Submitted:
27 September 2024
Posted:
30 September 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Anesthesia and Analgesia
Volatile Anesthesia
Shifting Away from Volatile Anesthesia?
Inhalers
Types and Uses
Alternatives to pMDIs
Retinal Gas Tamponades
Definitions and Uses
Tamponade Alternatives
Discussion
Balancing Climate Action with Patient Outcomes
Other Challenges and Barriers
Conclusion
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Pierrehumbert, R.T. Infrared Radiation and Planetary Temperature. Phys. Today 2011, 64, 33–38. [CrossRef]
- Eckelman, M.J.; Sherman, J. Environmental Impacts of the U.S. Health Care System and Effects on Public Health. PLOS ONE 2016, 11, e0157014. [CrossRef]
- Tennison, I.; Roschnik, S.; Ashby, B.; Boyd, R.; Hamilton, I.; Oreszczyn, T.; Owen, A.; Romanello, M.; Ruyssevelt, P.; Sherman, J.D.; et al. Health Care’s Response to Climate Change: A Carbon Footprint Assessment of the NHS in England. Lancet Planet. Health 2021, 5, e84–e92. [CrossRef]
- Malik, A.; Lenzen, M.; McAlister, S.; McGain, F. The Carbon Footprint of Australian Health Care. Lancet Planet. Health 2018, 2, e27–e35. [CrossRef]
- Wu, R. The Carbon Footprint of the Chinese Health-Care System: An Environmentally Extended Input–Output and Structural Path Analysis Study. Lancet Planet. Health 2019, 3, e413–e419. [CrossRef]
- Cristiano, W.; De Marchi, C.; Di Domenico, K.; Punzo, O.; Mancini, A.; Mancini, L. The Elephant in the Room in Greenhouse Gases Emissions: Rethinking Healthcare Systems to Face Climate Change. A Rapid Scoping Review. Environ. Sci. Eur. 2024, 36, 24. [CrossRef]
- Maibach, E.; Nisbet, M.; Weathers, M. Conveying the Human Implications of Climate Change: A Climate Change Communication Primer for Public Health Professionals; George Mason University Center for Climate Change Communication: Fairfax, VA, 2011;
- De Alwis, D.; Limaye, V.S. The Costs of Inaction: The Economic Burden of Fossil Fuels and Climate Change on Health in the United States; Natural Resources Defense Council, 2021;
- Kotcher, J.; Maibach, E.; Miller, J.; Campbell, E.; Alqodmani, L.; Maiero, M.; Wyns, A. Views of Health Professionals on Climate Change and Health: A Multinational Survey Study. Lancet Planet. Health 2021, 5, e316–e323. [CrossRef]
- Abbasi, K.; Ali, P.; Barbour, V.; Benfield, T.; Bibbins-Domingo, K.; Hancocks, S.; Horton, R.; Laybourn-Langton, L.; Mash, R.; Sahni, P.; et al. Time to Treat the Climate and Nature Crisis as One Indivisible Global Health Emergency. BMJ 2023, p2355. [CrossRef]
- Romanello, M.; Napoli, C.D.; Green, C.; Kennard, H.; Lampard, P.; Scamman, D.; Walawender, M.; Ali, Z.; Ameli, N.; Ayeb-Karlsson, S.; et al. The 2023 Report of the Lancet Countdown on Health and Climate Change: The Imperative for a Health-Centred Response in a World Facing Irreversible Harms. The Lancet 2023, 402, 2346–2394. [CrossRef]
- United Nations Paris Agreement to the United Nations Framework Convention on Climate Change; 2015;
- Assistant Secretary for Health (ASH) Health Sector Commitments to Emissions Reduction and Resilience Available online: https://www.hhs.gov/climate-change-health-equity-environmental-justice/climate-change-health-equity/actions/health-sector-pledge/index.html (accessed on 30 July 2024).
- Russ, K.G.; DasSarma, S.; Gilden, R.; Cloeren, M.; Piermattei, W.; Patel, S.T.; Canty, T.; Gupta, S.; Michalopoulos, L. Creating an Interprofessional Consortium on Climate and Health for Higher Education as a Step Toward a Sustainable Future. In North American and European Perspectives on Sustainability in Higher Education; World Sustainability Series; Nature Publisher, 2024.
- Kline, M.C.; Malits, J.R.; Baker, N.; Shirley, H.; Grobman, B.; Callison, W.É.; Pelletier, S.; Nadeau, K.; Jones, D.S.; Basu, G. Climate Change, Environment, and Health: The Implementation and Initial Evaluation of a Longitudinal, Integrated Curricular Theme and Novel Competency Framework at Harvard Medical School. PLOS Clim. 2024, 3, e0000412. [CrossRef]
- Greenhouse Gas Protocol | World Resources Institute Available online: https://www.wri.org/initiatives/greenhouse-gas-protocol (accessed on 29 August 2024).
- NHS England Delivering a ‘Net Zero’ National Health Service; National Health Service, 2022;
- Clar, D.T.; Patel, S.; Richards, J.R. Anesthetic Gases. In StatPearls [Internet]; StatPearls Publishing: Treasure Island (FL), 2024.
- Covarrubias, M.; Barber, A.F.; Carnevale, V.; Treptow, W.; Eckenhoff, R.G. Mechanistic Insights into the Modulation of Voltage-Gated Ion Channels by Inhalational Anesthetics. Biophys. J. 2015, 109, 2003–2011. [CrossRef]
- Gadani, H.; Vyas, A. Anesthetic Gases and Global Warming: Potentials, Prevention and Future of Anesthesia. Anesth. Essays Res. 2011, 5, 5. [CrossRef]
- Varughese, S.; Ahmed, R. Environmental and Occupational Considerations of Anesthesia: A Narrative Review and Update. Anesth. Analg. 2021, 133, 826–835. [CrossRef]
- US EPA, O. Greenhouse Gas Equivalencies Calculator Available online: https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator (accessed on 30 July 2024).
- Charlesworth, M.; Swinton, F. Anaesthetic Gases, Climate Change, and Sustainable Practice. Lancet Planet. Health 2017, 1, e216–e217. [CrossRef]
- Gao, M.; Liu, W.; Chen, Z.; Wei, W.; Bao, Y.; Cai, Q. Global Trends in Anesthetic Research over the Past Decade: A Bibliometric Analysis. Ann. Transl. Med. 2022, 10, 607–607. [CrossRef]
- Weiser, T.G.; Haynes, A.B.; Molina, G.; Lipsitz, S.R.; Esquivel, M.M.; Uribe-Leitz, T.; Fu, R.; Azad, T.; Chao, T.E.; Berry, W.R.; et al. Estimate of the Global Volume of Surgery in 2012: An Assessment Supporting Improved Health Outcomes. The Lancet 2015, 385, S11. [CrossRef]
- Oliver, C.; Charlesworth, M.; Pratt, O.; Sutton, R.; Metodiev, Y. Anaesthetic Subspecialties and Sustainable Healthcare: A Narrative Review. Anaesthesia 2024, 79, 301–308. [CrossRef]
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. 2013.
- Sulbaek Andersen, M.P.; Nielsen, O.J.; Sherman, J.D. Assessing the Potential Climate Impact of Anaesthetic Gases. Lancet Planet. Health 2023, 7, e622–e629. [CrossRef]
- 2.f Amendment to the Montreal Protocol on Substances That Deplete the Ozone Layer; 2019;
- Kampman, J.M.; Sperna Weiland, N.H. Anaesthesia and Environment: Impact of a Green Anaesthesia on Economics. Curr. Opin. Anaesthesiol. 2023, 36, 188–195. [CrossRef]
- Banerjee, D.; Simon, C.M.; Elsaidi, S.K.; Haranczyk, M.; Thallapally, P.K. Xenon Gas Separation and Storage Using Metal-Organic Frameworks. Chem 2018, 4, 466–494. [CrossRef]
- Da Silva Pinto, R.L.; Vieira, A.C.; Scarpetta, A.; Marques, F.S.; Jorge, R.M.M.; Bail, A.; Jorge, L.M.M.; Corazza, M.L.; Ramos, L.P. An Overview on the Production of Synthetic Fuels from Biogas. Bioresour. Technol. Rep. 2022, 18, 101104. [CrossRef]
- Lynch, C.; Baum, J.; Tenbrinck, R.; Weiskopf, R.B. Xenon Anesthesia. Anesthesiology 2000, 92, 865–870. [CrossRef]
- Nakata, Y.; Goto, T.; Niimi, Y.; Morita, S. Cost Analysis of Xenon Anesthesia: A Comparison with Nitrous Oxide-Isoflurane and Nitrous Oxide-Sevoflurane Anesthesia. J. Clin. Anesth. 1999, 11, 477–481. [CrossRef]
- Gaya Da Costa, M.; Kalmar, A.F.; Struys, M.M.R.F. Inhaled Anesthetics: Environmental Role, Occupational Risk, and Clinical Use. J. Clin. Med. 2021, 10, 1306. [CrossRef]
- Chakera, A.; Harrison, S.; Mitchell, J.; Oliver, C.; Ralph, M.; Shelton, C. The Nitrous Oxide Project: Assessment of Advocacy and National Directives to Deliver Mitigation of Anaesthetic Nitrous Oxide. Anaesthesia 2024, anae.16211. [CrossRef]
- Pauchard, J.-C.; Hafiani, E.-M.; Pons, S.; Bonnet, L.; Cabelguenne, D.; Carenco, P.; Cassier, P.; Garnier, J.; Lallemant, F.; Sautou, V.; et al. Guidelines for Reducing the Environmental Impact of General Anaesthesia. Anaesth. Crit. Care Pain Med. 2023, 42, 101291. [CrossRef]
- Bernat, M.; Boyer, A.; Roche, M.; Richard, C.; Bouvet, L.; Remacle, A.; Antonini, F.; Poirier, M.; Pastene, B.; Hammad, E.; et al. Reducing the Carbon Footprint of General Anaesthesia: A Comparison of Total Intravenous Anaesthesia vs. a Mixed Anaesthetic Strategy in 47,157 Adult Patients. Anaesthesia 2024, 79, 309–317. [CrossRef]
- Landoni, G.; Lomivorotov, V.V.; Nigro Neto, C.; Monaco, F.; Pasyuga, V.V.; Bradic, N.; Lembo, R.; Gazivoda, G.; Likhvantsev, V.V.; Lei, C.; et al. Volatile Anesthetics versus Total Intravenous Anesthesia for Cardiac Surgery. N. Engl. J. Med. 2019, 380, 1214–1225. [CrossRef]
- Sessler, D.I.; Pei, L.; Huang, Y.; Fleischmann, E.; Marhofer, P.; Kurz, A.; Mayers, D.B.; Meyer-Treschan, T.A.; Grady, M.; Tan, E.Y.; et al. Recurrence of Breast Cancer after Regional or General Anaesthesia: A Randomised Controlled Trial. The Lancet 2019, 394, 1807–1815. [CrossRef]
- Wyssusek, K.; Chan, K.L.; Eames, G.; Whately, Y. Greenhouse Gas Reduction in Anaesthesia Practice: A Departmental Environmental Strategy. BMJ Open Qual. 2022, 11, e001867. [CrossRef]
- Anesthesia Spotlight: How Mass General Clinicians Are Tackling Anesthetic Gas Emissions Available online: https://www.massgeneral.org/anesthesia/news/anesthesia-spotlight-climate-change (accessed on 30 July 2024).
- Anesthetic Gases at MGH Available online: https://public.tableau.com/app/profile/center.for.the.environment.and.health/viz/AnestheticgasesatMGH/Dashboard1 (accessed on 30 July 2024).
- Alexander, R.; Poznikoff, A.; Malherbe, S. Greenhouse Gases: The Choice of Volatile Anesthetic Does Matter. Can. J. Anesth. Can. Anesth. 2018, 65, 221–222. [CrossRef]
- Vollmer, M.K.; Rhee, T.S.; Rigby, M.; Hofstetter, D.; Hill, M.; Schoenenberger, F.; Reimann, S. Modern Inhalation Anesthetics: Potent Greenhouse Gases in the Global Atmosphere. Geophys. Res. Lett. 2015, 42, 1606–1611. [CrossRef]
- Slingo, J.M.; Slingo, M.E. The Science of Climate Change and the Effect of Anaesthetic Gas Emissions. Anaesthesia 2024, 79, 252–260. [CrossRef]
- ASA Committee on Environmental Health The Environmental Impact of Inhaled Anesthetics Available online: https://www.asahq.org/about-asa/governance-and-committees/asa-committees/environmental-sustainability/greening-the-operating-room/inhaled-anesthetics (accessed on 30 July 2024).
- Hu, E.P.; Yap, A.; Davies, J.F.; Goyagi, T.; McGain, F. Global Practices in Desflurane Use. Br. J. Anaesth. 2023, S0007091223004713. [CrossRef]
- Pichler, P.-P.; Jaccard, I.S.; Weisz, U.; Weisz, H. International Comparison of Health Care Carbon Footprints. Environ. Res. Lett. 2019, 14, 064004. [CrossRef]
- Alzaabi, A.; Bell, J.P.; Montero-Arias, F.; Price, D.B.; Jackson, D.J.; Wang, H.-C.; Budgen, N.; Farouk, H.; Maslova, E. Greenhouse Gas Emissions from Respiratory Treatments: Results from the SABA CARBON International Study. Adv. Ther. 2023, 40, 4836–4856. [CrossRef]
- Ohnishi, K.; Tope, H.; Zhang, J. MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER: 2018 REPORT OF THE MEDICAL AND CHEMICAL TECHNICAL OPTIONS COMMITTEE. 2018.
- Buttini, F.; Glieca, S.; Sonvico, F.; Lewis, D.A. Metered Dose Inhalers in the Transition to Low GWP Propellants: What We Know and What Is Missing to Make It Happen. Expert Opin. Drug Deliv. 2023, 20, 1131–1143. [CrossRef]
- Moussa, G.; Andreatta, W.; Ch’ng, S.W.; Ziaei, H.; Jalil, A.; Patton, N.; Ivanova, T.; Lett, K.S.; Park, D.Y. Environmental Effect of Air versus Gas Tamponade in the Management of Rhegmatogenous Retinal Detachment VR Surgery: A Multicentre Study of 3,239 Patients. PLoS ONE 2022, 17, e0263009. [CrossRef]
- An, M.; Prinn, R.G.; Western, L.M.; Zhao, X.; Yao, B.; Hu, J.; Ganesan, A.L.; Mühle, J.; Weiss, R.F.; Krummel, P.B.; et al. Sustained Growth of Sulfur Hexafluoride Emissions in China Inferred from Atmospheric Observations. Nat. Commun. 2024, 15, 1997. [CrossRef]
- Trudinger, C.M.; Fraser, P.J.; Etheridge, D.M.; Sturges, W.T.; Vollmer, M.K.; Rigby, M.; Martinerie, P.; Mühle, J.; Worton, D.R.; Krummel, P.B.; et al. Atmospheric Abundance and Global Emissions of Perfluorocarbons CF<Sub>4</Sub>, C<Sub>2</Sub>F<Sub>6</Sub> and C<Sub>3</Sub>F<Sub>8</Sub> since 1800 Inferred from Ice Core, Firn, Air Archive and in Situ Measurements. Atmospheric Chem. Phys. 2016, 16, 11733–11754. [CrossRef]
- Kuehl, P.; Corr, S.; Leach, C. Safety, Tolerance and Pharmacokinetics of HFA-152a in Healthy Volunteers. RDD 2022, 2022, 87–96.
- Chiesi Farmaceutici S.p.A. Comparison Between CHF5993 pMDI 200/6/12,5mg HFA-152a VS CHF5993 pMDI 200/6/12,5mg HFA-134a in Subjects With Asthma (Trecos) Available online: https://clinicaltrials.gov/study/NCT06264674?term=HFC%20152a%20&cond=asthma&rank=14 (accessed on 30 July 2024).
- Tetsumoto, A.; Imai, H.; Hayashida, M.; Otsuka, K.; Matsumiya, W.; Miki, A.; Nakamura, M. The Comparison of the Surgical Outcome of 27-Gauge Pars Plana Vitrectomy for Primary Rhegmatogenous Retinal Detachment between Air and SF6 Gas Tamponade. Eye 2020, 34, 299–306. [CrossRef]
- Moussa, G.; Mathews, N.; Makhzoum, O.; Park, D.Y. Vitrectomy with Air Tamponade and Cryotherapy for Retinal Detachment Repair without Perfluorocarbon Use: A UK 12-Month Prospective Case Series. Eur. J. Ophthalmol. 2021, 31, 1475–1478. [CrossRef]
- Hosseini, M.; Almasi-Hashiani, A.; Sepidarkish, M.; Maroufizadeh, S. Global Prevalence of Asthma-COPD Overlap (ACO) in the General Population: A Systematic Review and Meta-Analysis. Respir. Res. 2019, 20, 229. [CrossRef]
- Marcon, A.; Locatelli, F.; Dharmage, S.C.; Svanes, C.; Heinrich, J.; Leynaert, B.; Burney, P.; Corsico, A.; Caliskan, G.; Calciano, L.; et al. The Coexistence of Asthma and COPD: Risk Factors, Clinical History and Lung Function Trajectories. Eur. Respir. J. 2021, 58, 2004656. [CrossRef]
- Pritchard, J.N. The Climate Is Changing for Metered-Dose Inhalers and Action Is Needed. Drug Des. Devel. Ther. 2020, Volume 14, 3043–3055. [CrossRef]
- Starup-Hansen, J.; Dunne, H.; Sadler, J.; Jones, A.; Okorie, M. Climate Change in Healthcare: Exploring the Potential Role of Inhaler Prescribing. Pharmacol. Res. Perspect. 2020, 8, e00675. [CrossRef]
- Gaikwad, S.S.; Pathare, S.R.; More, M.A.; Waykhinde, N.A.; Laddha, U.D.; Salunkhe, K.S.; Kshirsagar, S.J.; Patil, S.S.; Ramteke, K.H. Dry Powder Inhaler with the Technical and Practical Obstacles, and Forthcoming Platform Strategies. J. Controlled Release 2023, 355, 292–311. [CrossRef]
- Stein, S.W.; Thiel, C.G. The History of Therapeutic Aerosols: A Chronological Review. J. Aerosol Med. Pulm. Drug Deliv. 2017, 30, 20–41. [CrossRef]
- Komalla, V.; Wong, C.Y.J.; Sibum, I.; Muellinger, B.; Nijdam, W.; Chaugule, V.; Soria, J.; Ong, H.X.; Buchmann, N.A.; Traini, D. Advances in Soft Mist Inhalers. Expert Opin. Drug Deliv. 2023, 20, 1055–1070. [CrossRef]
- Lavorini, F.; Corrigan, C.J.; Barnes, P.J.; Dekhuijzen, P.R.N.; Levy, M.L.; Pedersen, S.; Roche, N.; Vincken, W.; Crompton, G.K. Retail Sales of Inhalation Devices in European Countries: So Much for a Global Policy. Respir. Med. 2011, 105, 1099–1103. [CrossRef]
- ICF Market Characterization of the U.S. Metered Dose Inhaler Industry. 2021.
- British Thoracic Society BTS POSITION STATEMENT: ENVIRONMENT AND LUNG HEALTH 2020; British Thoracic Society, 2020;
- Dipper, A.; Anning, L.; Zorzi, A.; Thrush, L.; Schulz, T.; Higbee, D.; Nalwaya, P.; Maidwell-Smith, A.; Pepperell, J. Reducing Plastic Waste, Carbon Footprint and Cost: Inhaler Recycling at Musgrove Park Hospital. In Proceedings of the Ethics and Economics; European Respiratory Society, September 15 2018; p. PA3158.
- Rabin, A.S.; Harlan, E.A.; Ambinder, A.J. Small Devices, Big Problems: Addressing the Global Warming Potential of Metered-Dose Inhalers. Ann. Am. Thorac. Soc. 2022, 19, 1090–1092. [CrossRef]
- Pritchard, J. The Environmental Impact of MDI Propellants – What Now? Aerosol Soc. 2019.
- Janson, C.; Henderson, R.; Löfdahl, M.; Hedberg, M.; Sharma, R.; Wilkinson, A.J.K. Carbon Footprint Impact of the Choice of Inhalers for Asthma and COPD. Thorax 2020, 75, 82–84. [CrossRef]
- Wilkinson, A.J.K.; Braggins, R.; Steinbach, I.; Smith, J. Costs of Switching to Low Global Warming Potential Inhalers. An Economic and Carbon Footprint Analysis of NHS Prescription Data in England. BMJ Open 2019, 9, e028763. [CrossRef]
- Corr, S.; Noakes, T.J. Composition Comprising Salbutamol Sulphate.
- Vance, C.; Swalwell, C.; McIntyre, I.M. Deaths Involving 1,1-Difluoroethane at the San Diego County Medical Examiner’s Office. J. Anal. Toxicol. 2012, 36, 626–633. [CrossRef]
- Liew, K.; Wilkinson, A. P280 How Do We Choose Inhalers? Patient and Physician Perspectives on Environmental, Financial and Ease-of-Use Factors. In Proceedings of the Pharmacotherapies for COPD; BMJ Publishing Group Ltd and British Thoracic Society, December 2017; pp. A235–A237.
- Rothwell, E.; McElvaney, J.; Fitzpatrick, A.; Van Hove, M.; Gopfert, A.; Standing, L.; Walpole, S.C. Evaluating Inhaler Technique, Patient Preferences and Opportunities for Improvement in Hospitals in the UK. Future Healthc. J. 2024, 11, 100141. [CrossRef]
- Jalali, S. Retinal Detachment. Community Eye Health 2003, 16, 25–26.
- Vaziri, K.; Schwartz, S.; Kishor, K.; Flynn, H. Tamponade in the Surgical Management of Retinal Detachment. Clin. Ophthalmol. 2016, 471. [CrossRef]
- Rosengren, B. RESULTS OF TREATMENT OF DETACHMENT OF THE RETINA WITH DIATHERMY AND INJECTION OF AIR INTO THE VITREOUS. Acta Ophthalmol. (Copenh.) 1938, 16, 573–579. [CrossRef]
- Boyd, K. Face-Down Recovery After Retinal Surgery Available online: https://www.aao.org/eye-health/treatments/face-down-recovery-after-retinal-surgery (accessed on 30 July 2024).
- Kanclerz, P.; Grzybowski, A. Complications Associated with the Use of Expandable Gases in Vitrectomy. J. Ophthalmol. 2018, 2018, 1–7. [CrossRef]
- Teh, B.L.; Toh, S.; Williamson, T.H.; Obara, B.; Guillemaut, J.-Y.; Steel, D.H. Reducing the Use of Fluorinated Gases in Vitreoretinal Surgery. Eye 2024, 38, 229–232. [CrossRef]
- Chadwick, O.; Cox, A. Response to Tetsumoto et al. Regarding the Use of Fluorinated Gases in Retinal Detachment Surgery. The Environmental Impact of Fluorinated Gases. Eye 2021, 35, 2891–2891. [CrossRef]
- Moussa, G.; Ch’ng, S.W.; Ziaei, H.; Jalil, A.; Park, D.Y.; Patton, N.; Ivanova, T.; Lett, K.S.; Andreatta, W. The Use of Fluorinated Gases and Quantification of Carbon Emission for Common Vitreoretinal Procedures. Eye 2023, 37, 1405–1409. [CrossRef]
- Nadig, R.R.; Deepak, B.; Neelamegam, V.; Moussa, G.; Raman, R. Global Warming Impact of Fluorinated Gases in Ophthalmic Surgeries at a Tertiary Eye Center in India. Indian J. Ophthalmol. 2024, 72, 692–696. [CrossRef]
- Ludwig, C.A.; Vail, D.; Al-Moujahed, A.; Callaway, N.F.; Saroj, N.; Moshfeghi, A.; Moshfeghi, D.M. Epidemiology of Rhegmatogenous Retinal Detachment in Commercially Insured Myopes in the United States. Sci. Rep. 2023, 13, 9430. [CrossRef]
- Madi, H.A.; Keller, J. Increasing Frequency of Hospital Admissions for Retinal Detachment and Vitreo-Retinal Surgery in England 2000–2018. Eye 2022, 36, 1610–1614. [CrossRef]
- Ge, J.Y.; Teo, Z.L.; Chee, M.L.; Tham, Y.-C.; Rim, T.H.; Cheng, C.-Y.; Wong, T.Y.; Wong, E.Y.M.; Lee, S.Y.; Cheung, N. International Incidence and Temporal Trends for Rhegmatogenous Retinal Detachment: A Systematic Review and Meta-Analysis. Surv. Ophthalmol. 2024, 69, 330–336. [CrossRef]
- Jawaheer, L.; Chew, F.M.; Holmes, C.; Madi, H.; Hughes, E. Reducing Our Carbon Footprint as Vitreoretinal Surgeons—What Can We Do as a Group? Eye 2024, 38, 393–394. [CrossRef]
- Chew, F.M.; Jawaheer, L.; Madi, H.; Hughes, E. The Role of 8% C2F6 as an Alternative Gas Tamponade to SF6 in Vitreoretinal Surgery to Reduce Environmental Impact of Healthcare Services. J Opht Res Rev Rep 2024.
- Tan, H.S.; Oberstein, S.Y.L.; Mura, M.; Bijl, H.M. Air versus Gas Tamponade in Retinal Detachment Surgery. Br. J. Ophthalmol. 2013, 97, 80–82. [CrossRef]
- Nakamura, M.; Nishi, K.; Nishitsuka, K. Selection Criteria for Air Tamponade During Vitrectomy for Rhegmatogenous Retinal Detachment. Clin. Ophthalmol. 2022, Volume 16, 981–986. [CrossRef]
- Nishi, K.; Nakamura, M.; Nishitsuka, K. Efficacy of Vitrectomy with Air Tamponade for Rhegmatogenous Retinal Detachment: A Prospective Study. Sci. Rep. 2023, 13, 10790. [CrossRef]
- Deobhakta, A.; Rosen, R. Retinal Tamponades: Current Uses and Future Technologies. Curr. Ophthalmol. Rep. 2020, 8, 144–151. [CrossRef]
- Baino, F. Towards an Ideal Biomaterial for Vitreous Replacement: Historical Overview and Future Trends. Acta Biomater. 2011, 7, 921–935. [CrossRef]
- Qu, S.; Tang, Y.; Ning, Z.; Zhou, Y.; Wu, H. Desired Properties of Polymeric Hydrogel Vitreous Substitute. Biomed. Pharmacother. 2024, 172, 116154. [CrossRef]
- Lincoff, H.; Kreissig, I. Application of Xenon Gas to Clinical Retinal Detachment. Arch. Ophthalmol. 1982, 100, 1083–1085. [CrossRef]
- Lincoff, A.; Lincoff, H.; Solorzano, C.; Iwamoto, T. Selection of Xenon Gas for Rapidly Disappearing Retinal Tamponade. Arch. Ophthalmol. 1982, 100, 996–997. [CrossRef]
- Petukhov, A.N.; Shablykin, D.N.; Trubyanov, M.M.; Atlaskin, A.A.; Zarubin, D.M.; Vorotyntsev, A.V.; Stepanova, E.A.; Smorodin, K.A.; Kazarina, O.V.; Petukhova, A.N.; et al. A Hybrid Batch Distillation/Membrane Process for High Purification Part 2: Removing of Heavy Impurities from Xenon Extracted from Natural Gas. Sep. Purif. Technol. 2022, 294, 121230. [CrossRef]
- MD, A.T., MD, and Gaurav K. Shah Management of Primary Retinal Detachments Available online: https://www.reviewofophthalmology.com/article/management-of-primary-retinal-detachments (accessed on 30 July 2024).
- Hillier, R.J.; Felfeli, T.; Berger, A.R.; Wong, D.T.; Altomare, F.; Dai, D.; Giavedoni, L.R.; Kertes, P.J.; Kohly, R.P.; Muni, R.H. The Pneumatic Retinopexy versus Vitrectomy for the Management of Primary Rhegmatogenous Retinal Detachment Outcomes Randomized Trial (PIVOT). Ophthalmology 2019, 126, 531–539. [CrossRef]
- Bunajem, M.; Ahmad, K.; Al Zaidi, N.; Al Bloushi, B.; Al Zahrani, Y. Scleral Buckle versus Pars Plana Vitrectomy in the Management of Primary Chronic Rhegmatogenous Retinal Detachment: A Comparison of Anatomical and Visual Outcomes. Middle East Afr. J. Ophthalmol. 2021, 28, 65. [CrossRef]
- Znaor, L.; Medic, A.; Marin, J.; Binder, S.; Lukic, I.; George, J. Pars Plana Vitrectomy versus Scleral Buckle for Repairing Simple Rhegmatogenous Retinal Detachments. Cochrane Database Syst. Rev. 2012. [CrossRef]
- Kampman, J.M.; Hermanides, J.; Hollmann, M.W.; Gilhuis, C.N.; Bloem, W.Ah.; Schraag, S.; Pradelli, L.; Repping, S.; Sperna Weiland, N.H. Mortality and Morbidity after Total Intravenous Anaesthesia versus Inhalational Anaesthesia: A Systematic Review and Meta-Analysis. eClinicalMedicine 2024, 72, 102636. [CrossRef]
- Seo, K.H.; Hong, J.H.; Moon, M.H.; Hwang, W.; Lee, S.-W.; Chon, J.Y.; Kwon, H.; Hong, S.H.; Kim, S. Effect of Total Intravenous versus Inhalation Anesthesia on Long-Term Oncological Outcomes in Patients Undergoing Curative Resection for Early-Stage Non-Small Cell Lung Cancer: A Retrospective Cohort Study. Korean J. Anesthesiol. 2023, 76, 336–347. [CrossRef]
- Ramirez, M.F.; Gan, T.J. Total Intravenous Anesthesia versus Inhalation Anesthesia: How Do Outcomes Compare? Curr. Opin. Anaesthesiol. 2023, 36, 399–406. [CrossRef]
- Lerman, J.; Jöhr, M. Inhalational Anesthesia vs Total Intravenous Anesthesia (TIVA) for Pediatric Anesthesia. Pediatr. Anesth. 2009, 19, 521–534. [CrossRef]
- Bjermer, L. The Importance of Continuity in Inhaler Device Choice for Asthma and Chronic Obstructive Pulmonary Disease. Respiration 2014, 88, 346–352. [CrossRef]
- Abrams, G.W.; Swanson, D.E.; Sabates, W.I.; Goldman, A.I. The Results of Sulfur Hexafluoride Gas in Vitreous Surgery. Am. J. Ophthalmol. 1982, 94, 165–171. [CrossRef]
- Krzystolik, M.G.; D’Amico, D.J. Complications of Intraocular Tamponade: Silicone Oil versus Intraocular Gas. Int. Ophthalmol. Clin. 2000, 40, 187–200. [CrossRef]
- Kasetty, V.M.; Monsalve, P.F.; Sethi, D.; Yousif, C.; Hessburg, T.; Kumar, N.; Hamad, A.E.; Desai, U.R. Cataract Progression after Primary Pars Plana Vitrectomy for Uncomplicated Rhegmatogenous Retinal Detachments in Young Adults. Int. J. Retina Vitr. 2024, 10, 19. [CrossRef]
- Rennert, K.; Errickson, F.; Prest, B.C.; Rennels, L.; Newell, R.G.; Pizer, W.; Kingdon, C.; Wingenroth, J.; Cooke, R.; Parthum, B.; et al. Comprehensive Evidence Implies a Higher Social Cost of CO2. Nature 2022, 610, 687–692. [CrossRef]
- Jabaudon, M.; Vallabh, B.; Bacher, H.P.; Badenes, R.; Kehl, F. Balancing Patient Needs with Environmental Impacts for Best Practices in General Anesthesia: Narrative Review and Clinical Perspective. Anaesth. Crit. Care Pain Med. 2024, 43, 101389. [CrossRef]
- Kulesus, K.; Windrix, C.; Nhan, H. It’s Not Easy Being Green: The Continued Lack of Sustainable Anaesthetic Options. Anaesthesia 2024, 79, 887–888. [CrossRef]
- Sharma, R.; Sharma, M.; Sharma, R.; Sharma, V. The Impact of Incinerators on Human Health and Environment. Rev. Environ. Health 2013, 28, 67–72. [CrossRef]
- Jeswani, H.K.; Azapagic, A. Life Cycle Environmental Impacts of Inhalers. J. Clean. Prod. 2019, 237, 117733. [CrossRef]
- COP28 Health Day Available online: https://www.who.int/news-room/events/detail/2023/12/03/default-calendar/cop28-health-day (accessed on 17 August 2024).
| Gas | Clinical uses | Emissions from healthcare sector (thousands of MTCO2e) | GWP-100 | Atmospheric lifespan (yrs) |
|---|---|---|---|---|
| Isoflurane [21,28,45] | Surgery; sedation and maintenance anesthesia | 407 | 510 | 3.2 |
| Sevoflurane [21,28,45] | Surgery; sedation and maintenance anesthesia | 403 | 130 | 1.1 |
| Desflurane [21,46,47,48] | Surgery; sedation and maintenance anesthesia | 4,712 | 2,530 | 14 |
| Nitrous oxide [20,21,27,28,49] | Dentistry; anesthesia and analgesia | 48,000 | 273 | 150 |
| HFA134a [50,51,52] | pMDI propellant gas | 3,219 | 1,300 | 13.4 |
| HFA227ea [50,51,52] | pMDI propellant gas | 279 | 3,350 | 38.9 |
| SF6 [27,53,54] | Tamponade for retinal detachment surgery | *N/A | 23,500 | 3,200 |
| C2F6 [27,55] | Tamponade for retinal detachment surgery | *N/A | 11,100 | 10,000 |
| C3F8 [27,55] | Tamponade for retinal detachment surgery | *N/A | 8,900 | 2,600 |
| Institution | Years | Implementation project | Outcome |
|---|---|---|---|
| University of British Columbia (Canada) [44] | 2012-2016 | purchase of modern low-flow anesthesia machines and switch to sevoflurane over desflurane across 4-year period | 66% reduction in emissions from 13.4 to 4.5 million kg of CO2e |
| Royal Brisbane and Women’s Hospital (Australia) [41] | 2016-2021 | environmental education campaigns, infographics, newsletters | removal of desflurane vaporizers from operating rooms; 96% reduction in purchase and use of desflurane bottles |
| Massachusetts General Hospital (USA) [42,43] | 2021-2023 | formation of Sustainability Anesthesia Committee; reporting on anesthesia use in Epic; educational campaigns | 75% reduction in total volatile anesthesia use |
| Cardiff and Vale University Health Board (UK) [36] | 2018-2023 | decommissioning of all but dental nitrous oxide manifold; replacement of decommissioned pipes with mobile cylinders | 92% reduction in waste anesthesia from 132,000 to 10,500 liters per month |
| Lovelace Biomedical Research Institute (USA) [56] | 2022 | administration of low-GWP inhalers to eight healthy male participants in a Phase I clinical trial | low-GWP propellant gas was well-tolerated with no adverse effects and rapid clearance from the blood |
| Wythenshawe Hospital (UK) [57] | 2023-2025 | administration of low-GWP inhalers to 790 asthmatic subjects in a Phase III clinical trial | currently ongoing, estimated completion in 2025 |
| Kobe Kaisei Hospital (Japan) [58] | 2016-2017 | retrospective comparison of outcomes in patients who received SF6 or air tamponade for retinal detachment surgery | patients who received SF6 or air tamponades had comparable reattachment rates (97.1% versus 94.3%) and best-corrected visual acuity 12-months post-surgery |
| University Hospital Coventry Warwickshire (UK) [59] | 2019 | vitrectomy with air tamponade and cryotherapy for retinal detachment repair | 96% primary reattachment rate with minimal elevations of intraocular pressure or cataract formation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
