastasis. Exp. Hematol. Oncol. 2022, 11, 19. [Google Scholar]
- Lopes da Silva, M.; Cutler, D.F. von Willebrand factor multimerization and the polarity of secretory pathways in endothelial cells. Blood 2016, 128, 277–285. [Google Scholar]
- Zhang, X.F.; Zhang, W.; Quach, M.E.; Deng, W.; Li, R. Force-Regulated Refolding of the Mechanosensory Domain in the Platelet Glycoprotein Ib-IX Complex. Biophys. J. 2019, 116, 1960–1969. [Google Scholar]
- Rauch, A.; Dupont, A.; Rosa, M.; Desvages, M.; Le Tanno, C.; Abdoul, J.; Didelot, M.; Ung, A.; Ruez, R.; Jeanpierre, E.; et al. Shear Force-Induced Platelet Clearance Is a New Mechanism of Thrombocytopenia. Circ. Res. 2023, 133, 826–841. [Google Scholar] [CrossRef] [PubMed]
- Hiura, H.; Matsui, T.; Matsumoto, M.; Hori, Y.; Isonishi, A.; Kato, S. Proteolytic fragmentation and sugar chains of plasma ADAMTS13 purified by a conformation-dependent monoclonal antibody. J. Biochem. 2010, 148, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Morrisette, M.J.; Zomp-Wiebe, A.; Bidwell, K.L.; Dunn, S.P.; Gelvin, M.G.; Money, D.T.; Palkimas, S. Antithrombin supplementation in adult patients receiving extracorporeal membrane oxygenation. Perfusion 2020, 35, 66–72. [Google Scholar] [CrossRef]
- Mansour, A.; Berahou, M.; Odot, J.; Pontis, A.; Parasido, A.; Reizine, F.; Launey, Y.; Garlantézec, R.; Flecher, E.; Lecompte, T.; et al. Antithrombin Levels and Heparin Responsiveness during Venoarterial Extracorporeal Membrane Oxygenation: A Prospective Single-center Cohort Study. Anesthesiology 2024, 140, 1153–1164. [Google Scholar] [PubMed]
| Study Type Participants (n) Duration (Mean/Median) Cohort (Age) Publication Year |
Type of ECMO, Goal |
Traits of Heparin Resistance |
Other Anticoagulant |
Complications | |
|---|---|---|---|---|---|
| 1. | Case series [20] n = 6 7 days Pediatric (4–15 у) 2024 |
VA-ECMO: Cardiac, COVID-19 |
HR: n = 1 (16.6%) (1) anti-Xa < 0.35 IU/mL, (2) thrombosis of ECMO circuit |
Switch to bivalirudin n = 1 (16.6%) |
Thrombosis on VA-ECMO: n = 4 (57%) |
| 2. | Retrospective [21] n = 197 Adults 2024 |
VA-ECMO, VV-ECMO | HR: n = 47 (1) UFH > 35,000 IU/d (n = 33, 16.8%) (2) UFH > 20 IU/kg/h (n = 14, 7.1%) |
HR is not associated with thrombogenesis (IRR 0.93) Thrombosis is associated with VA-ECMO (IRR, 2.29) and COVID-19 (IRR, 2.33) |
|
| 3. | Retrospective [14] n = 191 Pediatrics (65 d) 6 days 2024 |
ECMO (201 runs): VA—86.6% VV—13.4% Pulmonary 41.3% Cardiac 26.9% ECPR 31.8% |
HR: n = 50 ECMO runs (1) Anti-Xa ≤ 0.3 IU/mL (2) UFH > 40 units/kg/h (3) UFH ↑ ≥ 2 in 24 h |
Hemorrhage: n = 26 (12.9%) Intracranial hemorrhage: n = 15 (7.5%) Cerebral infarction: n = 18 (9.0%) Circuit clot formation: n = 30 (14.9%) Mortality: n = 112 (55%) |
|
| 4. | Retrospective [22] n = 27 Pediatric (4 m.o.) 6 days 2023 |
VA-ECMO 88.9% VV-ECMO 11.1% Pulmonary 18.5% Cardiac 66.7% ECPR 14.8% |
HR: n =1 (3.7%) (1) Subtherapeutic APTT (2) UFH = 26 IU/kg/h (3) AT = N |
Switch to bivalirudin n = 1 |
Bleeding: n = 12 (44%) Circuit change: n = 3 (11.1%) Mortality: n = 7 (25.9%) |
| 5. | Case report [23] n = 1 2022 |
ECMO Pulmonary, COVID-19 |
HR: > 35 000 IU/d UFH = 43 200 U/d |
UFH + argatroban: (1) ACT: 180–200 s (2) APTT: 55–60 s |
Deep venous thrombosis |
| 6. | Retrospective [24] n = 67 Adult 8.38 ± 5.69 days 2021 |
VA-ECMO 65% VV-ECMO 34% |
HR: n = 34 ≥ 1 d (1) UFH ≥ 35,000 IU/d (2) anti-Xa < 0.35 IU/mL for VA-ECMO (3) anti-Xa < 0.30 IU/mL for VV-ECMO |
No difference in thrombosis and/or bleeding with non-HR group | |
| 7. | Case series [25] n = 3 Pediatric 2021 |
VA-ECMO, Cardiac, COVID-19 |
HR: n = 1 (33.3%) | n = 1 (33.3%) Switch to bivalirudin |
Clots in the arterial cannula; circuit change |
| 8. | Observational [26] 11.3 days 2020 |
VV-ECMO Respiratory, COVID-19 |
HR: n = 3 (100%) (1) UFH > 35,000 IU/d (2) anti-Xa > 0.7 IU/mL |
Thrombosis; bleeding n = 1 (33.3%) | |
| 9. | Retrospective [27] n = 16 Pediatric (59 m.o.) 114 h 2020 |
VA-ECMO | HR: n = 8 (50%) (1) subtherapeutic APTT, Anti-Xa (2) AT < 60% |
Thrombosis n = 3 (18.8%) Bleeding: 5 events/10 d Mortality: n = 5 (31%) |
|
| 10. | Retrospective [28] n = 19 (adult) n = 9 (pediatric) 13.1 days 2019 |
ECMO Respiratory 13 (72.2%) Cardiac 5 (27.8%) |
HR Pediatric: (1) anti-Xa < 0.15 IU/mL (2) UFH = 23.6 units/kg/h Adult (1) anti-Xa < 0.19 IU/mL (2) UFH = 15.3 units/kg/h |
Patients with ≥1 major bleed n = 12 (66.7%), > in adult Thrombosis events: n = 45 > in children |
|
| 11. | Case report [29] n = 1 Adult (31 y.o.) 10 days 2019 |
VA-ECMO Circulatory failure |
HR: (1) ACT < 160 s (2) APTT 28.5 s (3) anti-Xa 0.38 IU/mL (4)UFH = 32 units/kg/h AT = 90% |
Switch to bivalirudin | Circuit thrombus |
| 12. | Original [30] n = 20 HR Pts Adult (50.5 y.o.) 279.2/176.5 h 2018 |
VA-ECMO cardiac |
HR: (1) ACT < 180 ACT < 150 (if bleeding) And/OR (2) UFH >24,000 IU/d |
Bleeding 80% Survival 41% |
|
| 13. | Case series [31] n = 5 Pediatric (1 m.o.) 2014 |
ECMO | HR: (2) UFH > 40 units/kg/h, w/no ↑ in ACT |
rAT dose is not enough to reach desired AT in pediatric Pts on ECMO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
